Mechanics of Solid

Homework 3

Problem 2.7-9 A slightly tapered bar $A B$ of rectangular cross section and length L is acted upon by a force P (see figure). The width of the bar varies uniformly from b_{2} at end A to b_{1} at end B. The thickness t is constant.
(a) Determine the strain energy U of the bar.
(b) Determine the elongation δ of the bar by equating the strain
 energy to the work done by the force P.

Problem 2.7-11 A block B is pushed against three springs by a force P (see figure). The middle spring has stiffness k_{1} and the outer springs each have stiffness k_{2}. Initially, the springs are unstressed and the middle spring
is longer than the outer springs (the difference in length is denoted s).
(a) Draw a force-displacement diagram with the force P as ordinate and the displacement x of the block as abscissa.
(b) From the diagram, determine the strain energy U_{1} of the springs when $x=2 s$.

(c) Explain why the strain energy U_{1} is not equal to $P \delta / 2$, where $\delta=2 s$.

Problem 2.10-3 A flat bar of width b and thickness t has a hole of diameter d drilled through it (see figure). The hole may have any diameter that will fit within the bar.

What is the maximum permissible tensile load $P_{\text {max }}$ if the allowable tensile stress in the material is σ_{t} ?

Problem 2.12-8 A rigid bar $A C B$ is supported on a fulcrum at C and loaded by a force P at end B (see figure). Three identical wires made of an elastoplastic material (yield stress σ_{Y} and modulus of elasticity E) resist the load P. Each wire has cross-sectional area A and length L.
(a) Determine the yield load P_{Y} and the corresponding yield displacement δ_{Y} at point B.
(b) Determine the plastic load P_{P} and the corresponding displacement δ_{P} at point B when the load just reaches the value P_{P}.

(c) Draw a load-displacement diagram with the load P as ordinate and the displacement δ_{B} of point B as abscissa.

Problem 2.11-1 A bar $A B$ of length L and weight density γ hangs vertically under its own weight (see figure). The stress-strain relation for the material is given by the Ramberg-Osgood equation (Eq. 2-71):

$$
\epsilon=\frac{\sigma}{E}+\frac{\sigma_{0} \alpha}{E}\left(\frac{\sigma}{\sigma_{0}}\right)^{m}
$$

Derive the following formula

$$
\delta=\frac{\gamma L^{2}}{2 E}+\frac{\sigma_{0} \alpha L}{(m+1) E}\left(\frac{\gamma L}{\sigma_{0}}\right)^{m}
$$

for the elongation of the bar.

