Path Planning above a Polyhedral Terrain

Hamid Zarrabi-Zadeh School of Computer Science, University of Waterloo Waterloo, Ontario, N2L 3G1 Canada Email: hzarrabi@uwaterloo.ca

Abstract—We consider the problem of path planning above a polyhedral terrain and present a new algorithm that for any $p \geq 1$, computes a $(c + \varepsilon)$ -approximation to the L_p -shortest path above a polyhedral terrain in $O(\frac{n}{\varepsilon} \log n \log \log n)$ time and $O(n \log n)$ space, where n is the number of vertices of the terrain, and $c = 2^{(p-1)/p}$. This leads to an ε -approximation algorithm for the problem in L_1 metric, and a $(\sqrt{2} + \varepsilon)$ -factor approximation algorithm in Euclidean space.

I. INTRODUCTION

Computing shortest paths in geometric domains is a fundamental problem in robot motion planning. There is a large body of work in this area, a broad overview of which can be found in the survey by Mitchell [7].

The problem of computing a two-dimensional shortest path among a set of polygonal obstacles is widely studied, and there are algorithms [5] solving the problem in the Euclidean metric (or in any L_p metric, $p \ge 1$) in optimal running time $O(n \log n)$, where n is the total number of vertices of the polygonal obstacles.

In 3D space, the problem of computing a shortest path among a set of polyhedral obstacles is well-known to be NPhard [2] even in L_1 metric. However, for several classes of obstacles, exact shortest paths can be computed efficiently. For example, if obstacles are vertical buildings (prisms) with a fixed number k of distinct heights, the Euclidean shortest path can be computed in $O(n^{6k-1})$ time [4]. Furthermore, if the obstacle is a single "polyhedral terrain", then the L_1 shortest path can be computed exactly in $O(n^3 \log n)$ time [8].

The first ε -approximation algorithm for the 3D Euclidean shortest path problem is given by Papadimitriou [9] with running time $O(n^4 \varepsilon^{-2} (N + \log \frac{n}{\varepsilon})^2)$, where *n* is the total number of vertices of the polyhedral obstacles, and *N* is the maximum bit-length of the input integers. A different approach was taken by Clarkson [3] resulting in an algorithm which is faster when $n\varepsilon^3$ is large. Asano et al. [1] have slightly improved the running time of Papadimitriou's algorithm to $O(n^4\varepsilon^{-2}\log N)$.

A. Contribution of This Paper

In this paper, we consider the 3D shortest path problem in the presence of a polyhedral terrain (i.e. a polyhedral surface having at most one intersection point with any vertical line in z-direction), while distances are computed in general L_p metric $(p \ge 1)$. The problem definition is as follows:

Given an *n*-vertex polyhedral terrain T and two points s and t on or above T, find the L_p -shortest path from s to t that fully stays on or above T.

Each input coordinate is assumed to be represented using a rational number whose numerator and denominator are integers of bit-length at most N.

We present an efficient algorithm that computes a $(1 + \varepsilon)$ approximation to the L_1 -shortest path above a polyhedral terrain in $O(\frac{n}{\varepsilon} \log n \log \log n)$ time and O(n) space. As mentioned earlier, there is an exact algorithm for the problem in L_1 metric requiring $O(n^3 \log n)$ time [8]. However, in practical applications the input terrain is an approximation of the reality. Therefore, exact solutions are often meaningless, and efficient approximation algorithms are usually preferred.

In general L_p metric, our algorithm computes a factor- $(2^{(p-1)/p} + \varepsilon)$ approximation to the L_p -shortest path above a polyhedral terrain in $O(\frac{n}{\varepsilon} \log n \log \log n)$ time and $O(n \log n)$ space. This gives a $(\sqrt{2} + \varepsilon)$ -approximation algorithm for the problem in the Euclidean space. Furthermore, by picking ε appropriately, we will guarantee that the length of the approximate path is at most twice the length of the optimal path in any L_p metric, $p \ge 1$.

B. Paper Outline

This paper is organized as follows. In Section II, we introduce the notion of VHV-paths and specify the relationship between this kind of paths and the shortest paths above a polyhedral terrain. In Section III we give an algorithm that finds a crude approximation to the shortest VHV-paths. Using this algorithm and a pseudo approximation technique proposed by Asano et al. [1], we give our main algorithm in Section IV to approximate the shortest path above a polyhedral terrain. We conclude in Section V with an open question.

II. PRELIMINARIES AND PROPERTIES

For each $p \ge 1$, the L_p -distance between two points a and b in 3D space is defined as $(|x(a) - x(b)|^p + |y(a) - y(b)|^p + |y(a)$

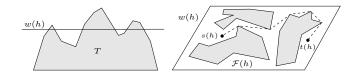


Fig. 1. A polyhedral terrain T and a plane w(h) intersecting it. w(h) is partitioned by T into a free region, $\mathcal{F}(h)$, and an obstacle region, shown in gray. The shortest path $\bar{\pi}(h)$ between s(h) and t(h) in the free region of w(h) is shown by dashed lines.

 $|z(a) - z(b)|^p)^{1/p}$. Special cases of the L_p metric include the L_1 metric (Manhattan metric) and the L_2 metric (Euclidean metric). The L_p -length of a polygonal path is the sum of the L_p -lengths of each segment of the path. The L_p -length of a path π is denoted by $||\pi||_p$. Throughout this paper, we assume that p is fixed. Therefore, we may suppress p in our notations. For example, we simply write $||\pi||$ instead of $||\pi||_p$.

Let T be a polyhedral terrain with n vertices, and let s and t be two points on or above T. We assume without loss of generality that z(s) = 0 and $z(t) \ge 0$. Let π_{opt} be the L_p -shortest path between s and t that fully stays on or above T. We note that π_{opt} is not necessarily unique.

Consider the plane w(h) : z = h. The intersection of T and w(h) partitions w(h) into a free region, $\mathcal{F}(h)$, and an obstacle region, $w(h) \setminus \mathcal{F}(h)$, as shown in Fig. 1. ($\mathcal{F}(h)$ consists of those points on w(h) that lie on or above T). We denote by s(h) and t(h) the vertical projection of s and t on w(h), respectively. Let $\bar{\pi}(h)$ be the L_p -shortest path from s(h) to t(h) that lies completely in $\mathcal{F}(h)$.

For $h \ge z(t)$, we construct a path from s to t above T as follows: we first move from s along a vertical segment to s(h), then proceed from s(h) to t(h) along the planar path $\bar{\pi}(h)$, and finally descend from t(h) along a vertical segment to t. We call such a vertical-horizontal-vertical path a VHV-path with height h and denote it by $\pi(h)$. Among all VHV-paths above T, we refer to the one with the minimum L_p -length as the optimal VHV-path above T and denote it by π^* . We note again that π^* is not necessarily unique.

Mitchell and Sharir [8] have observed that in L_1 metric, the optimal VHV-path and the L_1 -shortest path above a polyhedral terrain have the same L_1 -length. We can generalize this fact to any L_p metric as follows:

Observation 1: Let π^* be the optimal VHV-path, and π_{opt} be the L_p -shortest path above a polyhedral terrain. Then $\|\pi^*\| \leq 2^{(1-\frac{1}{p})} \|\pi_{opt}\|$.

Proof: Suppose that π_{opt} is composed of k segments $s_i = (a_i, b_i)$. We use x_i , y_i and z_i to refer to the length of the projection of s_i in the x-, y- and z-direction, respectively. Let c_i be the vertical projection of a_i on a horizontal plane passing through b_i , and define $\sigma_i = (b_i, c_i)$ and $h_i = (a_i, c_i)$ (see Fig. 2).

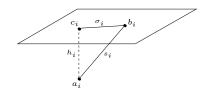


Fig. 2. The projection of segment $s_i = (a_i, b_i)$ on a horizontal plane passing through b_i .

Then

$$\frac{\|\sigma_i\| + \|h_i\|}{\|s_i\|} = \frac{(x_i^p + y_i^p)^{\frac{1}{p}} + z_i}{(x_i^p + y_i^p + z_i^p)^{\frac{1}{p}}} = \frac{\omega_i + z_i}{(\omega_i^p + z_i^p)^{\frac{1}{p}}}$$

where $\omega_i = (x_i^p + y_i^p)^{1/p}$. The above quotient is maximized when $\omega_i = z_i$, and hence, it is at most $\frac{2\omega_i}{\sqrt[p]{2\omega_i^p}} = 2^{(1-\frac{1}{p})}$.

Let h be the maximum z-coordinate of a point on π_{opt} . It is clear that $\|\pi^*\| \leq \|\pi(h)\|$. The path π_{opt} can be decomposed into two (possibly empty) z-monotone subpaths π^+ and π^- , where π^+ is ascending and π^- is descending in z-direction. Therefore, $\sum_i \|h_i\| = 2h - z(t)$. Furthermore, the vertical projections of σ_i 's on w(h) form a path from s(h) to t(h)that completely lies in the free region of w(h). Therefore, $\sum_i \|\sigma_i\| \geq \bar{\pi}(h)$. Putting all together, we have

$$\|\pi(h)\| = \|\bar{\pi}(h)\| + 2h - z(t)$$

$$\leq \sum_{i=1}^{k} \|\sigma_i\| + \sum_{i=1}^{k} \|h_i\|$$

$$\leq 2^{(1-\frac{1}{p})} \sum_{i=1}^{k} \|s_i\|$$

which implies that $\|\pi^*\| \le 2^{(1-\frac{1}{p})} \|\pi_{opt}\|.$

By Observation 1, any algorithm that computes an ε approximation to the optimal VHV-path above a polyhedral terrain T, provides a factor- $(2^{(p-1)/p} + \varepsilon)$ approximation to the L_p -shortest path above T in any L_p metric. The following observation will be a main ingredient of our ε -approximation algorithm in Section IV.

Observation 2: Let h > h' > 0. If $h - h' \le \Delta/2$ then $\|\pi(h)\| \le \|\pi(h')\| + \Delta$.

Proof: Let $L(h) = \|\bar{\pi}(h)\|$. The free region of w(h), $\mathcal{F}(h)$, expands as h increases. Therefore, L(h) is a decreasing function of h. It means that for h > h', $L(h) - L(h') \le 0$. Using the fact that $\|\pi(h)\| = L(h) + 2h - z(t)$ we get

$$\|\pi(h)\| - \|\pi(h')\| = L(h) - L(h') + 2(h - h')$$

$$\leq 2(h - h') \leq \Delta. \qquad \Box$$

III. FINDING A CRUDE APPROXIMATION

In this section, we show how to efficiently find a crude approximation to the optimal VHV-path, π^* , above a polyhedral terrain. More precisely, we find a real value that approximates

the length of π^* to within a multiplicative-factor of O(n). This crude approximation will be then used in the next section to obtain an ε -approximation to π^* .

For r > 0, let $C_s(r)$ be a cube of side length 2r centered at s. We first prove the following simple lemma.

Lemma 1: Given a value r > 0, we can check in O(n) time whether $C_s(r)$ contains a path from s to t that fully stays on or above T.

Proof: Let S be the top face of $C_s(r)$. To see if $C_s(r)$ contains a valid path from s to t, we just need to check if there is a path connecting s(r) to t(r) in $S \setminus T$. The intersection of T and the plane w(r) forms a set of obstacles $O = \{O_1, O_2, \ldots\}$, where each obstacle is a simple polygon (we discard holes inside the obstacles). If T is stored in a proper data structures like a Doubly-Connected Edge List [10], we can obtain every O_i as a sorted list of its edges in total linear time. For each obstacle O_i , we then compute simple polygons resulted from $S \setminus O_i$, and use standard point location methods to check if s(r) and t(r) lie in the same polygon. This can be done in time linear to the size of O_i [10]. Thus, performing the check on all obstacles can be done in O(n) overall time.

The next lemma, shows how we can find a value r that approximates the length of the optimal VHV-path above T.

Lemma 2: Let π^* be the optimal VHV-path above T. We can find a value r such that $r \leq ||\pi^*|| < 8nr$ in $O(n \log n)$ time and O(n) space.

Proof: Let r^* be the smallest value for which $C_s(r^*)$ contains a valid path from s to t above T. Clearly, $r^* \leq ||\pi^*||$. If S is the top face of $C_s(r^*)$, then there is a path from $s(r^*)$ to $t(r^*)$ in $S \setminus T$ that consists of k segments of length at most 4r. It is easy to observe that $k \leq n-1$. Therefore, $\|\bar{\pi}(r^*)\| \leq 4(n-1)r^*$, and hence, $\|\pi^*\| \leq \|\pi(r^*)\| \leq 4(n-1)r^* + 2r^* < 4nr^*$.

Now we show how to find a 2-approximation of r^* in $O(n \log n)$ time. Let N be the maximum bit-length of the integers in the input coordinates. Then it is clear that $r^* \leq 2^N$. Furthermore, we know that the shortest distance between any pair of points in this setting is 2^{-3N} (This is the distance between two parallel planes specified with integer coefficients of bit length at most N, and thus a 3×3 determinant of such integers [9]).

For every integer i, we define $r_i = 2^{i-3N-1}$. It is clear that $r_t \leq r^* \leq r_{t+1}$ for some $t \in [0, 4N]$. We use the idea of binary search to find t using at most $O(\log N)$ queries of the form "if $C_s(r_i)$ contains a valid path from s to t". According to Lemma 1, this requires $O(n \log N) = O(n \log n)$ overall time. By setting $r = r_t$, we simply have $r \leq r^* \leq 2r$, and hence $r \leq ||\pi^*|| < 8nr$.

IV. The ε -Approximation Algorithm

Let Π be the set of all VHV-paths between s and t that fully stay on or above T. For $R \ge 0$, we denote by Π_R the set of those paths in Π that lie completely in the half-space $z \le R$. In other words, Π_R is the set of those VHV-paths whose heights are restricted to be at most R. Let π_R^* be the L_p -shortest path in Π_R . For R < R', we have $\Pi_R \subseteq \Pi_{R'} \subseteq$ Π . Therefore,

$$\|\pi_R^*\| \ge \|\pi_{R'}^*\| \ge \|\pi^*\|$$

where π^* is the optimal path in Π . Furthermore, the following property holds true:

$$\|\pi^*\| \le R \implies \|\pi^*_R\| = \|\pi^*\|.$$

According to this property, there is a direct correlation between the search radius parameter R and the length of the optimal path in Π_R . It enables us to use a pseudo approximation framework proposed by Asano et el. [1].

For $\varepsilon > 0$, a *pseudo approximation algorithm* for our problem computes a path $\pi(\varepsilon, R) \in \Pi_R$ such that

$$\|\pi(\varepsilon, R)\| \leq \|\pi_R^*\| + \varepsilon R.$$

We call $\pi(\varepsilon, R)$ a *pseudo* ε -approximation to π_R^* . The following lemma provides an efficient pseudo approximation algorithm for our problem.

Lemma 3: For $R \ge 0$ and $\varepsilon > 0$, there is a pseudo approximation algorithm that computes a path $\pi(\varepsilon, R) \in \Pi_R$ such that $\|\pi(\varepsilon, R)\| \le \|\pi_R^*\| + \varepsilon R$ in $O(\frac{n}{\varepsilon} \log n)$ time and $O(n \log n)$ space.

Proof: The algorithm is straightforward: For each $1 \leq i \leq \lceil 2/\varepsilon \rceil$, we compute $\pi(h_i)$ at heights $h_i = i \times \varepsilon R/2$, and then, select the path with the minimum L_p -length among the computed paths as $\pi(\varepsilon, R)$. Let h^* be the maximum z-coordinate of a point on π_R^* , i.e. $\|\pi_R^*\| = \|\pi(h^*)\|$. Clearly, h^* falls in an interval $[h_{k-1}, h_k]$ for some $1 \leq k \leq \lceil 2/\varepsilon \rceil$. Since $h_k - h^* \leq \varepsilon R/2$, Observation 2 implies that $\|\pi(h_k)\| \leq \|\pi(h^*)\| + \varepsilon R$ and hence $\|\pi(\varepsilon, R)\| \leq \|\pi_R^*\| + \varepsilon R$.

For the complexity, we recall that computing each $\pi(h_i)$ is equivalent to constructing a planar L_p -shortest path $\bar{\pi}(h_i)$, which can be accomplished in $O(n \log n)$ time and $O(n \log n)$ space [6]. (Indeed, we need just linear space in L_1 -metric [5]). Computing $\lceil 2/\varepsilon \rceil$ such paths requires $O(\frac{n}{\varepsilon} \log n)$ total time.

We call R a *low value* in case $||\pi(\varepsilon, R)|| \ge R$, and a *high value* otherwise. As no et al. have proved the following nice property.

Lemma 4: [1] For $\alpha > 0$, if R_l is a low value and R_h is a high value s.t. $R_h \leq \alpha R_l$, then $\|\pi(\varepsilon, R_h)\| < (1 + \alpha \frac{\varepsilon}{1-\varepsilon}) \|\pi^*\|$.

By assuming $\alpha = 2$ and $\varepsilon \leq 1/2$, we always have $\alpha \varepsilon/(1-\varepsilon) \leq 4\varepsilon$. Using Lemma 4, one can therefore obtain a $(1+4\varepsilon)$ -approximation to π^* , for any $\varepsilon \leq 1/2$, by simply finding a low value R_l and a high value R_h such that $R_h \leq 2R_l$. The following algorithm uses this fact to compute an ε -approximate VHV-path.

Algorithm 1 FIND ε -Approximate VHV-Path	
1:	Find an r such that $r \leq \pi^* < 8nr$
2:	Define $R_i = r2^i$, for all $i \ge 0$
3:	$l \leftarrow 0$, $h \leftarrow \lceil \log_2 n \rceil + 4$
4:	while $h - l > 1$ do
5:	$m \leftarrow \lceil (l+h)/2 \rceil$
6:	$\mathbf{if} \ R_m \le \ \pi(\varepsilon, R_m)\ $
7:	then $l \leftarrow m$
8:	else $h \leftarrow m$
9:	Return $\pi(\varepsilon, R_h)$

Theorem 1: Algorithm 1 computes an ε -approximation to the optimal VHV-path above a polyhedral terrain in $O(\frac{n}{\varepsilon} \log n \log \log n)$ time and $O(n \log n)$ space.

Proof: The correctness of the algorithm easily follows from the following loop invariant: At the beginning of each iteration, R_l is a low value and R_h is a high value. Note that before the first iteration, $R_l = r \le ||\pi^*|| \le ||\pi(\varepsilon, R_l)||$ and $R_h \ge 16nr$, thus $||\pi(\varepsilon, R_h)|| \le ||\pi^*_{R_h}|| + \varepsilon R_h =$ $||\pi^*|| + \varepsilon R_h < \frac{1}{2}R_h + \frac{1}{2}R_h = R_h$. Upon termination of the loop, we have $R_h = 2R_l$. Therefore, by Lemma 4 the output is a $(1 + 4\varepsilon)$ -factor approximation to π^* for any $\varepsilon \le 1/2$, and hence, the algorithm can be viewed as a $(1+\varepsilon')$ approximation algorithm for any $0 < \varepsilon' \le 1/8$.

In each iteration of the loop, we need just one call to the pseudo approximation algorithm to verify whether R_m is a low value. The total number of calls to the pseudo approximation algorithm is thus $O(\log \log n)$. It immediately follows from Lemma 3 that the running time of our algorithm is $O(\frac{n}{\varepsilon} \log n \log \log n)$ and its space complexity is $O(n \log n)$.

By Observation 1, any ε -approximation to the optimal VHV-path immediately gives a factor- $(2^{(p-1)/p} + \varepsilon)$ approximation to the L_p -shortest path above T. Theorem 1 is therefore equivalent to the following:

Theorem 2: For any $p \ge 1$, the L_p -shortest path above a polyhedral terrain can be approximated to within a factor of $2^{(p-1)/p} + \varepsilon$ using $O(\frac{n}{\varepsilon} \log n \log \log n)$ time and $O(n \log n)$ space.

Corollary 1: For any fixed $p \ge 1$, a 2-approximation to the L_p -shortest path above a polyhedral terrain can be obtained in $O(n \log n \log \log n)$ time and $O(n \log n)$ space.

Proof: It directly follows from Theorem 2 by picking $\varepsilon = 1/p$ and observing that $1/p \leq 2(1-2^{-1/p})$ for all

 $p \geq 1.$

V. CONCLUSIONS

In the real world, aircrafts flying over a terrain usually follow a simple pattern: they first fly upwards to a certain height, then travel along a horizontal plane at that height to a point above the target, and finally descend to the target. In this paper, we showed how to efficiently approximate the optimal such vertical-horizontal-vertical path to within a multiplicative factor of $1 + \varepsilon$. This led to a simple and efficient algorithm for approximating the L_p -shortest paths above a polyhedral terrain to within a factor of $2^{(p-1)/p} + \varepsilon$. The running time of our algorithm is $O(\frac{n}{\varepsilon} \log n \log \log n)$ and its space complexity is $O(n \log n)$.

While there are several algorithms to approximate the Euclidean shortest path among a set of polyhedral obstacles, none of these algorithms is specialized for the case where the obstacle is a single polyhedral terrain. An interesting question is thus whether we can exploit properties of the polyhedral terrains to obtain more efficient ε -approximation algorithms for this especial case of 3D shortest path problem. The algorithm presented in Section IV gives a positive answer to this question in L_1 metric. For other L_p metrics ($p \ge 2$) the question remains open.

ACKNOWLEDGEMENTS

The author would like to thank Jochen Könemann and Timothy M. Chan for their valuable comments.

REFERENCES

- T. Asano, D. Kirkpatrick, and C. Yap. Pseudo approximation algorithms with applications to optimal motion planning. *Discrete Comput. Geom.*, 31(1):139–171, 2004.
- [2] J. F. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In Proc. 28th IEEE Sympos. Found. Comput. Sci., pages 49–60, 1987.
- [3] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc. 19th ACM Sympos. Theory Comput., pages 56–65, 1987.
- [4] L. P. Gewali, S. C. Ntafos, and I. G. Tollis. Path planning in the presence of vertical obstacles. *IEEE Trans. on Robotics and Automation*, 6(3):331–341, 1990.
- [5] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput., 28(6):2215–2256, 1999.
- [6] J. S. B. Mitchell. L₁ shortest paths among polygonal obstacles in the plane. Algorithmica, 8(1):55–88, 1992.
- [7] J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and J. Urrutia, editors, *Handbook of Comput. Geom.*, chapter 15, pages 633–701. Elsevier Science Publishers, 2000.
- [8] J. S. B. Mitchell and M. Sharir. New results on shortest paths in three dimensions. In Proc. 20th ACM Sympos. Comput. Geom., pages 124–133, 2004.
- [9] C. H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. *Inform. Process. Lett.*, 20(5):259–263, 1985.
- [10] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.