General Information:    Home   About Me    CV    Contact     ///  Physics Department SUT   Cosmology Group of Sharif University of Technology  

Academic Activities:      Research Interest   Publication   Projects  Collaborators    My Students   Courses    Cosmology    Talks     درس نامه ها

Other Activities:             Science Outreach   Outside Physics    Articles     News    Press    Links    Photo Gallery   فارسی     Հայերէն


Special Relativity (Fall 2020)


General:  ( This webpage is updated gradually)  - Last Update   13 February 2021

This is a B.Sc. course, which will be held in Physics Department of Sharif University of Technology.

Class Time:  Saturdays and Mondays    16:30 - 18:00

Place:  These lecture will be taught and discussed in vclass

Office Hours:   by appointment - Email: baghram@sharif.edu  due to Covid19 pandemic era, we can discuss in vclass

Registered students: # 37


About the Course:

This is an introductory course on Special Relativity. The aim is to understand one of the greatest scientific achievements in humankind history, understand the structure of space and time when gravity is absent.   

Teacher Assitants:

Miss Saba Etezadrazavi             Email address:  s_etezadrazavi@yahoo.com

Miss Zahra Kabiri                     Email address:  kabiri.zahra98@gmail.com

Mr. Kuroush Alameh                Email address:  kuroshallame@gmail.com

TA Class Group 1:  TBA

TA Class Group 2:  TBA

TA Class Group 3:  TBA


Grading:

Mid-term 1 :  5 points    YOU CAN SEE THE RESULTS HERE.      Monday -   12 Aban  1399 -  2 November 2020 @ 16:30 - 18:00

NOTE ON MIDTERM EXAM I

 MID TERM I

Mid-term 2:   5 points    YOU CAN SEE THE RESULTS HERE    

NOTE ON MIDTERM EXAM II

 MID TERM II - 24 Azar 1399 + TAKE HOME

 MID TERM II - 4 Day 1399

 

Assignments:  5 points   YOU CAN SEE THE RESULTS HERE

Projects, Class Activity,  TA Classes: 1.0 point     Presentation date: (Must be a very high quality project) 

PROJECTS (TERM PAPER-OPTIONAL) : DUE TO   FRIDAY 14 BAHMAN 1399 /  2 February 2021

Presentation Day:

Final Exam:   5  points    YOU CAN SEE THE RESULTS HERE.     Tuesday 30 Day 1399 - @ 15:00

PROBLEM30-SET 1

PROBLEM30-SET 2

PROBLEM30-SET 3

PROBLEM30-SET 4

NOTE ON FINAL EXAM

LIST OF FINAL EXAM

Total grade:  from 21.0   YOU CAN SEE THE TOTAL GRADING HERE 


Suggested Reading:

Main guidline: Class Lecture Notes

& Relativity: Special general and Cosmology: Wolfgang Rindler 2006

Classical Electrodynamics, J.D. Jackson, 1999 third edition Chapter 11.6 and 11.7

Nonlocal Gravity by Bahram Mashhoon (2017) - Oxford University Press

David Tong: Lectures on Quantum Field Theory - Cambridge University

نسبیت خاص- شهرام خسروی و رضا منصوری انتشارات دانشگاه صنعتی شریف 1389

Introduction to Classical Mechanics: David Morin Cambridge University Press 2008

Basic Relativity, R.A. Mould, 1994, chapter 1,2,3

Special Relativity: An Introduction with 200 Problems and Solutions: Michael Tsamparlis, springer 2010

Special Relativity, David W. Hoggs, 1997, whole lecture

Special Relativity : A. P.  French 1968

 Spacetime and Geometry: Introduction to General Relativity, Sean Carroll, Addison Wesley 2004 Chapter 1 -2

Introducing Einstein's Relativity, Ray d'Inverno, Oxford University Press- Chapter 5

Classical Mechanics: Goldstein, Poole and Safko, Addison Wesley 2002 Chapter 7

Gravitation: Foundation and Frontiers T.Padmanabhan, Cambridge University Press: 2010 Chapter 1

For Classical Field Theory and Special Relativity you can refer to:

1) A modern introduction to quantum field theory by Michele Maggiore Oxford University Press - 2005

2) An Introduction to Quantum Field Theory by Daniel V. Schroeder and Michael Peskin (1995)

 ** For Mathematical basis of Tensors calculus

1) Mathematical Physics: A Modern Introduction to Its Foundations by Sadri Hassani (1999)

2) The Geometry of Physics by Theodore Frankel (1997)

Lecture Notes

Introduction to Tensor Calculus by Kees Dullemond & Kasper Peeters

Lecture Notes on Electrodynamic and Special Relativity by David Tong


Main Topics of Course:

1- Historical perspective on the concept of space-time, Newtonian Gravity and Galilean Relativity

2- EM wave - light and Ether

3- Axioms of Special Relativity, the hypothesis of calibration and measurement, Lorentz transformations, space-time diagrams, length contraction, and time dilation

4- Minkowski Space-time diagrams,  Minkowski metrics, SR paradoxes

5- SR Kinematicks - relative velocities, ...

6- Special Relativity and Optics

7- Tensor calculus I, the concept of four vectors

8- Acceleration in SR, concept of force and work

9- SR Dynamics, four-momentums, scattering and conservations.

10- Relativistic Electrodynamics

11- Relativistic classical field theory (conservations, Noether theorem and ...)

12-Tensor calculus II, manifolds

13- Thomas Precision in electrodynamics

14- Overview on General Relativity

 


Lectrure Notes and Presentations:

1- Lecture Note 1

2- Lecture Note 2

3- Lecture Note 3

4- Lecture Note 4

5- Lecture Note 5

6- Lecture Note 6

7- Lecture Note 7

8- Lecture Note 8

9- Lecture Note 9

10-Lecture Note 10

11-Lecture Note 11

TensorAnalysis-I  by Mr. Kuroush Allameh

12-Lecture Note 12

13-Lecture Note 13

14-Lecture Note 14

16-Lecture Note 16

20-Lecture Note 20


Recorded Videos - Brief review of sessions:

1- Session 1

2- Session 2

3- Session 3

4- Session 4

5- Session 5

6- Session 6

7- Session 7

8- Session 8

9- Session 9

10- Session 10

11- Session 11

12- Session 12

13- Midterm I

14- Session 14

15- Session 15

16- Session 16

17 - Session 17

18 - Session 18


Time Line of Lectures:

 

Lecture  1: ( Saturday  -  29 Shahrivar 1399 - 19 September 2020)

The brief review of the lecture can be find here  Session 1

Lecture  2: ( Monday  -  31 Shahrivar 1399 - 21 September 2020)

The brief review of the lecture can be find here  Session 2

 Lecture  3: (Saturday  -  5 Mehr  1399 -  26 September 2020)

The brief review of the lecture can be find here  Session 3

Lecture  4: ( Monday   - 7 Mehr  1399 -  28 September 2020)

The brief review of the lecture can be find here  Session 4

Lecture 5 : ( Saturday  -  12 Mehr  1399 -  3 October 2020 )

The brief review of the lecture can be find here  Session 5

Lecture 6 : ( Monday -  14 Mehr  1399 -  5 October 2020 )

The brief review of the lecture can be find here  Session 6

Lecture 7 : ( Saturday  -  19  Mehr  1399 -  10 October 2020)

The brief review of the lecture can be find here  Session 7

Lecture 8 : ( Monday -  21  Mehr  1399 -  12 October 2020 )

The brief review of the lecture can be find here Session 8

Saturday - 23 Mehr 1399 / 17 October 2020 - official holiday.

Lecture  9 : (Monday -  28  Mehr  1399 -  19 October 2020)

The brief review of the lecture can be find here  Session 9

Lecture  10 : ( Saturday  -  3 Aban  1399 -  24 October 2020 )

The brief review of the lecture can be find here  Session 10

 Lecture  11 : ( Monday -   5 Aban  1399 -  26 October 2020)

The brief review of the lecture can be find here  Session 11

Lecture  12 : ( Saturday  -  10 Aban  1399 -  31 October 2020)

The brief review of the lecture can be find here  Session 12

Lecture  13 : ( Monday -   12 Aban  1399 -  2 November 2020)

MIDTERM EXAM  I

Lecture  14 : ( Saturday  -  17 Aban  1399 -  7 November 2020

The brief review of the lecture can be find here  Session 14

Lecture  15 : ( Monday -   19 Aban  1399 -  9 November 2020)

The brief review of the lecture can be find here  Session 15

Lecture  16 : ( Saturday  -  24 Aban  1399 -  14 November 2020)

The brief review of the lecture can be find here  Session 16

Lecture  17: ( Monday -   26 Aban  1399 -  16 November 2020)

The brief review of the lecture can be find here  Session 17

Lecture  18: ( Saturday  - 1 Azar  1399 -  21 November 2020)

The brief review of the lecture can be find here  Session 18

Lecture  19: ( Monday -   3 Azar  1399 -  23 November 2020)

The brief review of the lecture can be find here  Session 19

Lecture  20: ( Saturday  - 8 Azar  1399 -  28 November 2020 )

The brief review of the lecture can be find here  Session 20

Lecture  21 : (Monday -   10 Azar  1399 -  30 November 2020)

The brief review of the lecture can be find here  Session 21

Lecture  22: ( Saturday  - 15 Azar  1399 -  5 December 2020)

The brief review of the lecture can be find here  Session 22

Lecture  23 : ( Monday - 17 Azar  1399 -  7 December 2020 )

The brief review of the lecture can be find here  Session 23

Lecture  24 : ( Saturday  - 22 Azar  1399 -  12 December 2020 )

Classical Field theory and special relativity

Lecture  25 : ( Monday - 24 Azar  1399 -  14 December 2020 )

MIDTERM EXAM  II

Lecture  26 : (  Saturday  - 29 Azar  1399 -  19 December 2020

Classical Field theory and special relativity

Lecture  27 : ( Monday - 1 Day 1399 -  21 December 2020

Classical Field theory and special relativity

Lecture  28 : ( Saturday  - 6  Day  1399 -  26 December 2020

Non-Local Special Relativity I

Lecture  29 : ( Monday - 8 Day 1399 -  28 December 2020

Non-Local Special Relativity II

Lecture  30 : ( Saturday  - 13 Day  1399 -  2  January 2021

 


Assignments

You have the opportunity to use 7 days in total to send homeworks after deadlines.

1) The Problem Set 1                 Due to Saturday  26 Mehr 1399 /  17 October 2020  till 23:59     Solutions

2) The Problem Set 2                 Due to Saturday  10 Aban 1399 /   31 October 2020  till 23:59

3) The Problem Set 3                 Due to Thursday  29 Aban 1399 /  19 November 2020  till 23:59

4) The Problem Set 4                 Due to Saturday   22 Azar  1399 /   12 December  2020  till 23:59

5) The Problem Set 5                 Due to Friday       5 Day  1399   /    25 December 2020  till 23:59

6) The Problem Set 6                 Due to Saturday    20  Day  1399   /  9 January 2021  till 23:59

7) The Problem Set 7                  Due to Monday   29  Day  1399   /  18 January 2021  till 23:59


Assignments Corresponding to Special Relativity Course - Fall 2017

1) The Problem Set 1        

2) The Problem Set 2

3) The Problem Set 3         Solution Problem Set 3

4) The Problem Set 4

5) The Problem Set 5          Solution Problem Set 5

6) The Problem Set 6

7) The Problem Set 7           Solution Problem Set 7


Assignments Corresponding to Special Relativity Course - Fall 2016

1) The Problem Set 1                        

2)  The Problem Set 2

3) The Problem Set 3

4) The Problem Set 4

5) The Problem Set 5

6) The Problem Set 6

7) The Problem Set 7


Essays - Projects:

The projects and essays for this course must be prepared in high quality in science and presentation. It must be match with standards of presentations. The grading for this part as it is optional is very strict. So do not put your time for this unless you are determined to do a high quality job.


Classic Papers:

Einstein paper on Special Relativity 1905 - In German and its English translation


Useful Links:

Introduction to Special Relativity by Bruce Knuteson : MIT course 2005 : click here

Relativity by Max Tegmak: MIT open course 2006: click here

Special Relativity course taught in Standford  by Susskind (Spring 2012):  click here