Homework \#8

Problem 5.10-7 A cantilever beam $A B$ of length $L=6.5 \mathrm{ft}$ supports a uniform load of intensity q that includes the weight of the beam (see figure). The beam is a steel W 10×12 wide-flange shape (see Table E-1, Appendix E).

Calculate the maximum permissible load q based upon (a) an allowable bending stress $\sigma_{\text {allow }}=16 \mathrm{ksi}$, and (b) an allowable shear
 stress $\tau_{\text {allow }}=8.5 \mathrm{ksi}$. (Note: Obtain the moment of inertia and section modulus of the beam from Table E-1.)

Problem 5.10-8 A bridge girder $A B$ on a simple span of length $L=14 \mathrm{~m}$ supports a uniform load of intensity q that includes the weight of the girder (see figure). The girder is constructed of three plates welded to form the cross section shown.

Determine the maximum permissible load q based upon (a) an allowable bending stress $\sigma_{\text {allow }}=110 \mathrm{MPa}$, and (b) an allowable shear stress $\tau_{\text {allow }}=50 \mathrm{MPa}$.

Problem 5.10-12 The T-beam shown in the figure has cross-sectional dimensions as follows: $b=220 \mathrm{~mm}, t=15 \mathrm{~mm}, h=300 \mathrm{~mm}$, and $h_{1}=275 \mathrm{~mm}$. The beam is subjected to a shear force $V=60 \mathrm{kN}$.

Determine the maximum shear stress $\tau_{\max }$ in the web of the beam.

Probs. 5.10-12 and 5.10-13

Problem 5.11-5 A box beam constructed of four wood boards of size $6 \mathrm{in} . \times 1 \mathrm{in}$. (actual dimensions) is shown in the figure. The boards are joined by screws for which the allowable load in shear is $F=250 \mathrm{lb}$ per screw.

Calculate the maximum permissible longitudinal spacing $s_{\text {max }}$ of the screws if the shear force V is 1200 lb .

