My Google Scholar Page.
Theses
Ph.D. Thesis: Semi-Supervised Kernel Learning for Pattern Classification, (Superviser: Prof. Hamid R. Rabiee).
M.Sc. Thesis: Face Recognition in Low Quality Video (Supervisor: Prof. Hamid R. Rabiee).
B.Sc. Project: Focused Crawling on Web, (Supervisor: Prof. Hassan Abolhassani).
Published Journal Papers
- M. H. Rohban, H. S. Abbasi, S. Singh, A. E. Carpenter “Capturing single-cell heterogeneity via data fusion improves image-based profiling,” Nature Communications, 2019.
- M. H. Rohban, S. Singh, X. Wu, J. B. Berthet, M. A. Bray, Y. Shrestha, X. Varelas, J. S. Boehm, A. E. Carpenter, “Systematic morphological profiling of human gene and allele function via Cell Painting”, eLife, 2017.
- M. A. Bray, S. M. Gustafsdottir, M. H. Rohban, S. Singh, V. Ljosa, K. L. Sokolnicki, J. A. Bittker, N. E. Bodycombe, V. Dank, T. P. Hasaka, C. S. Hon, M. M. Kemp, K. Li, D. Walpita, M. J. Wawer, T. R. Golub, S. L. Schreiber, P. A. Clemons, A. F. Shamji, A. E. Carpenter, “A dataset of images and morphological profiles of 30,000 small-molecule treatments using the Cell Painting assay,” GigaScience, 2017.
- J. C. Caicedo, S. Cooper, F. Heigwer, S. Warchal, P. Qiu, C. Molnar, A. S. Vasilevich, J. D. Barry, H. S. Bansal, O. Kraus, M. Wawer, L. Paavolainen, M. D. Herrmann, M. H. Rohban, J. Hung, H. Hennig, J. Concannon, I. Smith, P. A. Clemons, S. Singh, P. Rees, P. Horvath, R. G. Linington, A. E. Carpenter, “Data-analysis strategies for image-based cell profiling,” Nature Methods, 2017.
- M. H. Rohban, D. Motamedvaziri, V. Saligrama, “Sparse Signal Recovery under Poisson Statistics,” IEEE Transactions on Signal Processing, 2016.
- H. Asheri, H. R. Rabiee, M. H. Rohban, “Signal Extrapolation for Image and Video Error Concealment Using Gaussian Processes With Adaptive Nonstationary Kernels,” IEEE Signal Processing Letters, 19(10): 700-703, 2012.
- N. Pourdamghani, H. R. Rabiee, F. Faghri, M. H. Rohban, “Graph Based Semi- Supervised Human Pose Estimation : When The Output Space Comes to Help,” Pattern Recognition Letters, Vol. 33, Issue 12, P.P. 1529-1535, 2012.
- M. H. Rohban, H. R. Rabiee, “Supervised Neighborhood Graph Construction for Semi-Supervised Classification,” Pattern Recognition, Vol. 45, Issue 4, P.P. 1363-1372, 2012.
Published Conference Papers
- D. Motamedvaziri, V. Saligrama, M. H. Rohban, “Sparse Signal Recovery under Poisson Statistics for Online Marketing Applications,” International Conference on Acoustics, Speech and Signal Processing (ICASSP) , 2014.
- W. Ding, M. H. Rohban, P. Ishwar, V. Saligrama, “Efficient Distributed Topic Modeling with Provable Guarantees,” 17th International Conference on Artificial Intelligence and Statistics (AISTATS), 2014.
- W. Ding, P. Ishwar, M. H. Rohban, V. Saligrama, “Necessary and Sufficient Conditions for Novel Word Detection in Separable Topic Models,” NIPS Workshop on Topic Models, 2013.
- W. Ding, M. H. Rohban, P. Ishwar, V. Saligrama, “Topic Discovery through Data Dependent and Random Projections,” International Conference on Machine Learning (ICML), 2013.
- M. H. Rohban, P. Ishwar, B. Orten, W. C. Karl, V. Saligrama, “An Impossibility Result for High Dimensional Supervised Learning,” IEEE Information Theory Workshop (ITW), 2013.
- W. Ding, M. H. Rohban, P. Ishwar, V. Saligrama, “A New Geometric Approach to Latent Topic Modeling and Discovery,” International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.
- D. Motamedvaziri, M. H. Rohban, V. Saligrama, “Sparse Recovery under Poisson Statistics,” 51st Allerton Conference on Communications, Control, and Computing , 2013.
- H. S. Ayatollahi Tabatabaii, H. R. Rabiee, M. H. Rohban, M. Salehi, “Incorporating Betweenness Centrality in Compressive Sensing for Congestion Detection,” International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.
- A. Ghasemi, H. R. Rabiee, M. T. Manzuri, M. H. Rohban, “A Bayesian Approach to the Data Description Problem,” 26th International Conference on Artificial Intelligence (AAAI), 2012.
- A. Ghasemi, H. R. Rabiee, M. Fadaee, M. T. Manzuri, M. H. Rohban, “Active Learning from Positive and Unlabeled Data,” ICDM Workshop on Optimization Based Methods for Emerging Data Mining Problems (OEDM), 2011.
- A. Ghasemi, M. T. Manzuri, H. R. Rabiee, M. H. Rohban, S. Haghiri, “Active One-Class Learning by Kernel Density Estimation,” IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2011.
- M. Farajtabar, A. Shaban, H. R. Rabiee, M. H. Rohban, “Manifold Coarse Graining for Online Semi-Supervised Learning,” The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2011.
- M. Ghazvininejad, M. Mahdieh, H. R. Rabiee, P. K. Roshan, M. H. Rohban, “Iso-graph : Neighborhood Graph Construction Based on Geodesic Distance for Semi-Supervised Learning,” IEEE International Conference on Data Mining (ICDM), 2011.
- S. Khaleghian, H. R. Rabiee, and M. H. Rohban, “Face Recognition across Large Pose Variations via Boosted Tied Factor Analysis,” IEEE Workshop on Applications of Computer Vision (WACV), 2011.
- H. Asheri, A. Bayati, H. R. Rabiee, and M. H. Rohban, “Motion Vector Recovery with Gaussian Process Regression,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011.
- H. Asheri, H. R. Rabiee, N. Pourdamghani, and M. H. Rohban, “A Gaussian Process Regression Framework for Spatial Error Concealment with Adaptive Kernels,” International Conference on Pattern Recognition (ICPR), 2010.
- M. H. Rohban, H. R. Rabiee, and A. Vahdat, “Face Virtual Pose Generation using Aligned Locally Linear Regression for Face Recognition,” IEEE International Conference on Image Processing (ICIP), Egypt, 2009.
- M. H. Rohban, H. R. Rabiee, and M. Khansari, “Face Virtual Pose Generation using Multi Resolution Subspaces,” International Symposium on Telecommunication (IST), Iran, 2008.
Posters and Talks
- Functional annotation of human genes and alleles using image-based profiling, EMBL Conference, From Functional Genomics to System Biology, Heidelberg, Germany, 2018 (Poster).
- Functionally characterizing genes and alleles by morphological profiling using Cell Painting Assay, Allen Institute for Cell Sciences, Seattle WA, 2016.
- Sparse Signal Recovery under Poisson Statistics, UP-STAT, Buffalo NY, 2016.
- Provable Efficient Topic Modeling under Separability Assumption, Invited Talk, University
of California Irvine, 2014, Host : Prof. Anima Anandkumar.