Homework \#6

Problem 4.3-2 Determine the shear force V and bending moment M at the midpoint C of the simple beam $A B$ shown in the figure.

Problem 4.3-12 A simply supported beam $A B$ supports a trapezoidally distributed load (see figure). The intensity of the load varies linearly from $50 \mathrm{kN} / \mathrm{m}$ at support A to $30 \mathrm{kN} / \mathrm{m}$ at support B.

Calculate the shear force V and bending moment M at the midpoint of the beam.

Problem 4.5-3 Draw the shear-force and bending-moment diagrams for a cantilever beam $A B$ carrying a uniform load of intensity q over one-half of its length (see figure).

Problem 4.5-6 A simple beam $A B$ subjected to clockwise couples M_{1} and $2 M_{1}$ acting at the third points is shown in the figure.

Draw the shear-force and bending-moment diagrams for this beam.

Problem 4.5-12 The beam $A B$ shown in the figure supports a uniform load of intensity $3000 \mathrm{~N} / \mathrm{m}$ acting over half the length of the beam. The beam rests on a foundation that produces a uniformly distributed load over the entire length.

Draw the shear-force and bending-moment diagrams for this beam.

Problem 4.5-26 The compound beam $A B C D E$ shown in the figure consists of two beams ($A D$ and $D E$) joined by a hinged connection at D. The hinge can transmit a shear force but not a bending moment. The loads on the beam consist of a $4-\mathrm{kN}$ force at the end of a bracket attached at point B and a $2-\mathrm{kN}$ force at the midpoint of beam $D E$.

Draw the shear-force and bending-moment diagrams for this compound beam.

