Mechanics of Solid

Homework 3

Problem 2.7-9 A slightly tapered bar AB of rectangular cross section and length L is acted upon by a force P (see figure). The width of the bar varies uniformly from b_2 at end A to b_1 at end B. The thickness t is constant.

- (a) Determine the strain energy U of the bar.
- (b) Determine the elongation δ of the bar by equating the strain energy to the work done by the force *P*.

Problem 2.7-11 A block *B* is pushed against three springs by a force *P* (see figure). The middle spring has stiffness k_1 and the outer springs each have stiffness k_2 . Initially, the springs are unstressed and the middle spring

is longer than the outer springs (the difference in length is denoted s).

- (a) Draw a force-displacement diagram with the force P as ordinate and the displacement x of the block as abscissa.
- (b) From the diagram, determine the strain energy U_1 of the springs when x = 2s.
- (c) Explain why the strain energy U_1 is not equal to $P\delta/2$, where $\delta = 2s$.

Problem 2.10-3 A flat bar of width b and thickness t has a hole of diameter d drilled through it (see figure). The hole may have any diameter that will fit within the bar.

What is the maximum permissible tensile load P_{max} if the allowable tensile stress in the material is σ_t ?

Problem 2.12-8 A rigid bar *ACB* is supported on a fulcrum at *C* and loaded by a force *P* at end *B* (see figure). Three identical wires made of an elastoplastic material (yield stress σ_Y and modulus of elasticity *E*) resist the load *P*. Each wire has cross-sectional area *A* and length *L*.

- (a) Determine the yield load P_{γ} and the corresponding yield displacement δ_{γ} at point *B*.
- (b) Determine the plastic load P_p and the corresponding displacement δ_p at point B when the load just reaches the value P_p.
- (c) Draw a load-displacement diagram with the load *P* as ordinate and the displacement δ_B of point *B* as abscissa.

Problem 2.11-1 A bar *AB* of length *L* and weight density γ hangs vertically under its own weight (see figure). The stress-strain relation for the material is given by the Ramberg-Osgood equation (Eq. 2-71):

$$\epsilon = \frac{\sigma}{E} + \frac{\sigma_0 \alpha}{E} \left(\frac{\sigma}{\sigma_0}\right)^m$$

Derive the following formula

$$\delta = \frac{\gamma L^2}{2E} + \frac{\sigma_0 \alpha L}{(m+1)E} \left(\frac{\gamma L}{\sigma_0}\right)^m$$

for the elongation of the bar.

