Shahshahani’s Work in
Dynamical Systems

Saeed Zaker:

§1. Introduction. Siavash Shahshahani began his mathematical career as a grad-
uate student in Berkeley in the mid 1960’s. It was the golden era of the theory
of smooth dynamical systems. Only a few years earlier, Smale had laid the mod-
ern foundations of this beautiful theory. His pioneering work prompted an army
of dynamicists, global analysts and topologists to study the dynamics of flows and
diffeomorphisms from a global point of view. Dynamical systems soon became the
talk of the town and Shahshahani, who has always had good taste in mathematics,
seized the opportunity and chose to work under the supervision of Smale.

Among the central themes of dynamics at the time were structural stability and
genericity in a given family of dynamical systems. The problem of structural stability
is to identify those elements in the family whose qualitative features remain intact
after a small but arbitrary perturbation. The problem of genericity, on the other
hand, is to pinpoint the dynamical properties shared by typical (in one sense or
another) elements in the family. Shahshahani’s first work [Sh1] addressed these
issues for the family of second order ordinary differential equations on a manifold;
these equations are global generalizations of Newton’s equation of motion in classical
mechanics. A particularly interesting subclass consists of the equations obtained
from a conservative system by adding a dissipation force. In [Sh2], he obtained
genericity results and proved a version of Morse inequalities for such dissipative
systems. His subsequent work included symplectic structures on integral manifolds
[Sh3], structural stability of the generalized van der Pol equation [Sh4], bounds
on the number of periodic solutions of the Abel equation [Sh6], as well as a major
contribution to mathematical biology [Sh5] for which I refer to Edalat’s paper in
this volume. In recent years, he has mainly been interested in holomorphic foliations
on complex manifolds and iterations of rational maps on the Riemann sphere.

§2. Three examples. In what follows, I will try to briefly describe three of
Shahshahani’s results, hoping to show the flavor of his work in dynamical systems.

e Generic properties of 2nd order ODE’s. Second order ordinary differential
equations (ODE’s) arise naturally as equations of motion in classical mechanics. A
second order ODE ¢ = f(q,q) on the real line R can be thought of as a first order
ODE on the tangent bundle TR 2= R? by introducing the velocity variable v = .
The first order ODE is then represented by the vector field

0 0
va_q + f(qav)%
on R?. One can generalize this idea to a smooth n-manifold M as follows. Let
qg=1(¢"...,q") and (¢,v) = (¢%,...,¢",v!,...,v") be local coordinates on M and
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the tangent bundle T'M, respectively. A second order ODE on M is a vector field
X on T'M which has the local form

.0 - 0
X(q,v) = Z’”Za_qi + Zfi(%v)ﬁ
i=1 i=1

for some smooth functions f;. More intrinsically, second order ODE’s on M can be
defined as vector fields X : TM — T?M which satisfy the condition Dmo X = id7as,
where 7 : TM — M is the canonical projection.

Now let M be a compact smooth manifold and S(M) be the space of all smooth
second order ODE’s on M equipped with the Whitney topology. The question arises
as to what simple dynamical properties a typical vector field in §(M) possesses. To
make sense of this, let us say that a subset § C S(M) is generic if it contains a
countable intersection of open dense sets in §(M). In particular, a generic set is
dense since it is not hard to show that §(M) is a Baire space.

Shahshahani answered the above question in the following theorem. Recall that a
singularity p of a vector field X with the flow {¢;} is hyperbolic if all the eigenvalues
of Dyi(p) are off the unit circle. The stable (resp. unstable) manifold of p is the
set of all ¢ such that ¢;(q) — p as t — +oo (resp. ¢ — —o0). Similarly, let v be a
periodic orbit of X, p € v, and f be the Poincaré first return map defined on some
local transversal to y at p, with f(p) = p. Then = is called hyperbolic if all the
eigenvalues of D f(p) are off the unit circle. The stable (resp. unstable) manifold of
~v is the set of all g such that ¢;(q) — v as t = +oo (resp. t = —o0).

Theorem [Shl]. There ezists a generic set G C S(M) such that if X € G, then

(i) all the singularities and periodic orbits of X are hyperbolic;
(ii) the stable and unstable manifolds of the singularities and periodic orbits of
X intersect transversally;
(iii) iof dim M > 1, no periodic orbit of X meets the zero section of TM.

Since the singularities of a second order ODE must belong to the zero section, the
theorem implies that generically there are only finitely many singular points. But
there may well be a countably infinite number of periodic orbits, even generically,
even when M is as simple as a circle [Sh1].

The above result is reminiscent of the Kupka-Smale Theorem according to which
a generic vector field on a compact manifold has only hyperbolic singularities and
periodic orbits, and their stable and unstable manifolds intersect transversally (com-
pare [K] and [Sm2]). Shahshahani’s proof uses the flow-box perturbation techniques
of Kupka and Smale, and is based on a fundamental lemma which asserts that if
X € 8(M) is approximated in a flow-box F by a sequence Y, of vector fields on
TM, then X can be approximated in F' by a sequence X,, € 8(M), with each X,
being smoothly conjugate in F' to Y,,.

e Dissipative systems. In this work, Shahshahani studied a special class of second
order ODE’s on manifolds which are the global analogues of dissipative systems in
classical mechanics. Consider a compact smooth n-manifold M with the tangent
bundle TM and the canonical projection 7 : TM — M. Fix a smooth Riemannian
metric g on M. Define the energy function E : TM — R by E = K + V. Here the
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kinetic energy K is defined by K(q,v) = g4(v,v), whereas the potential energy V is
any given smooth function which is constant along the fibers of 7. The Hamilton-
ian energy function E gives rise to a vector field Xg as follows. Denote by w* the
canonical symplectic form on the cotangent bundle T*M. Recall that w* depends
only on the smooth structure of M and if (¢',...,¢", p1,...,pn) is a local coordinate
system on 7*M, then

n
w' = dei A dgt.
i=1

The pull-back w of w* under the isomorphism 7'M =T M given by the metric g
is a symplectic form on 7'M, which of course depends on g. The vector field Xg on
TM is then determined by

dE:w(,XE)

It is easy to check that Dm o Xg = idras so that Xg is a second order ODE.

Dissipative systems are obtained by adding to such an Xg a dissipation force. By
definition, a vector field A on T'M is called a dissipation force if (i) A is “vertical”
in the sense that Dr o A = 0; (ii) g(A,VzK) < 0 away from the zero section
of TM. Here g is the induced Riemannian metric on TM with respect to which
V3K is vertical and V3V is horizontal. Roughly speaking, condition (i) means that
dissipation forces depend only on velocity, whereas (ii) means that they act against
the kinetic energy to slow down the system. Vector fields of the form Xg + A are
called dissipative systems; they are clearly second order ODE’s.

In [Sh2], Shahshahani determined the dynamical structure of a generic dissipative
system. To state his result, recall that the non-wandering set Qx of a vector field
X with the flow {¢'} is the set of all points ¢ such that for every neighborhood U
of g there exists arbitrarily large ¢ for which ¢! (U) NU # (. The vector field X is
said to be Q-stable if its orbit structure on the invariant set {2x persists under small
perturbations. More specifically, if for every vector field Y sufficiently close to X
there is an orbit-preserving homeomorphism h : Qx — Qy-.

Theorem [Sh2]. Fiz a Hamiltonian vector field Xg with a finite number of sin-
gularities, all non-degenerate. Then there exists an open and dense subset D of all
dissipation forces on TM such that if A € D and X = Xg + A, then

(i) X is Q-stable and Qx consists of a finite number of hyperbolic singularities;
(ii) the tangent bundle T M is the union of stable manifolds of the singularities
of X;
(iii) at every singularity of X the dimension of the stable manifold is at least as
large as the dimension of the unstable manifold.

In the special case of a vector field X of the form & = f(z) on M = S with
the standard Riemannian structure, a sharper version of the above theorem can be
proved (compare Theorem 2 in [Sh2]).

Another result obtained by Shahshahani was “Morse inequalities” for dissipative
systems. Given a vector field X on a manifold M, Morse inequalities compare the
Betti numbers of M to the number of stable manifolds of X of a given dimension.
Such inequalities were originally obtained by Morse in the case of gradient vector
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fields (see for example [M]). They were generalized by Smale to the vector fields
now commonly known as “Morse-Smale” [Sm1].

Shahshahani’s version of Morse inequalities can be stated as follows. With M
and a generic X = Xg 4+ A as above, let §; be the i-th Betti number of M and M;
be the number of stable manifolds of X of dimension ¢. Observe that by the above
theorem, M; =0 for:=0,...,n — 1.

Theorem [Sh2]. For each 0 < k < n, we have the inequality
k

k
S () M > (1B
=0 i=0
Moreover, the case k = n is an equality:
n n
D (=D My = Y (—1); = x(M).
i=0 i=0
e Periodic solutions of the Abel equation. The second half of Hilbert’s
16th problem asks for a bound N = N(d) on the number of limit cycles of a
polynomial vector field P(z,y)d/0x + Q(z,y) /0y in the plane in terms of d =
max{deg P,deg Q}. Despite numerous attempts and partial results, the problem
has not yet been settled in full generality. Even the fact that a polynomial vector
field in the plane has finitely many limit cycles was proved as recently as 1987 by
Ilyashenko.
An easier problem of the same nature is to estimate the number of periodic solu-
tions of the Abel differential equation

i =a2" 4+ ap_1 ()" T+ + a1 (t)z + ao(t),

where z € R, ¢ € [0,1], and the a; are smooth functions on [0, 1]. Here, by a periodic
solution z = z(t) is meant one which satisfies z(0) = z(1). Shahshahani addressed
this problem in the case n < 3. Using an elementary but ingenious perturbation
argument, he proved the following

Theorem [Sh6]|. The Abel equation has at most n periodic solutions if n < 3.

Here is the idea of his proof for the case n = 3 (the cases n = 1,2 are easy to
deal with). He first observes that simple (=multiplicity 1) periodic solutions persist
under a small perturbation of the equation. More generally, he shows that at most
k periodic solutions can bifurcate off a periodic solution of multiplicity k. He then
uses this to prove that an equation with a periodic solution of multiplicity > 1 has
precisely 3 periodic solutions. Finally, for an arbitrary equation he constructs a path
connecting it to an equation with at most 3 simple periodic solutions and applies a
continuity argument to deduce the result.

It comes as no surprise that his method could not yield similar estimates in
higher degrees. In fact, for n > 4 the Abel equation can have an arbitrary number of
periodic solutions (compare [L]). Even more dramatic is the fact that whenn > 4 the
return maps z(0) — z(1) of these equations are dense in the space of all orientation-
preserving homeomorphisms [P]. Very recently, Ilyashenko has found an upper
bound for the number of periodic solutions of the equation in terms of n and the
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size of the a; [I]. More specifically, he proves that if n > 4 and SUPyeo,1] la;(t)| < C
for every 0 < i < n — 1, then the equation has at most N = N(n,C) periodic
solutions, where

N < 8exp {(3c+ 2) exp (g(2o+ 3)") } .

This double exponential bound seems to be far from optimal, but it is the only
estimate available at the present time.

§3. Epilogue. Let me conclude with a few non-mathematical words. When
Shahshahani returned to Iran in the mid 1970’s, he discovered a new generation of
talented students eager to learn fresh ideas in mathematics beyond the standard and
(then) old-fashioned university program. He responded by redesigning the curricu-
lum, teaching exciting new courses, and coordinating interesting seminars. Through
him, many students learned for the first time about differential and algebraic topol-
ogy, dynamical systems, mathematical biology, and other beautiful subjects. His
love and knowledge of mathematics and all-around intellectual character made him
an enormously charismatic figure. In the eyes of the students, he personified what
being a professional mathematician is all about.

Shahshahani’s profound impact on the mathematics of Iran is an undeniable fact.
Those of us who have had the privilege of working with him would happily testify to
that. But do not take our word for it: the next generations of Iranian mathemati-
cians, for whom Shahshahani has made so many personal sacrifices, will convince
you.
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