
On the Maximum Triangle Problem∗

Afrouz Jabal Ameli† Hamid Zarrabi-Zadeh‡

Abstract

Given a set P of n points in the plane, the maximum triangle prob-
lem asks for finding a triangle with three vertices in P that encloses
the maximum number of points from P . While the problem is easily
solvable in O(n3) time, it has been open whether a subcubic solution
is possible. In this paper, we show that the problem can be solved
in o(n3) time, using a reduction to min-plus matrix multiplication. We
also provide some improved approximation algorithms for the prob-
lem, including a 4-approximation algorithm running in O(n log n log h)
time, and a 3-approximation algorithm with O(nh log n + nh2) run-
time, where h is the size of the convex hull of P .

1 Introduction

Let P be a set of n points in the plane. In the maximum triangle problem, the
objective is to find a triangle with three vertices from P , so that the number
of points of P enclosed by the triangle is maximum (for an illustration, see
Figure 1). Eppstein et al. [2] showed that the problem can be solved in
O(n3) time. They indeed solved a more general problem of finding a convex
k-gon enclosing a maximum number of points in O(kn3) time. They left this
question open whether the problem can be solved faster.

Doüıeb et al. [3] presented several approximation algorithms for the max-
imum triangle problem. In particular, they provided a 3-approximation al-
gorithm running in O(nh2 log n) time, and a 4-approximation algorithm with

∗A preliminary version of this work was presented at ICCG 2019 [1].
†Department of Mathematics and Computer Science, Eindhoven University of Tech-

nology, Eindhoven, Netherlands. E-mail: a.jabal.ameli@tue.nl.
‡Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

E-mail: zarrabi@sharif.edu.

1

Figure 1: An example of the maximum triangle problem.

O(n log2 n) running time. They again posed finding an o(n3)-time exact al-
gorithm as an open problem.

Our results. In this paper, we revisit the maximum triangle problem, and
provide several improved results, as described below:

• We provide the first o(n3)-time exact algorithm for the maximum tri-
angle problem, thereby answering an open problem posed by Eppstein
et al. [2]. Our algorithm is based on a reduction to the min-plus ma-
trix multiplication, for which slightly subcubic algorithms are already
known in the literature.

• We provide a 3-approximation algorithm for the maximum triangle
problem that runs in O(nh log n+ nh2) time, where h denotes the size
of the convex hull of the input point set. Our algorithm improves by a
factor of min{log n, h} the running time of a previous 3-approximation
algorithm due to Doüıeb et al. [3] that runs in O(nh2 log n) time.

• We show how a 4-approximation to the maximum triangle can be
computed in O(nh log h + nh3) time, improving upon a previous 4-
approximation algorithm of Doüıeb et al. [3] that runs in O(nh2 log h)
time. Our algorithm is faster by a factor of min{h, (n/h) log h} in this
case compared to the previous existing algorithm.

• We present another 4-approximation algorithm with a running time of
O(n log n log h), improving upon a previous 4-approximation algorithm
of Doüıeb et al. [3] that runs in O(n log2 n) time.

A summary of the results provided in this paper and the previous work
is presented in Table 1.

2

Table 1: Summary of the results for the maximum triangle problem.

Runtime

Algorithm Previous [2, 3] This Work

Exact O(n3) n3/2Ω(
√
logn)

3-approximation O(nh2 log n) O(nh log n+ nh2)
4-approximation O(nh2 log h) O(nh log h+ h3)
4-approximation O(n log2 n) O(n log n log h)

Related work. The problem of finding a convex k-gon with vertices from
the input point set maximizing or minimizing a particular function has
been widely studied in the literature. For the problem of finding a max-
imum area and a maximum perimeter convex k-gon, Boyce et al. [4] pro-
vided an O(kn log n+ n log2 n) time algorithm, which was later improved to
O(kn + n log n) by Aggarwal et al. [5] using a fast matrix search method.
Eppstein et al. [2] showed that a minimum area and a minimum perimeter
convex k-gon, as well as a convex k-gon enclosing a minimum (or maximum)
number of points can be computed in O(kn3) time.

A related problem of counting the number of triangles in a graph has re-
ceived considerable attention due to its applications in social network anal-
ysis, community detection, and link prediction [6, 7]. The best known al-
gorithm for this problem is based on fast matrix multiplication with O(nω)
time complexity, where ω < 2.372 [8, 9]. The problem is also studied in other
models of computation, including parallel and data streaming [10–13]. See
also [14–16] for some recent work on the related triangle detection problem.

The min-plus matrix multiplication, also known as distance product and
tropical product, is extensively studied in the literature, due to its connection
to several fundamental problems such as all-pairs shortest paths, minimum
cycles, and replacement paths [17]. For this problem, slightly subcubic al-
gorithms are known [18–20], the current best of which is due to Chan and
Williams [21] with O(n3/2

√
logn) time complexity. In fact, it is widely be-

lieved that truly subcubic algorithms with O(n3−ε) running time do not exist
for min-plus matrix multiplication, based on recent findings in fine-grained
complexity [22].

3

p

q

Figure 2: Points below the line segment pq

2 Preliminaries

Let P be a set of n points in the plane. Throughout this paper, we assume
that the points are in general position, i.e., no three points are co-linear, and
no two points have the same x-coordinate.

Given three points p, q, r ∈ P , we call △pqr a triangle of P , and denote
by |△pqr| the number of points enclosed by △pqr, i.e., the number of points
contained in the interior or on the boundary of △pqr. A triangle △pqr with
maximum |△pqr| is called a maximum triangle of P , or in short, an optimal
triangle.

3 A Subcubic Exact Algorithm

In this section, we show how the maximum triangle problem can be solved in
o(n3) time, using matrix multiplication over the (min,+)-semiring, for which
slightly subcubic algorithms are available. Recall that the min-plus product
of two n× n matrices A and B is defined as

(A⊕B)i,j = min
1≤k≤n

{Ai,k +Bk,j}.

Theorem 1 Let P be a set of n points in the plane. A maximum triangle
of P can be found in O(n2 + T (n)) time, where T (n) is the time needed
for computing the min-sum product of two n × n matrices, the best current
algorithm for which has n3/2Ω(

√
logn) runtime.

Proof. For each pair of points p, q ∈ P , we denote by npq the number of
points from P in the vertical slab (strictly) below the line segment pq (see
Figure 2). The value of npq for all pairs p, q ∈ P can be computed in O(n2)

4

p

q

r

(a)

r

p

p

(b)

Figure 3: The two possible configurations for the triangle △pqr.

time [2]. For any two points p, q ∈ P , we set n−→pq = npq +1 if the vector −→pq is
directed from left to right, and set n−→pq = −npq otherwise.

Now, for any triangle △pqr with three vertices p, q, r in clockwise order,
the number of points enclosed by △pqr can be written as

|△pqr| = n−→pq + n−→qr + n−→rp + 1. (1)

Note that equation (1) correctly captures the number of points enclosed by
the triangle △pqr, no matter if the triangle is upward or downward (see
Figure 3). Moreover, for computing the maximum triangle, we only need
to consider the points in clockwise order, as the value of n−→pq + n−→qr + n−→rp
for any three points p, q, r in counter-clockwise order is smaller than the
corresponding value in clockwise order.

Let A be a n×n matrix with Ap,q = −n−→pq, and let B = A⊕ (A⊕A). By
the definition of the min-plus product, we have

Bp,p = min
q,r∈P

{Ap,q + Aq,r + Ar,p},

for all p ∈ P . Therefore, to obtain a maximum triangle, we just need to
check the n values on the main diagonal of the matrix B for the smallest
(negative) number, whose absolute value corresponds to the number of points
enclosed by a maximum triangle. The optimal triangle itself can be easily
found in O(n2) time by enumerating all O(n2) triangles with one vertex on
the point realizing the smallest value in the diagonal. The whole runtime
of the algorithm is therefore bounded by that of computing the min-plus
product. □

Our algorithm can be generalized to work for point sets not in general
position as well. Let tpq denote the number of points lying on the line segment

5

pq, including p and q, themselves. The value of tpq for all pairs p, q ∈ P can
be computed in O(n2) time [2]. Now, in the proof of Theorem 1, it just
suffices to set n−→pq = npq+ tpq−1 if the vector −→pq is directed from left to right.
The rest of the proof remains unchanged.

4 Improved Approximation Algorithms

Doüıeb et al. [3] proposed several subcubic approximation algorithms for
the maximum triangle problem. The main idea behind their algorithms is
to reduce the number of enumerated triangles by fixing 1, 2, or 3 vertices
of the optimal triangle on the convex hull of the input points. They also
used this simple observation that if the surface of an optimal triangle is
covered by c triangles (for an integer c ≥ 1), then one of these triangles is a
c-approximation of the optimal triangle.

In this section, we improve the runtime of the approximation algorithms
proposed by Doüıeb et al. [3], using faster methods for counting the number
of points in the enumerated triangles.

In the remaining of this section, we assume that P is a set of n points in
general position in the plane, H is the convex hull of P , and h = |H|. We
will use the following two auxiliary lemmas from Doüıeb et al. [3].

Lemma 1 ([3]) Among all triangles in P with k vertices on the convex hull
(1 ≤ k ≤ 3), there exists a triangle that (k + 1)-approximates an optimal
triangle.

Lemma 2 ([3]) Given two points p, q ∈ H, the value of |△pqr| for all r ∈ P
can be computed in O(n log n) time. Furthermore, |△pqr| for all r ∈ H can
be computed in O(n log h) time.

Now, we prove three lemmas which are the main ingredients of our improved
approximation algorithms.

Lemma 3 Given a point p ∈ H, the value of |△pqr| for all q, r ∈ H can be
computed in O(nh log h) time. Furthermore, |△pqr| for all q ∈ P and r ∈ H
can be computed in O(nh log n) time.

Proof. Fix a point q on H. By Lemma 2, |△pqr| for all r ∈ H can be
computed in O(n log h) time. Since there are h − 1 option for choosing q,
computing |△pqr| for all q, r ∈ H takes O(nh log h) time in total. Similarly,
if we fix q ∈ P , the algorithm takes O(nh log n) time by Lemma 2. □

6

p

s

q

r

Figure 4: Triangles formed by four points on the convex hull.

Lemma 4 The value of |△pqr| for all three points p, q, r ∈ H can be com-
puted in O(nh log h+ h3) time.

Proof. Let p, q, r, s be four points on H in clockwise order. The value of
|△pqr| can be written as |△spq|+|△sqr|−|△spr| (see Figure 4). By Lemma 3
we can compute the number of points enclosed by all triangles onH whose one
vertex is fixed on s in O(nh log n) time. Therefore, after this preprocessing
step, we can compute the value of |△pqr| for each p, q, r ∈ H in O(1) time.
Since there are O(h3) such triangles, the whole process takes O(nh log h+h3)
time in total. □

Lemma 5 For all p, q ∈ H and r ∈ P , the value of |△pqr| can be computed
in O(nh log n+ nh2) total time.

Proof. For a fixed point s on H, we compute the number of points enclosed
by all triangles with one vertex on s, and the other two vertices freely chosen
one from P and the other from H in O(nh log n) time using Lemma 3. Now,
for any triangle △pqr with p, q ∈ H and r ∈ P , we compute |△pqr| as
follows.

(i) If rp crosses sq, then |△pqr| = |△pqs|+ |△qrs| − |△prs|.

(ii) If rq crosses sp, then |△pqr| = |△pqs|+ |△prs| − |△qrs|.

(iii) If rs crosses pq, then |△pqr| = |△prs|+ |△qrs| − |△pqs|.

7

(iv) If r lies inside △pqs, then |△pqr| = |△pqs| − |△prs| − |△qrs|+ 5.

In any of the above cases, |△pqr| can be computed in O(1) time. Since
there are O(nh2) different triangles △pqr with p, q ∈ H and r ∈ P , we can
compute |△pqr| for all such triangles in O(nh log n+ nh2) total time. □

Now, Lemmas 4 and 5 together with Lemma 1 yield the following theorem.

Theorem 2 A 3-approximation of an optimal triangle can be computed in
O(nh log n + nh2) time. Furthermore, a 4-approximation of an optimal tri-
angle can be found in O(nh log h+ h3) time.

Remark. Eppstein et al. [2] proved that P can be preprocessed in O(n2)
time, so that for any query triangle △pqr in P , |△pqr| can be reported in
O(1) time. Using this as an alternative way for counting the number of points
in the enumerated triangles, we can rewrite the time bounds in Theorem 2 as
O(min(n2, nh log n)+nh2) for the 3-approximation, andO(min(n2, nh log h)+
h3) for the 4-approximation algorithm.

In the following theorem, we present an alternative 4-approximation algo-
rithm for the problem.

Theorem 3 An optimal triangle can be approximated within a factor of 4
in O(n log n log h) time.

Proof. Let t1, t2, . . . , th be the vertices of H in clockwise order, and let m =
⌊h/2⌋+ 1. We partition H into two convex polygons H1 = t1, t2, . . . , tm and
H2 = tm, . . . , th, t1. Let P1 and P2 be the points of P enclosed by H1 and
H2, respectively. We use Lemma 2 to compute |△t1tmp| for all p ∈ P in
O(n log n) time. We then recurse on P1 and P2, and return a triangle found
containing a maximum number of points.

To prove correctness, we first recall that there exists a triangle △t1pq
with p, q ∈ P that 2-approximates an optimal triangle [3]. If t1tm crosses pq,
then the two triangles △t1tmp and △t1tmq cover △t1pq, and hence, one of
them is a 2-approximation of △t1pq, which is in turn, a 4-approximation of
an optimal triangle. On the other hand, if pq lies in one side of t1tm, the
recursive call on that side returns a 2-approximation.

Let T (n, h) be the time required by the algorithm on a point set of size
n whose convex hull has size h. Then, T (n, h) = T (n1, h1) + T (n2, h2) +

8

O(n log n), where n1 + n2 = n+ 2, h1 = ⌊h/2⌋+ 1, and h2 = ⌈h/2⌉+ 1. The
recurrence tree for this relation has height O(log h), and yields T (n, h) =
O(n log n log h). □

5 Conclusions

In this paper, we presented a slightly subcubic algorithm for the maximum
triangle problem, and improved the running time of several approximation
algorithms available for the problem. A main question that remains open
is whether a truly subcubic algorithm with O(n3−ε) time is possible for the
problem. It is also interesting to study the generalized maximum k-gon
problem, for k ≥ 4.

Acknowledgments The authors would like to thank Mohammad-Reza
Maleki, Hamed Valizadeh, and Hamed Saleh for their helpful discussions
during the early stages of this work.

References

[1] A. Jabal Ameli and H. Zarrabi-Zadeh, “On the maximum triangle problem,”
in Proc. 2nd Iranian Conf. Computat. Geom., pp. 21–23, 2019.

[2] D. Eppstein, M. Overmars, G. Rote, and G. Woeginger, “Finding minimum
area k-gons,” Discrete Comput. Geom., vol. 7, no. 1, pp. 45–58, 1992.

[3] K. Doüıeb, M. Eastman, A. Maheshwari, and M. Smid, “Approximation al-
gorithms for a triangle enclosure problem,” in Proc. 23rd Canad. Conf. Com-
putat. Geom., pp. 105–110, 2011.

[4] J. E. Boyce, D. P. Dobkin, R. L. Drysdale III, and L. J. Guibas, “Finding
extremal polygons,” SIAM J. Comput., vol. 14, no. 1, pp. 134–147, 1985.

[5] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber, “Geometric
applications of a matrix-searching algorithm,” Algorithmica, vol. 2, pp. 195–
208, 1987.

[6] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: a re-
view,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery, vol. 8, no. 2, p. e1226, 2018.

[7] P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and F. Silva, “A survey on
subgraph counting: concepts, algorithms, and applications to network motifs
and graphlets,” ACM Computing Surveys, vol. 54, no. 2, pp. 1–36, 2021.

9

[8] R. Duan, H. Wu, and R. Zhou, “Faster matrix multiplication via asymmetric
hashing,” in Proc. 64th Annu. IEEE Sympos. Found. Comput. Sci., pp. 2129–
2138, 2023.

[9] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou, “New bounds for matrix multi-
plication: from alpha to omega,” in Proc. 35th ACM-SIAM Sympos. Discrete
Algorithms, pp. 3792–3835, 2024.

[10] R. Jayaram and J. Kallaugher, “An optimal algorithm for triangle counting
in the stream,” in Proc. Internat. Workshop Approx. Algorithms, vol. 207 of
Leibniz International Proceedings in Informatics, pp. 11:1–11:11, 2021.

[11] A. Sharafeldeen, M. Alrahmawy, and S. Elmougy, “Graph partitioning
MapReduce-based algorithms for counting triangles in large-scale graphs,”
Scientific Reports, vol. 13, no. 1, p. 166, 2023.

[12] L. Dhulipala, Q. C. Liu, J. Shun, and S. Yu, “Parallel batch-dynamic k-clique
counting,” in Proc. Sympos. Algorithmic Principles of Computer Systems,
pp. 129–143, 2021.

[13] X. Ding, S. Sheng, H. Zhou, X. Zhang, Z. Bao, P. Zhou, and H. Jin, “Differ-
entially private triangle counting in large graphs,” IEEE Trans. Knowledge
and Data Engineering, vol. 34, no. 11, pp. 5278–5292, 2022.

[14] T. M. Chan, “Finding triangles and other small subgraphs in geometric in-
tersection graphs,” in Proc. 34th ACM-SIAM Sympos. Discrete Algorithms,
pp. 1777–1805, 2023.

[15] A. Dumitrescu and A. Lingas, “Finding small complete subgraphs efficiently,”
in Proc. 34th Internat. Workshop Combinatorial Algorithms, pp. 185–196,
2023.

[16] M. Dalirrooyfard, T. D. Vuong, and V. V. Williams, “Graph pattern detec-
tion: Hardness for all induced patterns and faster noninduced cycles,” SIAM
J. Comput., vol. 50, no. 5, pp. 1627–1662, 2021.

[17] V. V. Williams and R. Williams, “Subcubic equivalences between path, ma-
trix, and triangle problems,” J. ACM, vol. 65, no. 5, p. 27, 2018.

[18] T. M. Chan, “More algorithms for all-pairs shortest paths in weighted
graphs,” SIAM J. Comput., vol. 39, no. 5, pp. 2075–2089, 2010.

[19] M. L. Fredman, “New bounds on the complexity of the shortest path prob-
lem,” SIAM J. Comput., vol. 5, no. 1, pp. 83–89, 1976.

[20] R. R. Williams, “Faster all-pairs shortest paths via circuit complexity,” SIAM
Journal on Computing, vol. 47, no. 5, pp. 1965–1985, 2018.

10

[21] T. M. Chan and R. Williams, “Deterministic APSP, orthogonal vectors, and
more: Quickly derandomizing Razborov-Smolensky,” in Proc. 27th ACM-
SIAM Sympos. Discrete Algorithms, pp. 1246–1255, 2016.

[22] V. V. Williams, “On some fine-grained questions in algorithms and complex-
ity,” in Proc. Internat. Congress Math., pp. 3447–3487, 2018.

11

	Introduction
	Preliminaries
	A Subcubic Exact Algorithm
	Improved Approximation Algorithms
	Conclusions

