
1

Finding Maximum Disjoint Set of Boundary
Rectangles with Application to PCB Routing

Amirmahdi Ahmadinejad, Hamid Zarrabi-Zadeh

Abstract—Motivated by the bus escape routing problem in
printed circuit boards (PCBs), we study the following optimiza-
tion problem: given a set of rectangles attached to the bound-
ary of a rectangular region, find a subset of non-overlapping
rectangles with maximum total weight. We present an efficient
algorithm that solves this problem optimally in O(n4) time,
where n is the number of rectangles in the input instance. This
improves over the best previous O(n6)-time algorithm available
for the problem. We also present two efficient approximation
algorithms for the problem that find near-optimal solutions with
guaranteed approximation factors. The first algorithm finds a 2-
approximate solution in O(n2) time, and the second one computes
a 4/3-approximation in O(n3) time. The experimental results
demonstrate the efficiency of both our exact and approximation
algorithms.

Index Terms—Escape routing, maximum independent set,
approximation algorithm, printed circuit board (PCB) routing.

I. INTRODUCTION

The problem of finding a maximum disjoint set of boundary
rectangles (MDBR) is defined as follows: given an axis-
parallel rectangular region R, and a set of n boundary rectan-
gles inside R, where each boundary rectangle is attached to
one of the four sides of R, find a disjoint (non-overlapping)
subset of boundary rectangles with maximum total weight.
Figure 1 illustrates an instance of the problem, in which all
boundary rectangles are assumed to have equal weight.

The MDBR problem is motivated by the escape routing
problem in printed circuit boards (PCBs), whose aim is to
route nets from their pins to the component boundaries. Most
solutions available for this problem in the literature [4], [6],
[9], [15], [19], [22], [23] are net-centric, in the sense that they
focus on routing the nets, without considering a top-level bus
structure. However, in practice, nets are usually grouped into
buses, and the nets from the same bus are preferred to be
routed together [12]–[14], [16], [17], [20], [21]. The routing
of a bus in this setting is obtained by projecting the bounding
box of the bus pin cluster onto one of the four boundaries
of the component. Figure 2 illustrates an example. As noted
in [12], it is easy to see that the bus escape routing problem
can be reduced to the MDBR problem by considering for each

The authors are with the Department of Computer Engineering,
Sharif University of Technology, Tehran, 14588 89694 Iran (e-mail:
am ahmadinejad@ce.sharif.edu, zarrabi@sharif.edu).

This work is accomplished as the first author’s master’s thesis at Sharif
University of Technology. He is now pursuing his PhD at the Management
Science and Engineering Department, Stanford University, Stanford, Califor-
nia 94305 USA.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Fig. 1: An instance of the MDBR problem. A maximum
disjoint subset is shown in gray.

Bounding
box of the
bus pin
cluster

Component
boundaries

Fig. 2: A boundary rectangle obtained from projecting the
bounding box of the bus pin cluster onto the component
boundary.

bus four boundary rectangles obtained from projecting the
bounding box of the bus pin cluster onto the four boundaries
of the component.

The MDBR problem is a special case of the maximum
independent set (MIS) problem, which is well-known to be
NP-hard, and is also hard to approximate to within a factor
of n1−ε for any constant ε > 0 [8]. The MIS problem for a
set of rectangles in the plane is still NP-hard [7], even if all
rectangles are axis-aligned squares of the same size [10]. The
current best algorithm for the MIS of axis-parallel rectangles
has an approximation factor of O(log n/ log log n) for the
weighted case [3], and an approximation factor of O(log log n)
for the unweighted case [1]. When all rectangles are fat (i.e.,
have bounded aspect ratio), the problem can be approximated
to within a factor of 1 + ε, for any ε > 0 [2], [5]. For the
special case where all rectangles are attached to the boundary
of a bounding region (i.e., the MDBR problem), the problem
is recently shown to be solvable in polynomial time [12].

In this paper, we revisit the MDBR problem, and present an
efficient algorithm that solves the problem optimally in O(n4)
time. Our algorithm improves over the best previous O(n6)-
time algorithm for the problem presented by Kong et al. [12].

2

i

jδ(it, jb)

r

δ(ib, rb)

δ(jt)

δ(kb)k

(a)

i

jδ

R(δ)

(b)

i j

k

r

`

δ1

δ2

δ3

δ5

δ4

(c)

Fig. 3: Illustration of borders. (a) Four different types of borders. (b) The region R(δ) for a border δ = δ(it, jb). (c) A sequence
of borders δ1 = δ(it, jb), δ2 = δ(kt, jb), δ3 = δ(ib, jb), δ4 = δ(rt), and δ5 = δ(`t), where δi+1 = next(δi), for 1 6 i 6 4.

Our algorithm also improves an O(n5)-time algorithm by
Piliposyan [18] that solves a special case of the MDBR
problem in which all input boundary rectangles attached to
each of the four sides of the bounding region are assumed to
be disjoint.1

The main idea of our algorithm is to exploit optimal
substructures of the problem, and use dynamic programming
to solve the problem optimally using optimal solutions to
the smaller subproblems. In particular, similar to [12], we
first solve some restricted k-sided subproblems, in which
all boundary rectangles are attached to only k sides of the
bounding region. The 1-sided case is equivalent to the problem
of finding a maximum-weight set of disjoint intervals, and can
be solved in O(n log n) time via dynamic programming.

For the 2-sided case, we present a new O(n2)-time dynamic
programming algorithm, improving the O(n3)-time solution
provided in [12]. Our 2-sided algorithm is not only faster, but
is also simpler and self-contained. In particular, our algorithm
avoids using topological sorting and DAG shortest paths
used as subroutines in [12]. For the 3-sided case, we use
a novel decomposition, enabling us to solve all possible 3-
sided subproblems in O(n4) total time, improving over the
O(n6) time required by Kong et al.’s algorithm. Finally, for
the general 4-sided problem, we devise a new decomposition,
and manage to solve the whole problem in O(n4) overall time.

When optimality can be compromised a little, we show
that near-optimal solutions can be obtained much faster. In
particular, we present two efficient approximation algorithms
that achieve approximation factors of 2 and 4/3 in O(n2) and
O(n3) time, respectively. The experimental results show that
our algorithms can find optimal and near-optimal solutions for
large test cases in few seconds.

II. PRELIMINARIES

We first introduce notations used throughout this paper. Let
R be a rectangular region in the plane, and S = {1, 2, . . . , n}
be a set of n boundary rectangles inside R, where each
boundary rectangle is attached to one of the four sides of
R. Each rectangle i ∈ S has a weight wi > 0. Throughout
this paper, we assume that all rectangles are axis-aligned.

1After the appearance of the preliminary version of this paper, an improved
O(n3)-time algorithm is presented by Keil et al.in [11].

Two rectangles are disjoint, if their interior do not intersect.
We denote by S`, Sr, St, and Sb the subsets of rectangles
in S attached to the left, right, top, and bottom sides of R,
respectively, with ties being broken arbitrarily.

We denote by it and ib the (y coordinates of the) top and
bottom sides of rectangle i, respectively. Similarly, we use
i` and ir to denote the (x coordinates of the) left and right
side of rectangle i, respectively. For ease of presentation, we
assume that no two rectangles have vertical or horizontal sides
at the same x or y coordinates. This restriction can be easily
relaxed by imposing a total ordering on the sides of rectangles
to properly order those with the same x or y coordinates.

Given two rectangles i and j in S` ∪ Sr, attached to the
opposite sides of R, we define the following types of borders:
• The border δ(it) is obtained by extending it. Similarly,
δ(ib) is obtained by extending ib. (See Figure 3a.)

• If jb 6 it 6 jt, the border δ(it, jb) is obtained by extend-
ing it until it hits rectangle j, then moving downward to
reach jb, and then finishing the border by adding jb to it.
(See Figure 3a.)

• If jb 6 ib 6 jt, the border δ(ib, jb) is obtained just like
δ(it, jb), with the only exception that we first extend ib
instead of it. If ib 6 jb 6 it, we set δ(ib, jb) = δ(jb, ib).

There are O(n2) different borders. Given a border δ, we denote
by R(δ) the subregion of R bounded from above by δ. An
example is shown in Figure 3b.

For each border δ, we denote by top(δ) and bottom(δ)
the y coordinates of the top and the bottom horizontal seg-
ments of δ, respectively. If δ consists of only one segment,
then top(δ) = bottom(δ) by definition. For each border δ,
we define next(δ) as follows. If there is a border δ′ with
bottom(δ′) = bottom(δ) and top(δ′) < top(δ), we define
next(δ) to be such border with maximum top(δ′). Otherwise,
we define next(δ) to be a border δ′ = δ(it) with maximum
it, which lies completely below bottom(δ). (See Figure 3c.)

Lemma 1: For each border δ, next(δ) can be computed in
O(1) time, after O(n2) preprocessing time.

Proof: For each rectangle i, we keep a sorted list Li of all
borders containing ib as their lower segment. Furthermore, we
define n(ib) (resp., n(it)) to be the top side of the highest
rectangle which is below ib (resp., below it). For example, in
Figure 3c, Lj = 〈it, kt, ib〉 in order from left to right, n(jb) =
rt, and n(rt) = `t.

3

To find next(δ) for a border δ we do the following. Suppose
that the lower segment of δ is jb. We look for the next element
of δ in Lj . If such border exists, it is next(δ). Otherwise,
next(δ) = δ(n(jb)), since there is no border after δ in Lj ,
and the highest border below δ should be completely below
bottom(δ) = jb. If δ = δ(it), then next(δ) is equal to
δ(n(it)).

Now we show how to compute Li and n(ib) (resp., n(it))
for all rectangles in O(n2) time. For each rectangle i, n(ib)
(resp., n(it)) can be computed by scanning all the rectangles
and finding the one with the highest top which is below ib
(resp., below it). This takes O(n) time for one rectangle, and
O(n2) time for all rectangles. To compute Li’s, we first sort
the set of all horizontal segments of borders (i.e., the top and
bottom sides of the rectangles) in the decreasing order of their
y coordinates in O(n log n) time. After that, for each rectangle
i, Li can be computed by a simple scan over the sorted list and
generating all valid borders containing the bottom side of i in
O(n) time. Therefore, we can compute Li for all rectangles
in O(n2) overall time. �

III. THE 2-SIDED PROBLEM

To solve the MDBR problem in its general form (i.e., the
4-sided case), we decompose it into a set of 3-sided and 2-
sided subproblems, as described in Section V. The 3-sided
case itself reduces to solving a set of 2-sided subproblems.
In this section, we start by solving the 2-sided problem, in
which all input rectangles are attached to only two sides of
the region R. If these two sides are parallel, an opposite case
arise, otherwise, it is called a corner case.

A. The Opposite Case

In the opposite case, either S = S` ∪ Sr or S = St ∪ Sb.
We assume, w.l.o.g., that S = S` ∪ Sr. Given a border δ,
we denote by Opposite(δ) the weight of an optimal solution
lying completely inside R(δ). The answer to the opposite case
is equal to Opposite(δ(kt)), where k is the topmost rectangle
in S.

Theorem 1: For all borders δ, Opposite(δ) can be computed
in O(n2) total time.

Proof: Let OPT be an optimal solution for the rectangles
inside R(δ). We recursively compute Opposite(δ) as follows:
• δ = δ(it, jb): In this case, either i ∈ OPT or not. If
i ∈ OPT, then Opposite(δ) = wi+Opposite(δ(ib, jb)).
Otherwise, Opposite(δ) = Opposite(next(δ)).

• δ = δ(ib, jb): In this case, Opposite(δ) is simply equal
to Opposite(next(δ)), since there is no valid rectangle
between δ and next(δ).

• δ = δ(it): Again, either i ∈ OPT or not. If i ∈ OPT,
let k be the topmost rectangle below it in the opposite
side of i, which does not intersect i. If kt ∈ [ib, it]
then Opposite(δ) = wi+Opposite(δ(kt, ib)), otherwise,
Opposite(δ) = wi +Opposite(δ(ib)). If i 6∈ OPT, then
Opposite(δ) = Opposite(next(δ)).

• δ = δ(ib): In this case, Opposite(δ) is simply equal to
Opposite(next(δ)).

δ

k

i

j

r

δ′

Fig. 4: The region R(δ, δ′).

j

i

`′

`

Fig. 5: Illustrating the splitter line.

By Lemma 1, the next borders are accessible in O(1) time
after O(n2) preprocessing time. Moreover, the rectangle k in
the third case can be obtained similar to n(it) function in
Lemma 1 in O(1) time after O(n2) preprocessing time. In all
cases described above, Opposite(δ) can be computed using a
constant number of previously-computed borders in a dynamic
programming fashion. Since the number of borders is O(n2),
Opposite(δ) for all borders δ can be computed in O(n2) total
time. �

We define another related subproblem here. Given two borders
δ and δ′, we denote by R(δ, δ′) the region of R lying between
δ and δ′ (see Figure 4), and denote by Opposite(δ, δ′) the
weight of an optimal solution for the rectangles lying inside
R(δ, δ′).

Corollary 1: For all pairs of borders δ and δ′,
Opposite(δ, δ′) can be computed in O(n4) total time.

Proof: Fix a border δ′. We remove all rectangles below δ′ in
O(n) time. We then use Theorem 1 to obtain the solutions to
Opposite(δ, δ′), for all borders δ (above δ′), in O(n2) time.
Since the number of borders δ′ is O(n2), the total time needed
is O(n4). �

B. The Corner Case

In the corner case, all input rectangles are attached to only
two neighboring sides of R. We assume, w.l.o.g., that the two
neighbor sides are the left and the bottom ones, i.e., S =
S` ∪ Sb.

Consider an optimal solution to the corner case. We call
a line a splitter, if it does not cut any rectangle in the
optimal solution. The following lemma reveals a nice structural
property of the optimal solution.

Lemma 2: Let OPT be an optimal solution to the corner
case, i be the topmost rectangle in OPT∩S`, and j be the
rightmost rectangle in OPT∩Sb. If ` and `′ are the lines

4

j

i

Fig. 6: The region corresponding to Corner(i, j).

obtained by extending ib and j`, respectively, then either `
or `′ is a splitter (see Figure 5).

Proof: Suppose, to the contrary, that both lines cut some
rectangles in OPT. Note that ` can only cut rectangles from
Sb, and `′ can only cut rectangles from S`. Suppose that ` cuts
a rectangle k ∈ Sb ∩ OPT. Then k is either j or a rectangle
completely to the left of j. Now any rectangle in S` ∩ OPT
intersecting `′ (which is either i or a rectangle below it) must
also intersect rectangle k, which contradicts the disjointness
of rectangles in OPT. �

Given two rectangles i and j in S, we denote by R(it, jr) the
region below it and to the left of jr (see Figure 6). The regions
R(ib, jr), R(it, j`), and R(ib, j`) are defined analogously. We
use Corner(it, jr) to denote the weight of an optimal solution
to the corner case composed of the rectangles within R(it, jr).
Corner(it, j`), Corner(ib, jr), and Corner(ib, j`) are defined
analogously. We set Corner(i, j) = Corner(it, jr).

Theorem 2: For all pairs of rectangles i, j ∈ S, Corner(i, j)
can be computed in O(n2) total time.

Proof: Let H = {it : i ∈ S} ∪ {ib : i ∈ S}, and V =
{j` : j ∈ S} ∪ {jr : j ∈ S}. For each x ∈ H , we denote by
nb(x) the topmost item in H below x. Moreover, for each
v ∈ V , we denote by n`(v) the rightmost item in V to the left
of v.

By Lemma 2, there is always a splitter that separates one
rectangle of the optimal solution from the others. We consider
two cases:
• CASE 1: The splitter is defined by a rectangle

in Sb. This rectangle is either j or some rectan-
gle to the left of jr. Therefore, Corner(it, jr) =
max{wj+Corner(it, j`),Corner(it, n`(jr))}. Moreover,
Corner(it, j`) = Corner(it, n`(j`)), since there is no
valid rectangle between j` and n`(j`). Corner(ib, jr) and
Corner(ib, j`) are computed similarly in this case.

• CASE 2: The splitter is defined by a rectan-
gle in S`. This rectangle is either i or some
rectangle below it. Therefore, Corner(it, jr) =
max{wi+Corner(ib, jr),Corner(nb(it), jr)}. Moreover,
Corner(ib, jr) = Corner(nb(ib), jr). Corner(it, j`) and
Corner(ib, j`) are computed similarly in this case.

By the above formulae, we need to check a constant number
of subproblems in order to compute Corner(ix, jz) for x ∈
{t, b} and z ∈ {`, r}. Since the values of nb(·) and n`(·)

δ
i

j

b

R1 R2

`

(a) Subcase 2.1

δ
i

j

b

`R(δ, δ′)

δ′
k

(b) Subcase 2.2

Fig. 7: Two subcases of the 3-sided problem.

are accessible in O(1) time, after O(n log n) preprocessing
(sorting) time, and the total number of subproblems is O(n2),
we can compute Corner(i, j), for all pairs (i, j), in O(n2)
total time. �

IV. THE 3-SIDED PROBLEM

In the 3-sided problem, one of the sets {S`, Sr, Sb, St} is
empty. We assume, w.l.o.g., that St is empty. Therefore, S =
S` ∪ Sb ∪ Sr. For a border δ, we define 3-sided(δ) to be the
weight of an optimal solution for the rectangles inside R(δ).

Theorem 3: For all borders δ, 3-sided(δ) can be computed
in O(n4) total time.

Proof: Assume δ = δ(it, jb). (The other borders are han-
dled analogously.) Let OPT be an optimal solution realizing
3-sided(δ). We have two cases:
• CASE 1: Sb∩OPT = ∅. Since there is no rectangle from
Sb in OPT, the problem reduces to a 2-sided opposite
case, i.e., 3-sided(δ) = Opposite(δ).

• CASE 2: Sb ∩ OPT 6= ∅. Here, there is at least one
rectangle from Sb in OPT. Let b be the tallest such
rectangle. We extend br until it touches δ to obtain the
line segment ` (see Figure 7). The following two subcases
arise:

− SUBCASE 2.1: No rectangle in OPT intersects `. Here,
the region R(δ) is divided by ` into two disjoint subre-
gions R1 and R2 (see Figure 7a), each of which contains
rectangles from only two sides. Therefore, 3-sided(δ) =
Corner(R1) + Corner(R2).

− SUBCASE 2.2: At least one rectangle in OPT, say k, is
intersecting ` (see Figure 7b). We assume, w.l.o.g., that
k ∈ Sr. We construct a border δ′ by extending kb until
it reaches the other side of the rectangular region R, or

5

i
R1 R2

R3

j

k

i∗

Fig. 8: An alternative partitioning for the 3-sided problem.

it reaches another rectangle in S` ∩ OPT. Note that no
rectangle in Sb∩OPT intersects δ′, because b is the tallest
rectangle in Sb ∩OPT. Now the region R(δ) is divided
into two subregions R(δ, δ′) and R(δ′). R(δ, δ′) is an
opposite case and R(δ′) is a 3-sided subproblem with
δ′ below δ. Therefore, 3-sided(δ) = Opposite(δ, δ′) +
3-sided(δ′).

The final solution, 3-sided(δ), is obtained by taking the max-
imum of all the above cases. In Case 1, we need the solution
to Opposite(δ), which is available in O(1) time, after O(n2)
preprocessing time by Theorem 1. In Case 2.1, we remove
all rectangles not in R(δ), and use Theorem 2 to compute all
corner subproblems in R(δ)∩ (S` ∪Sb) and R(δ)∩ (Sr ∪Sb)
in O(n2) time. After that, Corner(R1) + Corner(R2) can
be computed, for all rectangles b ∈ Sb ∩ R(δ), in O(n)
time. Case 2.2 requires Opposite(δ, δ′), which is available
in O(1) time, after O(n4) preprocessing time by Corollary 1.
Since δ′ is below δ, by a dynamic programming approach,
we compute 3-sided(δ′) before 3-sided(δ), and hence, it is
available upon computing 3-sided(δ) in O(1) time. Overall,
since there are O(n2) borders, and each requires O(n2) time,
computing 3-sided(δ) for all borders δ takes O(n4) time, plus
an O(n4) preprocessing time. �

An alternative O(n3)-time algorithm was proposed in [12]
for the 3-sided case. However, that solution has a missing
case, which is briefly mentioned below. Let i be the tallest
rectangle in St ∩ OPT, and j be a rectangle in S` ∩ OPT
intersecting the line obtained by extending ib (see Figure 8).
Partition the region R into three subregions R1, R2, and
R3, where R1 is defined as the region above jt and to
the left of i`. The final solution in [12] is obtained by
taking Corner(R1)+Corner(R2)+Opposite(R3)+wi+wj .
However, the solution computed this way may not be optimal.
In particular, there can be a rectangle i∗ ∈ St ∩ OPT with
i∗b < jt, which is not included in the computed solution. The
same problem occurs when the extension line of ib intersects
a rectangle k ∈ Sr ∩OPT.

V. THE 4-SIDED PROBLEM

In this section, we consider the general 4-sided problem,
where the input rectangles can be attached to any side of the
region R. This leads to the main result of this paper.

Theorem 4: The MDBR problem can be solved exactly in
O(n4) time.

b

t
R1

R2

R4

R3

`′

r′

r

`

b′

t′

R5

Fig. 9: The first case of the 4-sided problem.

Proof: Let OPT be an optimal solution, and let t, b, `, and r
be the tallest boundary rectangles in OPT attached to the left,
top, right and bottom sides of R, respectively. If at least one
of these rectangles is not present in OPT, then the problem
reduces to a 3-sided case, whose solution can be computed
using Theorem 3. Otherwise, there are two possible cases:
• CASE 1: bt > tb and `r > r`. Assume, w.l.o.g., that b

is to the left of t (see Figure 9). Let t′ be the leftmost
rectangle in St on the right of `. We define rectangles
b′, r′, and `′ analogously. Now we obtain five regions
R1 to R5 by extending t′`, b

′
r, r′t and `′b, as shown in

Figure 9. R5 contains no rectangle, and the other four
regions are all corner cases. All of these corner problems
are specified by two rectangles, and therefore, the number
of such subproblems is O(n2).

• CASE 2: bt 6 tb or `r 6 r`. Assume, w.l.o.g., that bt 6 tb
(see Figure 10). Two subcases arise:

− SUBCASE 2.1: There is a rectangle k ∈ (S`∪Sr)∩OPT
whose top (or bottom) side lies in the range [bt, tb]. We
draw two borders by extending k’s top (or bottom) as
shown in Figure 10a. Note that these two borders may
be the same. Since t and b are the tallest rectangles in
St ∩ OPT and Sb ∩ OPT, respectively, no rectangle in
OPT can cross these two borders. Therefore, the region
R is divided by these two lines into two subregions R1

and R2. Now rectangles in R1 and R2 form two 3-sided
subproblems whose optimal solution can be obtained us-
ing Theorem 3. A similar case applies when no rectangle
of OPT intersects the range [bt, tb].

− SUBCASE 2.2: The boundary of R between bt and tb is
covered by exactly two rectangles i and j from OPT (see
Figure 10b). The four rectangles t, b, i, and j divide the
region R into five subregions R1,R2,R3,R4 and R5, as
shown in Figure 10b. R5 has no rectangle other than i,
j. The other four regions form corner problems, each of
which specified by two rectangles. Thus there are O(n2)
such corner subproblems to consider.

The optimal solution is obtained by taking the maximum
of all the possible cases described above. If one of the four
rectangles t, b, r, and ` is not present in OPT, the problem
reduces to a 3-sided subproblem. We set each of S`, St, Sr

and Sb to ∅, and solve four 3-sided problems to consider this
case. This takes O(n4) time by Theorem 3.

For Case 1, we first find the optimal solutions to corner
subproblems in O(n2) time using Theorem 2. We then con-

6

b

t
R1

R2

k

(a) Subcase 2.1

b

tR1

R2

R4

R3

i
j

R5

(b) Subcase 2.2

Fig. 10: The second case of the 4-sided problem.

sider every four rectangles as t′, b′, r′, and `′, and compute
Corner(R1) + Corner(R2) + Corner(R3) + Corner(R4) in
O(1) time. This requires O(n4) total time. For Subcase 2.1,
we consider each possible border as a separating border and
find the optimum solution for its top and bottom region. This
can be done in O(n2) time after O(n4) preprocessing time by
Theorem 3. For Subcase 2.2, we first preprocess, for each
of possible borders, the optimal solution to O(n2) corner
subproblems. This takes O(n4) time by Theorem 2. Then,
considering every four rectangles as t, b, r, and `, we can com-
pute Corner(R1)+Corner(R2)+Corner(R3)+Corner(R4)
in O(1) time. Therefore, we need O(n4) time to compute all
possible configuration for this case. The total time needed for
the whole algorithm is therefore O(n4). �

VI. APPROXIMATION ALGORITHMS

In practical applications, where the number of input rectan-
gles is huge, it is usually preferable to obtain a faster solution
at the expense of relaxing the optimality condition. In this
section, we provide two approximation algorithms for the
MDBR problem, with guaranteed approximation factors of 2
and 4/3, respectively, which are much faster than the exact
algorithm.

The pseudocode of our approximation algorithms are pro-
vided in Algorithms 1 and 2, respectively. In these two algo-
rithms, we denote by Opposite(·), 3-sided(·), and 1-sided(·)
the optimal solutions to the corresponding opposite, 3-sided,
and 1-sided subproblems, respectively. Moreover, for two sets
of rectangles S and T , we denote by S 4 T the set S
from which all rectangles intersecting any rectangle in T are
removed.

Theorem 5: Algorithm 1 computes a 2-approximation to the
MDBR problem in O(n2) time.

Algorithm 1 2-APPROXIMATION(S)

1: let S1 = S` ∪ Sr and S2 = St ∪ Sb

2: for i ∈ {1, 2} do
3: Ti = Opposite(S \ Si)

4: Oi = Ti ∪Opposite(Si 4 Ti)

5: return the maximum-weight set among {O1, O2}

Algorithm 2 4/3-APPROXIMATION(S)

1: for i ∈ {`, r, t, b} do
2: Ti = 3-sided(S \ Si)

3: Oi = Ti ∪ 1-sided(Si 4 Ti)

4: return the maximum-weight set among {O`, Or, Ot, Ob}

Proof: Let OPT be an optimal solution to the MDBR prob-
lem. Consider two opposite instances Qi = S \ Si, i = 1, 2.
We have w(OPT) = w(OPT∩Q1) + w(OPT∩Q2) 6
w(T1) + w(T2) 6 w(O1) + w(O2), where the first inequality
holds because the restriction of OPT to Q1 (resp., Q2) is
a feasible solution for the opposite case Q1 (resp., Q2).
Therefore, max {w(O1), w(O2)} > 1

2w(OPT), which proves
an approximation factor of 2 for the algorithm. The total
runtime of the algorithm is O(n2) by Theorem 1. �

Algorithm 2 achieves a better approximation factor by
solving four 3-sided subproblems. Recall that by Theorem 3,
the 3-sided problem can be solved for all borders in O(n4)
time. However, this running time is not desirable here, as
it matches the runtime of the exact algorithm. However, the
observation here is that we do not need to solve the 3-sided
problem for “all” borders, as opposed to what we needed for
the general 4-sided problem. Therefore, we first present a new
algorithm that solves the 3-sided problem in O(n3) time.

As an ingredient, we need to define a new type of the
corner case. Suppose that all input rectangles are in S` ∪ Sb.
For each rectangle k ∈ S`, let Cornerk denote a corner
case subproblem that is restricted to contain rectangle k
in its solution. We define Cornerk(it, jr), Cornerk(it, j`),
Cornerk(ib, jr), and Cornerk(ib, j`), similar to the ordinary
corner case in Section III-B.

Lemma 3: For all rectangles k ∈ S` and i, j ∈ S` ∪ Sb,
Cornerk(ix, jy) for all x ∈ {b, t} and y ∈ {`, r} can be
computed in O(n3) time.

Proof: Since rectangle k must be included in the optimal
solution, none of the rectangles intersecting k can be si-
multaneously present in the optimal solution. Therefore, to
solve Cornerk subproblem for a fixed k, we simply remove
rectangle k and all rectangles intersecting it to obtain an
ordinary corner case subproblem, which can be then solved
in O(n2) time using Theorem 2. Therefore, Cornerk, for all
rectangles k, can be solved in O(n3) total time. �

Theorem 6: The 3-sided problem can be solved in O(n3)
time.

Proof: Consider an instance of the 3-sided problem in which,

7

b
R2R1

R3

j

i

Fig. 11: Region decomposition of the 3-sided problem.

w.l.o.g., St = ∅. Let OPT be an optimal solution to the
problem. If there is no rectangle from Sb in OPT, then the
problem reduces to a 2-sided case, which can be solved in
O(n2) time by Theorem 1. Otherwise, let b be the tallest
rectangle in Sb ∩ OPT. Suppose that the extension of bt
intersects two rectangles i ∈ S` ∩ OPT and j ∈ Sr ∩ OPT
(see Figure 11). The region R is then divided by the extension
of bt into three subregions R1, R2, and R3 as shown in
Figure 11. R1 is a corner case subregion, which is specified
by Corneri(bt, b`). If no rectangle from S` ∩OPT intersects
the extension of bt, then R1 is simply a corner case specified
by Corner(bt, b`). Similarly, R2 specifies a corner case sub-
problem. By Lemma 3, after O(n3) preprocessing time, we
can compute optimal solutions to R1 and R2 in O(1) time.
Moreover, no rectangle in Sb∩OPT intersects the region R3,
and therefore, it forms an opposite case subproblem. Hence, by
Theorem 1, after O(n2) preprocessing time, we can compute
an optimal solution to R3 in O(1) time. Since there are O(n3)
possible triples of rectangles (b, i, j), it takes O(n3) time to
enumerate all of them and compute the optimal solution. �

Theorem 7: Algorithm 2 computes a 4/3-approximation to
the MDBR problem in O(n3) time.

Proof: Let OPT be an optimal solution to the MDBR prob-
lem. Consider four 3-sided instances Qi = S \ Si, for i ∈
{`, r, t, b}. Since each rectangle belongs to three of the substes
Qi, we have 3×w(OPT) =

∑
i w(OPT∩Qi) 6

∑
i w(Ti) 6∑

i w(Oi) 6 4 × maxi {w(Oi)}, where the sum and max is
taken over the range i ∈ {`, r, t, b}. Therefore, the output of
the algorithm is within factor 4/3 of the optimal solution.
Since the one-sided problem can be solved in O(n log n) time,
and the 3-sided problem requires O(n3) time by Theorem 6,
the total runtime of the algorithm is O(n3). �

VII. EXPERIMENTAL RESULTS

To compare the performance of our algorithms against that
of Kong et al. [12], we consider the same input setting as
theirs. In particular, we consider instances of the PCB bus
escape routing problem, where we are given n buses on a
component board, and the goal is to maximize the total number
(or the total weight) of the buses that can be routed to the
boundary of the component without making any conflict. As
noted in [12], this PCB bus scape routing problem can by
reduced to the MDBR problem as follows. For each bus, we
represent the bounding box of its pin cluster by a rectangle

Fig. 12: The four possible directions for routing a bus. The
bus is routed through the shaded boundary rectangle.

inside the component board. We then extend each rectangle
toward four possible directions to obtain four boundary rect-
angles corresponding to the four possible routings of the bus
(see Figure 12). Since all four boundary rectangles generated
for a bus contain the rectangle corresponding to the pin cluster
of that bus, the maximum disjoint set of boundary rectangles
in the constructed instance is equal to the maximum number
of buses that can be routed without crossing.

We have implemented the exact and approximation al-
gorithms presented in this paper for the MDBR problem,
and compared their performances against each other, and
against the algorithm of Kong et al. [12]. The four algorithms
implemented include our O(n4)-time exact algorithm, which
we denote by MDBR, the O(n6)-time algorithm of Kong et al.,
which we denote by MDS, and the two approximation algo-
rithms presented in Section VI, which we denote by 2-APX
and 4/3-APX, respectively. We implemented the algorithms
in C++2, and applied them to ten industrial and machine-
generated bus escape routing instances. We performed the
experiments on a Linux machine with Intel Xeon 3.2GHz CPU
and 8GB RAM. The experimental results are shown in Table I.

The first three columns of Table I show the test cases used in
our experiments. The number of buses in our test cases ranges
from 8 to 120, and the number of rectangles ranges from 32
to 480. Some of our test cases are illustrated in Figure 13.

As shown in Table I, our MDBR algorithm is much faster
than the MDS algorithm of Kong et al. (see the first two
columns of section RUNTIME). For example, on a test case
with 50 buses, our algorithm finds an optimal solution in
only 6 seconds, while the MDS algorithm takes more than
5 minutes to finish. On a larger test case with 100 buses, our
algorithm is more than 100 times faster than Kong et al.’s al-
gorithm. The runtime of the algorithms are plotted in Figure 14
in logarithmic scale for a better comparison.

The solutions produced by our approximation algorithms
are pretty close to the optimal ones (see the last four columns
of section SOLUTIONS). In particular, the ratio of the optimal
solution to the approximate one is very close to 1 in most of the
cases. On average, the approximation ratios of the 2-APX and
4/3-APX algorithms are 1.14 and 1.05, respectively. It means
that in practice, the approximation ratios of these algorithms
are much lower than the guaranteed theoretical upper bounds.

2The source codes of the four implemented algorithms are publicly available
at: http://sharif.edu/∼zarrabi/projects/mdbr/

http://sharif.edu/~zarrabi/projects/mdbr/

8

TABLE I: Experimental Results

Test
Case

#
Buses

#
Rect.

SOLUTIONS
RUNTIME (sec)

Optimal Approximation
MDS MDBR 4

3
-APX Ratio 2-APX Ratio MDS MDBR 4

3
-APX 2-APX

1 8 32 8 8 8 1 8 1 0.07 0.03 0.03 0.01
2 8 32 7 7 7 1 7 1 0.06 0.02 0.03 0.01
3 12 48 12 12 12 1 12 1 0.23 0.04 0.03 0.01
4 15 60 9 9 9 1 9 1 0.55 0.09 0.03 0.01
5 20 80 14 14 13 1.08 11 1.27 2.49 0.24 0.04 0.01
6 30 120 25 25 23 1.09 21 1.19 24.5 0.83 0.06 0.01
7 50 200 34 34 32 1.06 30 1.13 320 6.07 0.17 0.02
8 80 320 46 46 40 1.15 34 1.35 3302 41.5 0.50 0.03
9 100 400 48 48 45 1.07 40 1.20 11932 106 0.94 0.04
10 120 480 53 53 50 1.06 44 1.20 27049 247 1.69 0.06

Average Ratio 1.0 1.05 1.14 —

(a) Test Case #1 with an optimal solution (b) Test Case #5 (Ref: [16]) (c) Test Case #8

Fig. 13: Examples of test cases used in our experiments.

0.00

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

32 64 128 256 512

R
u

n
ti

m
e

(s
ec

)

Number of Rectangles

MDS

MDBR

4/3-APX

2-APX

Fig. 14: The runtime of the algorithms presented in Table I.
The vertical and horizontal axes of the plot are scaled loga-
rithmically to the bases 10 and 2, respectively.

On the other hand, the approximation algorithms are much
faster than the optimal algorithms. For example, on a test case
with 120 buses, the 2-APX algorithm is 4,000 times faster than
the MDBR algorithm, and 450,000 times faster than the MDS
algorithm. Therefore, in real-world applications, if optimality
can be compromised a little, we can get very good solutions
efficiently, even for a large number of buses and rectangles.

VIII. CONCLUSIONS

In this paper, we presented an O(n4)-time algorithm for
computing a maximum disjoint set of boundary rectangles,
improving over the best previous O(n6)-time algorithm by
Kong et al. [12]. We also presented two efficient approxi-
mation algorithms with approximation factors of 2 and 4/3,
respectively. It remains open whether the running time of the
exact algorithm can be further improved. Finding better ap-
proximation algorithms, with improved approximation factors
and/or running times is another interesting problem.

REFERENCES

[1] P. Chalermsook and J. Chuzhoy. Maximum independent set of rectan-
gles. In Proceedings of the 20th ACM-SIAM Symposium on Discrete
Algorithms, pages 892–901, 2009.

[2] T. M. Chan. Polynomial-time approximation schemes for packing and
piercing fat objects. Journal of Algorithms, 46(2):178–189, 2003.

[3] T. M. Chan and S. Har-Peled. Approximation algorithms for maximum
independent set of pseudo-disks. Discrete and Computational Geometry,
48(2):373–392, 2012.

[4] W.-T. Chan and F. Y. Chin. Efficient algorithms for finding the maximum
number of disjoint paths in grids. Journal of Algorithms, 34(2):337–369,
2000.

[5] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation
schemes for geometric intersection graphs. SIAM Journal on Computing,
34(6):1302–1323, 2005.

[6] J.-W. Fang, I.-J. Lin, Y.-W. Chang, and J.-H. Wang. A network-flow-
based RDL routing algorithm for flip-chip design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 26(8):1417–
1429, 2007.

9

[7] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information Processing Letters,
12(3):133–137, 1981.

[8] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathemat-
ica, pages 627–636, 1996.

[9] J. Hershberger and S. Suri. Efficient breakout routing in printed circuit
boards. In Algorithms and Data Structures, pages 462–471. 1997.

[10] H. Imai and T. Asano. Finding the connected components and a
maximum clique of an intersection graph of rectangles in the plane.
Journal of Algorithms, 4(4):310–323, 1983.

[11] J. M. Keil, J. S. Mitchell, D. Pradhan, and M. Vatshelle. An algorithm
for the maximum weight independent set problem on outerstring graphs.
Computational Geometry, 60:19–25, 2017.

[12] H. Kong, Q. Ma, T. Yan, and M. D. F. Wong. An optimal algorithm for
finding disjoint rectangles and its application to PCB routing. In Pro-
ceedings of the 47th ACM/EDAC/IEEE Design Automation Conference,
DAC ’10, pages 212–217, 2010.

[13] H. Kong, T. Yan, and M. D. Wong. Automatic bus planner for dense
pcbs. In Proceedings of the 46th ACM/EDAC/IEEE Design Automation
Conference, pages 326–331, 2009.

[14] H. Kong, T. Yan, M. D. F. Wong, and M. M. Ozdal. Optimal bus
sequencing for escape routing in dense PCBs. In Proceedings of the
2007 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’07, pages 390–395, 2007.

[15] L. Luo and M. D. Wong. Ordered escape routing based on boolean
satisfiability. In Proceedings of the the 2008 Asia South Pacific Design
Automation Conference, ASP-DAC ’08, pages 244–249, 2008.

[16] Q. Ma and M. D. F. Wong. NP-completeness and an approximation
algorithm for rectangle escape problem with application to PCB routing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 31(9):1356–1365, 2012.

[17] Q. Ma, E. Young, and M. D. F. Wong. An optimal algorithm for layer
assignment of bus escape routing on PCBs. In Proceedings of the 48th
ACM/EDAC/IEEE Design Automation Conference, DAC ’11, pages 176–
181, 2011.

[18] E. Piliposyan. A note on maximum weight independent set in outer-
rectangle graphs. Mathematical Problems of Computer Science, 36:51–
56, 2012.

[19] R. Wang, R. Shi, and C.-K. Cheng. Layer minimization of escape
routing in area array packaging. In Proceedings of the 2006 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’06, pages
815–819, 2006.

[20] P.-C. Wu, Q. Ma, and M. D. Wong. An ILP-based automatic bus planner
for dense PCBs. In Proceedings of the 18th Asia South Pacific Design
Automation Conference, ASPDAC ’13, pages 181–186, 2013.

[21] T. Yan, H. Kong, and M. D. F. Wong. Optimal layer assignment
for escape routing of buses. In Proceedings of the 2009 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’09, pages
245–248, 2009.

[22] T. Yan and M. D. Wong. A correct network flow model for escape rout-
ing. In Proceedings of the 46th ACM/EDAC/IEEE Design Automation
Conference, DAC ’09, pages 332–335, 2009.

[23] M.-F. Yu and W. W.-M. Dai. Single-layer fanout routing and routability
analysis for ball grid arrays. In Proceedings of the 1995 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’95, pages
581–586, 1995.

Amirmahdi Ahmadinejad received the B.S. and the
M.S. degrees in computer engineering from Sharif
University of Technology, Tehran, Iran in 2012 and
2014, respectively. He is now a Ph.D. Student at
Stanford University, Stanford, CA. He was a gold
medal winner in the Iranian National Olympiad in
Informatics in 2007, and ranked 2nd in the ACM
International Collegiate Programming Contest, Asia
Region, 2012. He was the coach of the Iranian
team participating the International Olympiad in
Informatics (IOI) in Taipei, Taiwan, 2014. His re-

search interests include approximation algorithms, algorithmic game theory,
computational geometry, and combinatorial optimization.

Hamid Zarrabi-Zadeh received the Ph.D. degree in
computer science from the University of Waterloo,
Waterloo, ON, Canada, in 2008. He was a Post-
doctoral Fellow at Carleton University, Ottawa, ON,
Canada, from 2009 to 2011. Since 2011, he has been
with the Sharif University of Technology, where he
is currently an Assistant Professor with the Depart-
ment Computer Engineering. He has been a member
of the International Scientific Committee (ISC) for
the International Olympiad in Informatics (IOI) from
2014 to 2015. His current research interests include

the design and analysis of algorithms, computational geometry, approximation
and randomized algorithms, and algorithmic graph theory.

	Introduction
	Preliminaries
	The 2-Sided Problem
	The Opposite Case
	The Corner Case

	The 3-Sided Problem
	The 4-Sided Problem
	Approximation Algorithms
	Experimental Results
	Conclusions
	References
	Biographies
	Amirmahdi Ahmadinejad
	Hamid Zarrabi-Zadeh

