General Information:    Home   About Me    CV    Contact     ///  Physics Department SUT   Cosmology Group of Sharif University of Technology  

Academic Activities:      Research Interest   Publication   Projects  Collaborators    My Students   Courses    Cosmology    Talks     درس نامه ها

Other Activities:             Science Outreach   Outside Physics    Articles     News    Press    Links    Photo Gallery   فارسی     Հայերէն


Special Relativity (Fall 2022)


General:  ( This webpage is updated gradually)  - Last Update  12 Feb. 2022

This is a B.Sc. course, which will be held in Physics Department of Sharif University of Technology.

Class Time:  Saturdays and Mondays  afternoon:   Will be announced

Place:  Ibn Sina 1

Office Hours:   by appointment - Email: baghram@sharif.edu, we can discuss in vclass

Registered students: 46


About the Course:

This is an introductory course on Special Relativity. The aim is to understand one of the greatest scientific achievements in humankind history, understand the structure of space and time when gravity is absent.   

Teacher Assitants:

Amirhossein Samandar                             email address: amirsamandar@gmail.com

Hossein Mahdaei                                      email address: hossein_mahdaei@yahoo.com

Seyyed Behrang Tafreshi Hosseini           email address: sbehrangtafreshih@gmail.com

Mohammad Jamshidi                                email address:mo.jamshidi.la@gmail.com


Grading:

 Mid-term :   6 points    YOU CAN SEE THE RESULTS HERE   Monday - 14 Azar 1401 -   5 Dec 2022

MIDTERM - TAKE HOME

Assignments:  4 points   YOU CAN SEE THE RESULTS HERE Announced by TA

Projects, Class Activity,  TA Classes: 3.0 point     Presentation date: (Must be a very high quality project) 

Friday - 14 Bahman 1401 - 3 Feb 2023 till 23:59 Just send to sh.baghram2@gmail.com

Presentation Day: No Presentation.

Final Exam:   8 points      YOU CAN SEE THE RESULTS HERE  Saturday - 8 Bahman 1401 - 28 Jan 2023

Total grade:  from 21.0   YOU CAN SEE THE TOTAL GRADING HERE 


Suggested Reading:

Main guidline: Class Lecture Notes

& Relativity: Special general and Cosmology: Wolfgang Rindler 2006

Classical Electrodynamics, J.D. Jackson, 1999 third edition Chapter 11.6 and 11.7

Sidney Coleman's Lectures on Relativity, David J. Griffiths, David Derbes, Richard B. Sohn, Cambridge University Press (2022)

Special Relativity: From Einstein to Strings by John Henry Schwarz and Patricia Margaret Schwarz, Cambridge University Press (2004)

Nonlocal Gravity by Bahram Mashhoon (2017) - Oxford University Press

David Tong: Lectures on Quantum Field Theory - Cambridge University

نسبیت خاص- شهرام خسروی و رضا منصوری انتشارات دانشگاه صنعتی شریف 1389

Introduction to Classical Mechanics: David Morin Cambridge University Press 2008

Basic Relativity, R.A. Mould, 1994, chapter 1,2,3

Special Relativity: An Introduction with 200 Problems and Solutions: Michael Tsamparlis, springer 2010

Special Relativity, David W. Hoggs, 1997, whole lecture

Special Relativity : A. P.  French 1968

 Spacetime and Geometry: Introduction to General Relativity, Sean Carroll, Addison Wesley 2004 Chapter 1 -2

Introducing Einstein's Relativity, Ray d'Inverno, Oxford University Press- Chapter 5

Classical Mechanics: Goldstein, Poole and Safko, Addison Wesley 2002 Chapter 7

Gravitation: Foundation and Frontiers T.Padmanabhan, Cambridge University Press: 2010 Chapter 1

For Classical Field Theory and Special Relativity you can refer to:

1) A modern introduction to quantum field theory by Michele Maggiore Oxford University Press - 2005

2) An Introduction to Quantum Field Theory by Daniel V. Schroeder and Michael Peskin (1995)

 ** For Mathematical basis of Tensors calculus

1) Mathematical Physics: A Modern Introduction to Its Foundations by Sadri Hassani (1999)

2) The Geometry of Physics by Theodore Frankel (1997)

Lecture Notes

Introduction to Tensor Calculus by Kees Dullemond & Kasper Peeters

Lecture Notes on Electrodynamic and Special Relativity by David Tong


Main Topics of Course:

1- Historical perspective on the concept of space-time, Newtonian Gravity and Galilean Relativity

2- EM wave - light and Ether

3- Axioms of Special Relativity, the hypothesis of calibration and measurement, Lorentz transformations, space-time diagrams, length contraction, and time dilation

4- Minkowski Space-time diagrams,  Minkowski metrics, SR paradoxes

5- SR Kinematicks - relative velocities, ...

6- Special Relativity and Optics

7- Tensor calculus I, the concept of four vectors

8- Acceleration in SR, concept of force and work

9- SR Dynamics, four-momentums, scattering and conservations.

10- Relativistic Electrodynamics

11- Relativistic classical field theory (conservations, Noether theorem and ...)

12-Tensor calculus II, manifolds

13- Thomas Precision in electrodynamics

14- Overview on General Relativity

 


Lectrure Notes and Presentations:

1- Lecture Note 1

2- Lecture Note 2

3- Lecture Note 3

4- Lecture Note 4

5- Lecture Note 5

6- Lecture Note 6

7- Lecture Note 7

8- Lecture Note 8

9- Lecture Note 9

10-Lecture Note 10

11-Lecture Note 11

TensorAnalysis-I  by Mr. Kuroush Allameh

12-Lecture Note 12

13-Lecture Note 13

14-Lecture Note 14

16-Lecture Note 16

20-Lecture Note 20

 


Recorded Videos - Brief review of sessions:

 

 


Time Line of Lectures:

Lecture  1: ( Monday  - 28 Shahrivar 1401 -  19 Sep 2022 )

Historical Perspective: From Newton To Maxwell - The concept of absolute space and absolute time

Lecture  2: ( Saturday   -  2 Mehr 1401 -  24 Sep 2022 )

Historical Perspective: From Maxwell To Einstein - Ether, Michelson Morley experiment and the fundamentals of relativity

Lecture  3: (  Monday  - 4 Mehr 1401 -  26 Sep 2022)

Postponed!

Lecture  4: ( Saturday  - 9 Mehr 1401 -  1 Oct 2022 )

Postponed!

Lecture  5: ( Monday  -  11 Mehr 1401 -  3 Oct 2022 )

Postponed!

Lecture  6: ( Saturday  - 16 Mehr 1401 -   8 Oct  2022 )

Postponed!

Lecture  7: ( Monday  -  18 Mehr 1401 -  10 Oct 2022 )

Postponed!

Lecture  8: ( Saturday  - 23 Mehr 1401 -  15 Oct 2022)

Lorentz transformations.

Lecture  9:  ( Monday  - 25 Mehr 1401 -  17 Oct 2022)

Length contraction and time dilation I

Lecture  10:  ( Saturday  - 30 Mehr 1401 -  22 Oct 2022 ) 

Length contraction and time dilation II

Lecture  11:  ( Monday  - 2 Aban 1401 -  24 Oct 2022)

Minkowski space-time

Lecture  12:  (  Saturday  - 7 Aban 1401 -  29 Oct 2022 )

The barn and ladder paradox

Lecture  13:  ( Monday  - 9 Aban 1401 -  31 Oct 2022 )   

The concept of event horizon and particle horizon

Lecture  14:  ( Saturday  - 14 Aban 1401 -  5 Nov 2022)

Relativistic dynamics

Lecture  15:   ( Monday  - 16 Aban 1401 -  7 Nov 2022)

Relativistic dynamics

Lecture  16:   ( Saturday - 21 Aban 1401 -  12 Nov 2022)   

Relativistic dynamics

Lecture  17:   ( Monday  - 23 Aban 1401 -  14  Nov 2022)

Electrodynamics

Lecture  18:   ( Saturday  - 28 Aban 1401 -  19 Nov 2022)

Electrodynamics

Lecture  19:   ( Monday  - 30 Aban 1401 -  21 Nov  2022 )

Electrodynamics

Lecture  20:   ( Saturday  -  5 Azar 1401 -  26 Nov  2022 )

Electrodynamics

Lecture  21:    ( Monday  -  7 Azar 1401 -  28 Nov  2022) 

Classical Field theory

Lecture  22:    ( Saturday  - 12 Azar  1401 -  3 Dec 2022 ) 

Classical Field theory

Lecture  23:    (  Monday  -  14 Azar 1401 -  5 Dec 2022)

Classical Field theory: MIDTERM

Lecture  24:    ( Saturday  - 19 Azar 1401 -  10 Dec 2022  )

Classical Field theory

Lecture  25:    ( Monday  -  21 Azar 1401 -  12 Dec 2022)

Geodesics equation

Lecture  26:    ( Saturday  -  26 Azar 1401 -  17 Dec 2022 )

Thomas Precession relativity

Lecture  27:    ( Monday  -  28 Azar 1401 -  19 Dec 2022)

Thomas Precession relativity

Lecture  28:    ( Saturday  - 3 Day  1401 -  24 Dec 2022)

non Local Relativity

Lecture  29:    ( Monday  -  5 Day  1401 -  26 Dec 2022)

non Local Relativity

 

 


Assignments

You have the opportunity to use 7 days in total to send homeworks after deadlines.

1) Problem Set 1  due to  Monday  - 30 Aban 1401 - 21 November 2022

2) Problem Set 2  due to  Monday  -  26 Day 1401 - 16 January 2023

3) Problem Set 3  due to  Monday  -  3 Bahman 1401 - 23 January 2023

4) Problem Set 4 :

Derive equation 11.94 from Classical Electrodynamics by John David Jackson, Wiley; 3rd edition (1998)

due to  Monday  -  8 Bahman 1401 - 28 January 2023


Assignments Corresponding to Special Relativity Course - Fall 2020

1) The Problem Set 1                 Due to Saturday  26 Mehr 1399 /  17 October 2020  till 23:59     Solutions

2) The Problem Set 2                 Due to Saturday  10 Aban 1399 /   31 October 2020  till 23:59

3) The Problem Set 3                 Due to Thursday  29 Aban 1399 /  19 November 2020  till 23:59

4) The Problem Set 4                 Due to Saturday   22 Azar  1399 /   12 December  2020  till 23:59

5) The Problem Set 5                 Due to Friday       5 Day  1399   /    25 December 2020  till 23:59

6) The Problem Set 6                 Due to Saturday    20  Day  1399   /  9 January 2021  till 23:59

7) The Problem Set 7                  Due to Monday   29  Day  1399   /  18 January 2021  till 23:59


Assignments Corresponding to Special Relativity Course - Fall 2017

1) The Problem Set 1        

2) The Problem Set 2

3) The Problem Set 3         Solution Problem Set 3

4) The Problem Set 4

5) The Problem Set 5          Solution Problem Set 5

6) The Problem Set 6

7) The Problem Set 7           Solution Problem Set 7


Assignments Corresponding to Special Relativity Course - Fall 2016

1) The Problem Set 1                        

2)  The Problem Set 2

3) The Problem Set 3

4) The Problem Set 4

5) The Problem Set 5

6) The Problem Set 6

7) The Problem Set 7


Essays - Projects:

The projects and essays for this course must be prepared in high quality in science and presentation. It must be match with standards of presentations. The grading for this part as it is optional is very strict. So do not put your time for this unless you are determined to do a high quality job.


Classic Papers:

Einstein paper on Special Relativity 1905 - In German and its English translation


Useful Links:

Introduction to Special Relativity by Bruce Knuteson : MIT course 2005 : click here

Relativity by Max Tegmak: MIT open course 2006: click here

Special Relativity course taught in Standford  by Susskind (Spring 2012):  click here