General Information:    Home   About Me    CV    Contact     ///  Physics Department SUT   Cosmology Group of Sharif University of Technology  

Academic Activities:      Research Interest   Publication   Projects  Collaborators    My Students   Courses    Cosmology    Talks     درس نامه ها

Other Activities:             Science Outreach   Outside Physics    Articles     News    Press    Links    Photo Gallery   فارسی     Հայերէն


Special Relativity (Fall 2013)


General:

 This is a B.Sc. course, which will be held in Physics Department of Sharif University of Technology.

Class Time:  Sunday and Tuesday   9:00 - 10:30

Place: Physics department-  Partovi Seminar Room 412

Registered students: 75


About the Course:

This is an introductionary course on Special Relativity.

 You can find the main webpage of this course here.


Grading:

Final Exam: 30 points    YOU CAN SEE THE RESULTS HERE.  (The link is deactivated)

Mid-term 1 : 20 points    YOU CAN SEE THE RESULTS HERE.  (The link is deactivated)

Mid-term 2:  20 points   YOU CAN SEE THE RESULTS HERE.  (The link is deactivated)

Assignments:  20 points

Activity in Assignment classes: 10 ponts

Essay  and Presentation:  bonus points

Quiz:   bonus points 

Total grade: 100 + bonus points    YOU CAN SEE THE TOTAL GRADING HERE  (The link is deactivated)


Suggested Reading:

1) Basics and  kinematics

نسبیت خاص- شهرام خسروی و رضا منصوری انتشارات دانشگاه صنعتی شریف 1389

Relativity: Special general and Cosmology: Wolfgang Rindler 2006

Introduction to Special Relativity: Wolfgang Rindler 1991

Introduction to Classical Mechanics: David Morin Cambridge University Press 2008

Basic Relativity, R.A. Mould, 1994, chapter 1,2,3

Special Relativity: An Introduction with 200 Problems and Solutions: Michael Tsamparlis, springer 2010

Special Relativity, David W. Hoggs, 1997, whole lecture

Special Relativity : A. P.  French 1968

2)Dynamics

 نسبیت خاص- شهرام خسروی و رضا منصوری انتشارات دانشگاه صنعتی شریف 1389

Relativity: Special general and Cosmology: Wolfgang Rindler 2006

Introduction to Special Relativity: Wolfgang Rindler 1991

Introduction to Classical Mechanics: David Morin Cambridge University Press 2008

Basic Relativity, R.A. Mould, 1994, chapter 5

Special Relativity: An Introduction with 200 Problems and Solutions: Michael Tsamparlis, springer 2010 Chapter 9,10, 11

Classical Mechanics: Goldstein, Poole and Safko, Addison Wesley 2002 Chapter 7

3)Space-Time structure, tensor calcules, mathematical foundations

Classical Electrodynamics, J.D. Jackson, 1999 third edition Chapter 11.6 and 11.7

Spacetime and Geometry: Introduction to General Relativity, Sean Carroll, Addison Wesley 2004 Chapter 1 -2

Introducing Einstein's Relativity, Ray d'Inverno, Oxford University Press- Chapter 5

Classical Mechanics: Goldstein, Poole and Safko, Addison Wesley 2002 Chapter 7

Gravitation: Foundation and Frontiers T.Padmanabhan, Cambridge University Press: 2010 Chapter 1

 4)Lagrangian formalism of special Relativity

Basic Relativity, R.A. Mould, 1994, chapter 5

Classical Mechanics: Goldstein, Poole and Safko, Addison Wesley 2002 Chapter 7

Special Relativity: An Introduction with 200 Problems and Solutions: Michael Tsamparlis, springer 2010 Chapter  11

5) Electrodynamics

نسبیت خاص- شهرام خسروی و رضا منصوری انتشارات دانشگاه صنعتی شریف 1389

Relativity: Special general and Cosmology: Wolfgang Rindler 2006

Introduction to Classical Mechanics: David Morin Cambridge University Press 2008

Classical Electrodynamics, J.D. Jackson, 1999 third edition Chapter 11.9 , 11.10 and 11.11

Basic Relativity, R.A. Mould, 1994, chapter 6

6)Special Issues:

k-Calculus: Introducing Einstein's Relativity, Ray d'Inverno, Oxford University Press- Chapter 2


Lectrure Notes and Presentations:

will be updated...


Time Line of Lectures:

 

Lecture  1: (15/10/2013)

This Lecture  was given by Dr. Mansouri

Lecture  2: (17/10/2013)

This Lecture  was given by Dr. Mansouri

 Lecture  3: (22/10/2013)

This Lecture  was given by Dr. Mansouri

Lecture  4: (24/10/2013)

This Lecture  was given by Dr. Mansouri

Lecture 5 : (29/9/2013)

 

Lecture 6 : (1/10/2013)

 

Lecture 7 : ( 6/10/2013)

 

Lecture 8  : ( 8/10/2013)

 

Lecture 9 : (13/10/2013)

In this lecture we talked about concept of 4-velocity and 4-momentum. We discuss how the relativity axioms lead us to use 4-vectors as physical quantities.

Lecture  10 : (15/10/2013)

In this lecture, We continue with the concept of four momentum, then we derive the conservation of 4-momentum and then  we discuss how energy and mass can be expressed in one uniform picture. We continue with the concept of acceleration and four force definition. Finally we talk about the  Fizeau experiment and the  Lorentz transformation with a boost in x-y plane.

Lecture  11 : ( 20 /10/2013)

Solve Problems in dynamics

 Lecture  12 : ( 22 /10/2013)

The concept of acceleration and its 4 vector extension is discussed.

Lecture  13 : ( 27 /10/2013)

Solve Problems in dynamics

Lecture  14 : ( 29 /10/2013)

In this lecture we solve a very important problem in SR. We find the amount of our motion with respect to Cosmic Microwave Background Radiation using the Doppler dipole effect on CMB intensity(Temperature Map).

Lecture  15 : ( 3 /11/2013)

Mid Term 1 Exam

Lecture  16 : ( 5 /11/2013)

In This lecture we start the section of Lagrangian formalism of Special Relativity. We find the lagrangian for free particle.

Lecture  17 : ( 10 /11/2013)

In this lecture we continue with the Hamiltonian and Lagrangian  formalism in Special Relativity. Introducing the Lagrangian with a lorentz invariant potential.

Lecture  18: ( 12 /11/2013)

In this lecture, we are going to finalize the sub-chapter of lagrangian formalism by writing the action for a  relativistic particle with potential. Then we are going to start the Electrodynamic section by introducing the concept of charge 4 vector and potentail 4 vectro.

Lecture  19: ( 17 /11/2013)

Lecture  20: ( 19 /11/2013)

Lecture  21: ( 24 /11/2013)

Lecture  22: ( 26 /11/2013)

Lecture  23 : ( 1/12/2013)

In this lecture we discuss  how we can obtain the Energy-momentum tensor.

Lecture  24 : ( 3 /12/2013)

In this lectrure we discuss the conservation of EM Energy-Momentum tensor.

Lecture  25: ( 8 /12/2013)

In this Lecture we discuss the Lorentz group. we show how we can write the Lorentz transformation matrix in terms of its generators. The boost generator and the rotation generator. Then we discuss the commutation relations and its implications.

Lecture  26 : ( 10 /12/2013)

In this lectrure we we study the the Thomas precession and we discuss how the relativistic effects, introduce the spin-angular momentum interaction. We also find that the non-inertial fram of electron in Hydrohen atom introduce the Thomas 1/2 factor.

 


Assignments:

Go to the home page of the course


Essays:

In the case you choose your project, please email and announce it. We can discuss about your projects via emails. You can ask TAs help also.

A very good example of an Essay (click here) : Essay on QFT by Mehdi Saravani Waterloo University

1)  Lorentz Symmetry Breaking (90111047, 90111058)

2) The visual appearance of rapidly moving objects :  (90100799) / (90100709, 90100777, 90110953)

3) Special Relativity in decay of particles (arXiv:hep-ph/0510398)

4) Gauge Transformation and Fundamental Physics (90101065, 90100841) / (92011154) / 89107297

5) Special Relativity and Cosmic Microwave Background dipole (88109358)

6) Aberration and Astronomical Observations (90101032, 90101021)

7)  Special Relativity and Astrophysical jets (90100971, 90110918) / (89108203, 89108752)

8) Special Relativity tests (88102315) / (90100709, 90100777, 90110953) / (90101098, 90100947)

9) Superluminal motion (90111082), (89103776), (90110986, 90110201, 90110278)

10) Synchrotron Radiation (Relativistic Approach) (90101076)

11) Sunyaev-Zeldovich effect (90100914, 90100806, 92011116) / (92011117)

12) K- correction (91100821)

13) Group theory foundation of Special Relativity (90110942) , (90100669), (90110007)

14) Relativistic quantum mechanics (90110007)/ (90100839, 90100982, 90110891)

15) Special Relativity paradoxes   (90100885 , 90100775) / 92011185

 


Useful Links:

Introduction to Special Relativity: MIT course 2005 : click here

Special Relativity course taught in Standford  by Susskind (Spring 2012):  click here