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Abstract— We consider the problem of path planning above
a polyhedral terrain and present a new algorithm that for any
p ≥ 1, computes a (c + ε)-approximation to the Lp-shortest
path above a polyhedral terrain in O(n

ε
log n log log n) time

and O(n log n) space, wheren is the number of vertices of the
terrain, and c = 2(p−1)/p. This leads to an ε-approximation
algorithm for the problem in L1 metric, and a (

√
2 + ε)-factor

approximation algorithm in Euclidean space.

I. I NTRODUCTION

Computing shortest paths in geometric domains is a fun-
damental problem in robot motion planning. There is a large
body of work in this area, a broad overview of which can be
found in the survey by Mitchell [7].

The problem of computing a two-dimensional shortest path
among a set of polygonal obstacles is widely studied, and
there are algorithms [5] solving the problem in the Euclidean
metric (or in anyLp metric, p ≥ 1) in optimal running time
O(n log n), wheren is the total number of vertices of the
polygonal obstacles.

In 3D space, the problem of computing a shortest path
among a set of polyhedral obstacles is well-known to beNP-
hard [2] even inL1 metric. However, for several classes of
obstacles, exact shortest paths can be computed efficiently.
For example, if obstacles are vertical buildings (prisms) with
a fixed numberk of distinct heights, the Euclidean shortest
path can be computed inO(n6k−1) time [4]. Furthermore,
if the obstacle is a single “polyhedral terrain”, then theL1-
shortest path can be computed exactly inO(n3 log n) time
[8].

The first ε-approximation algorithm for the 3D Euclidean
shortest path problem is given by Papadimitriou [9] with
running timeO(n4ε−2(N + log n

ε )2), wheren is the total
number of vertices of the polyhedral obstacles, andN is
the maximum bit-length of the input integers. A different
approach was taken by Clarkson [3] resulting in an algo-
rithm which is faster whennε3 is large. Asano et al. [1]
have slightly improved the running time of Papadimitriou’s
algorithm toO(n4ε−2 log N).

A. Contribution of This Paper

In this paper, we consider the 3D shortest path problem in
the presence of a polyhedral terrain (i.e. a polyhedral surface

having at most one intersection point with any vertical line
in z-direction), while distances are computed in generalLp

metric (p ≥ 1). The problem definition is as follows:

Given ann-vertex polyhedral terrainT and two
pointss and t on or aboveT , find theLp-shortest
path froms to t that fully stays on or aboveT .

Each input coordinate is assumed to be represented using
a rational number whose numerator and denominator are
integers of bit-length at mostN .

We present an efficient algorithm that computes a(1+ ε)-
approximation to theL1-shortest path above a polyhedral
terrain in O(n

ε log n log log n) time and O(n) space. As
mentioned earlier, there is an exact algorithm for the problem
in L1 metric requiringO(n3 log n) time [8]. However, in
practical applications the input terrain is an approximation of
the reality. Therefore, exact solutions are often meaningless,
and efficient approximation algorithms are usually preferred.

In generalLp metric, our algorithm computes a factor-
(2(p−1)/p + ε) approximation to theLp-shortest path
above a polyhedral terrain inO(n

ε log n log log n) time and
O(n log n) space. This gives a(

√
2+ε)-approximation algo-

rithm for the problem in the Euclidean space. Furthermore,
by picking ε appropriately, we will guarantee that the length
of the approximate path is at most twice the length of the
optimal path in anyLp metric, p ≥ 1.

B. Paper Outline

This paper is organized as follows. In Section II, we
introduce the notion ofVHV-paths and specify the relationship
between this kind of paths and the shortest paths above
a polyhedral terrain. In Section III we give an algorithm
that finds a crude approximation to the shortestVHV-paths.
Using this algorithm and a pseudo approximation technique
proposed by Asano et al. [1], we give our main algorithm
in Section IV to approximate the shortest path above a
polyhedral terrain. We conclude in Section V with an open
question.

II. PRELIMINARIES AND PROPERTIES

For eachp ≥ 1, theLp-distance between two pointsa and
b in 3D space is defined as(|x(a)−x(b)|p + |y(a)−y(b)|p +
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Fig. 1. A polyhedral terrainT and a planew(h) intersecting it.w(h) is
partitioned byT into a free region,F(h), and an obstacle region, shown in
gray. The shortest path̄π(h) betweens(h) and t(h) in the free region of
w(h) is shown by dashed lines.

|z(a)−z(b)|p)1/p. Special cases of theLp metric include the
L1 metric (Manhattan metric) and theL2 metric (Euclidean
metric). TheLp-length of a polygonal path is the sum of the
Lp-lengths of each segment of the path. TheLp-length of a
pathπ is denoted by‖π‖p. Throughout this paper, we assume
thatp is fixed. Therefore, we may suppressp in our notations.
For example, we simply write‖π‖ instead of‖π‖p.

Let T be a polyhedral terrain withn vertices, and lets
and t be two points on or aboveT . We assume without loss
of generality thatz(s) = 0 and z(t) ≥ 0. Let πopt be the
Lp-shortest path betweens andt that fully stays on or above
T . We note thatπopt is not necessarily unique.

Consider the planew(h) : z = h. The intersection ofT and
w(h) partitionsw(h) into a free region,F(h), and an obstacle
region,w(h) \ F(h), as shown in Fig. 1. (F(h) consists of
those points onw(h) that lie on or aboveT ). We denote by
s(h) and t(h) the vertical projection ofs and t on w(h),
respectively. Let̄π(h) be theLp-shortest path froms(h) to
t(h) that lies completely inF(h).

For h ≥ z(t), we construct a path froms to t aboveT

as follows: we first move froms along a vertical segment
to s(h), then proceed froms(h) to t(h) along the planar
path π̄(h), and finally descend fromt(h) along a vertical
segment tot. We call such a vertical-horizontal-vertical path
a VHV-path with heighth and denote it byπ(h). Among all
VHV-paths aboveT , we refer to the one with the minimum
Lp-length as theoptimalVHV-path aboveT and denote it by
π∗. We note again thatπ∗ is not necessarily unique.

Mitchell and Sharir [8] have observed that inL1 metric, the
optimalVHV-path and theL1-shortest path above a polyhedral
terrain have the sameL1-length. We can generalize this fact
to anyLp metric as follows:

Observation 1:Let π∗ be the optimalVHV-path, andπopt

be the Lp-shortest path above a polyhedral terrain. Then
‖π∗‖ ≤ 2(1− 1

p )‖πopt‖.
Proof: Suppose thatπopt is composed ofk segments

si = (ai, bi). We usexi, yi and zi to refer to the length of
the projection ofsi in thex-, y- andz-direction, respectively.
Let ci be the vertical projection ofai on a horizontal plane
passing throughbi, and defineσi = (bi, ci) andhi = (ai, ci)
(see Fig. 2).
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Fig. 2. The projection of segmentsi = (ai, bi) on a horizontal plane
passing throughbi.

Then

‖σi‖+ ‖hi‖
‖si‖ =

(xp
i + yp

i )
1
p + zi

(xp
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i + zp
i )

1
p

=
ωi + zi

(ωp
i + zp

i )
1
p

whereωi = (xp
i + yp

i )1/p. The above quotient is maximized
whenωi = zi, and hence, it is at most2ωi

p
√

2ωp
i

= 2(1− 1
p ).

Let h be the maximumz-coordinate of a point onπopt. It is
clear that‖π∗‖ ≤ ‖π(h)‖. The pathπopt can be decomposed
into two (possibly empty)z-monotone subpathsπ+ andπ−,
whereπ+ is ascending andπ− is descending inz-direction.
Therefore,

∑
i ‖hi‖ = 2h − z(t). Furthermore, the vertical

projections ofσi’s on w(h) form a path froms(h) to t(h)
that completely lies in the free region ofw(h). Therefore,∑

i ‖σi‖ ≥ π̄(h). Putting all together, we have

‖π(h)‖ = ‖π̄(h)‖+ 2h− z(t)

≤
k∑

i=1

‖σi‖+
k∑

i=1

‖hi‖

≤ 2(1− 1
p )

k∑

i=1

‖si‖

which implies that‖π∗‖ ≤ 2(1− 1
p )‖πopt‖. ¤

By Observation 1, any algorithm that computes anε-
approximation to the optimalVHV-path above a polyhedral
terrainT , provides a factor-(2(p−1)/p + ε) approximation to
theLp-shortest path aboveT in anyLp metric. The following
observation will be a main ingredient of ourε-approximation
algorithm in Section IV.

Observation 2:Let h > h′ > 0. If h − h′ ≤ ∆/2 then
‖π(h)‖ ≤ ‖π(h′)‖+ ∆.

Proof: Let L(h) = ‖π̄(h)‖. The free region ofw(h),
F(h), expands ash increases. Therefore,L(h) is a decreasing
function of h. It means that forh > h′, L(h) − L(h′) ≤ 0.
Using the fact that‖π(h)‖ = L(h) + 2h− z(t) we get

‖π(h)‖ − ‖π(h′)‖ = L(h)− L(h′) + 2(h− h′)

≤ 2(h− h′) ≤ ∆. ¤

III. F INDING A CRUDE APPROXIMATION

In this section, we show how to efficiently find a crude ap-
proximation to the optimalVHV-path,π∗, above a polyhedral
terrain. More precisely, we find a real value that approximates



the length ofπ∗ to within a multiplicative-factor ofO(n).
This crude approximation will be then used in the next section
to obtain anε-approximation toπ∗.

For r > 0, let Cs(r) be a cube of side length2r centered
at s. We first prove the following simple lemma.

Lemma 1:Given a valuer > 0, we can check inO(n)
time whetherCs(r) contains a path froms to t that fully
stays on or aboveT .

Proof: Let S be the top face ofCs(r). To see ifCs(r)
contains a valid path froms to t, we just need to check
if there is a path connectings(r) to t(r) in S \ T . The
intersection ofT and the planew(r) forms a set of obstacles
O = {O1, O2, . . .}, where each obstacle is a simple polygon
(we discard holes inside the obstacles). IfT is stored in a
proper data structures like a Doubly-Connected Edge List
[10], we can obtain everyOi as a sorted list of its edges
in total linear time. For each obstacleOi, we then compute
simple polygons resulted fromS \Oi, and use standard point
location methods to check ifs(r) and t(r) lie in the same
polygon. This can be done in time linear to the size ofOi

[10]. Thus, performing the check on all obstacles can be done
in O(n) overall time. ¤

The next lemma, shows how we can find a valuer that
approximates the length of the optimalVHV-path aboveT .

Lemma 2:Let π∗ be the optimalVHV-path aboveT . We
can find a valuer such thatr ≤ ‖π∗‖ < 8nr in O(n log n)
time andO(n) space.

Proof: Let r∗ be the smallest value for whichCs(r∗)
contains a valid path froms to t aboveT . Clearly,r∗ ≤ ‖π∗‖.
If S is the top face ofCs(r∗), then there is a path froms(r∗)
to t(r∗) in S \ T that consists ofk segments of length at
most 4r. It is easy to observe thatk ≤ n − 1. Therefore,
‖π̄(r∗)‖ ≤ 4(n− 1)r∗, and hence,‖π∗‖ ≤ ‖π(r∗)‖ ≤ 4(n−
1)r∗ + 2r∗ < 4nr∗.

Now we show how to find a 2-approximation ofr∗ in
O(n log n) time. Let N be the maximum bit-length of the
integers in the input coordinates. Then it is clear thatr∗ ≤
2N . Furthermore, we know that the shortest distance between
any pair of points in this setting is2−3N (This is the distance
between two parallel planes specified with integer coefficients
of bit length at mostN , and thus a3×3 determinant of such
integers [9]).

For every integeri, we defineri = 2i−3N−1. It is clear
thatrt ≤ r∗ ≤ rt+1 for somet ∈ [0, 4N ]. We use the idea of
binary search to findt using at mostO(log N) queries of the
form “if Cs(ri) contains a valid path froms to t”. According
to Lemma 1, this requiresO(n log N) = O(n log n) overall
time. By settingr = rt, we simply haver ≤ r∗ ≤ 2r, and
hencer ≤ ‖π∗‖ < 8nr. ¤

IV. T HE ε-APPROXIMATION ALGORITHM

Let Π be the set of allVHV-paths betweens and t that
fully stay on or aboveT . For R ≥ 0, we denote byΠR the
set of those paths inΠ that lie completely in the half-space
z ≤ R. In other words,ΠR is the set of thoseVHV-paths
whose heights are restricted to be at mostR. Let π∗R be the
Lp-shortest path inΠR. For R < R′, we haveΠR ⊆ ΠR′ ⊆
Π. Therefore,

‖π∗R‖ ≥ ‖π∗R′‖ ≥ ‖π∗‖

whereπ∗ is the optimal path inΠ. Furthermore, the following
property holds true:

‖π∗‖ ≤ R =⇒ ‖π∗R‖ = ‖π∗‖.

According to this property, there is a direct correlation
between the search radius parameterR and the length of
the optimal path inΠR. It enables us to use a pseudo
approximation framework proposed by Asano et el. [1].

For ε > 0, a pseudo approximation algorithmfor our
problem computes a pathπ(ε,R) ∈ ΠR such that

‖π(ε,R)‖ ≤ ‖π∗R‖+ εR.

We call π(ε, R) a pseudoε-approximation to π∗R. The
following lemma provides an efficient pseudo approximation
algorithm for our problem.

Lemma 3:For R ≥ 0 and ε > 0, there is a pseudo
approximation algorithm that computes a pathπ(ε,R) ∈ ΠR

such that‖π(ε, R)‖ ≤ ‖π∗R‖ + εR in O(n
ε log n) time and

O(n log n) space.

Proof: The algorithm is straightforward: For each1 ≤
i ≤ d2/εe, we computeπ(hi) at heightshi = i × εR/2,
and then, select the path with the minimumLp-length among
the computed paths asπ(ε,R). Let h∗ be the maximumz-
coordinate of a point onπ∗R, i.e. ‖π∗R‖ = ‖π(h∗)‖. Clearly,
h∗ falls in an interval[hk−1, hk] for some1 ≤ k ≤ d2/εe.
Sincehk−h∗ ≤ εR/2, Observation 2 implies that‖π(hk)‖ ≤
‖π(h∗)‖+ εR and hence‖π(ε,R)‖ ≤ ‖π∗R‖+ εR.

For the complexity, we recall that computing eachπ(hi)
is equivalent to constructing a planarLp-shortest path
π̄(hi), which can be accomplished inO(n log n) time and
O(n log n) space [6]. (Indeed, we need just linear space
in L1-metric [5]). Computingd2/εe such paths requires
O(n

ε log n) total time. ¤
We call R a low valuein case‖π(ε,R)‖ ≥ R, and ahigh

valueotherwise. Asano et al. have proved the following nice
property.

Lemma 4: [1] For α > 0, if Rl is a low value andRh

is a high value s.t.Rh ≤ αRl, then ‖π(ε,Rh)‖ < (1 +
α ε

1−ε )‖π∗‖.



By assumingα = 2 and ε ≤ 1/2, we always have
αε/(1− ε) ≤ 4ε. Using Lemma 4, one can therefore obtain
a (1 + 4ε)-approximation toπ∗, for any ε ≤ 1/2, by simply
finding a low valueRl and a high valueRh such that
Rh ≤ 2Rl. The following algorithm uses this fact to compute
an ε-approximateVHV-path.

Algorithm 1 FIND ε-APPROXIMATE VHV-PATH

1: Find anr such thatr ≤ ‖π∗‖ < 8nr
2: DefineRi = r2i, for all i ≥ 0
3: l ← 0 , h ← dlog2 ne+ 4
4: while h− l > 1 do
5: m ← d(l + h)/2e
6: if Rm ≤ ‖π(ε, Rm)‖
7: then l ← m
8: else h ← m
9: Returnπ(ε, Rh)

Theorem 1:Algorithm 1 computes anε-approximation
to the optimal VHV-path above a polyhedral terrain in
O(n

ε log n log log n) time andO(n log n) space.

Proof: The correctness of the algorithm easily follows
from the following loop invariant:At the beginning of each
iteration, Rl is a low value andRh is a high value.Note
that before the first iteration,Rl = r ≤ ‖π∗‖ ≤ ‖π(ε,Rl)‖
and Rh ≥ 16nr, thus ‖π(ε, Rh)‖ ≤ ‖π∗Rh

‖ + εRh =
‖π∗‖ + εRh < 1

2Rh + 1
2Rh = Rh. Upon termination of

the loop, we haveRh = 2Rl. Therefore, by Lemma 4 the
output is a (1 + 4ε)-factor approximation toπ∗ for any
ε ≤ 1/2, and hence, the algorithm can be viewed as a(1+ε′)-
approximation algorithm for any0 < ε′ ≤ 1/8.

In each iteration of the loop, we need just one call to the
pseudo approximation algorithm to verify whetherRm is a
low value. The total number of calls to the pseudo approxi-
mation algorithm is thusO(log log n). It immediately follows
from Lemma 3 that the running time of our algorithm is
O(n

ε log n log log n) and its space complexity isO(n log n).
¤

By Observation 1, anyε-approximation to the optimal
VHV-path immediately gives a factor-(2(p−1)/p + ε) approx-
imation to the Lp-shortest path aboveT . Theorem 1 is
therefore equivalent to the following:

Theorem 2:For anyp ≥ 1, the Lp-shortest path above a
polyhedral terrain can be approximated to within a factor of
2(p−1)/p + ε usingO(n

ε log n log log n) time andO(n log n)
space.

Corollary 1: For any fixedp ≥ 1, a 2-approximation to the
Lp-shortest path above a polyhedral terrain can be obtained
in O(n log n log log n) time andO(n log n) space.

Proof: It directly follows from Theorem 2 by picking
ε = 1/p and observing that1/p ≤ 2(1 − 2−1/p) for all

p ≥ 1. ¤

V. CONCLUSIONS

In the real world, aircrafts flying over a terrain usually
follow a simple pattern: they first fly upwards to a certain
height, then travel along a horizontal plane at that height to
a point above the target, and finally descend to the target.
In this paper, we showed how to efficiently approximate
the optimal such vertical-horizontal-vertical path to within
a multiplicative factor of1 + ε. This led to a simple and
efficient algorithm for approximating theLp-shortest paths
above a polyhedral terrain to within a factor of2(p−1)/p + ε.
The running time of our algorithm isO(n

ε log n log log n) and
its space complexity isO(n log n).

While there are several algorithms to approximate the
Euclidean shortest path among a set of polyhedral obstacles,
none of these algorithms is specialized for the case where
the obstacle is a single polyhedral terrain. An interesting
question is thus whether we can exploit properties of the
polyhedral terrains to obtain more efficientε-approximation
algorithms for this especial case of 3D shortest path problem.
The algorithm presented in Section IV gives a positive answer
to this question inL1 metric. For otherLp metrics (p ≥ 2)
the question remains open.
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