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Introduction

In this note we are mainly concerned with existence and multiplicity results for semilinear
elliptic equations of the form

) —Au=a@ul tutg) i 0
u=~0 on 0N

in a bounded smooth domain Q of IR" (n > 3). Here, a(z) is a nonnegative continuous
function in Q, 0 < ¢ < 1, and we always assume that g(u) behaves like |u|P~1u for some
1 < p near zero, in the sense that g(u) = |u[P~1u + o(|u|P) at w = 0. Other conditions will
vary and consequently be indicated in the appropriate hypotheses.

Note that the nonlinearity h(u) = a(z)|u|?"'u + g(u) is, for u > 0, a combination
of convex and concave terms. This type of equations has been recently investigated by a
number of authors (see references [1], [2], [4]). In particular in [1] Ambrosetti, Brezis and
Cerami consider the case a(z) = A > 0;

@) —Au = Mu|?  u + g(u) in Q
u=0 on 0N

and prove:

Theorem 0.1 ([1]) There exists A > 0 such that for 0 < A < A, (2) has a positive and a
negative solution.

The proof of this simple result is based on the method of sub- and super-solutions and
requires no restriction on the growth of g at infinity. On the other hand, using minimax
arguments (in particular Mountain Pass Theorem) the authors establish the existence of
a second pair of fixed sign solutions for all 0 < A < A, under the assumption g(s) =
|s|P~1s + o(]s|P) at s =0 and s = 00, 1 < p < n + 2/n — 2. We recall that the first pair of
solutions are in fact local minimizers of Iy, the associated functional of (2), and are located
on negative level sets of it. More precisely, if uy > 0, u_ < 0 denote the first pair of solutions
and vy > 0, v_ < 0 the second pair, then

I)\(uﬂ:) < 07 I/\(U:I:) > 07

where

1 A
N = [ 3IVul* = 25l - G

and G(s) = [; g(t)dt. Later on Ambrosetti, Azorero and Peral [2] improved the results of

[1].
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Theorem 0.2 (/2]) If g(s) = |s[P~ts+o0(|s|P) at s = 0,s = o0, for somel < p < n+2/n-2,
then there exists A* > 0 such that, for 0 < A < A*, (2) has a third solution us,us # u+,
with I)\(U3) < 0.

In addition, in the same paper, the existence of another solution vs, with positive “energy”,
In(v3) > 0, is established under more restrictive assumptions on g (in particular, p <
n+ 2/n — 2). On the other hand when g is odd, Lusternik-Schnirelman theory for Z-
invariant functionals (see [3], [6]) is used in [1] to prove

Theorem 0.3 ([1]) Let g be odd, g(s) = |s|P~'s + o(|s|P) at s = 0,5 = oco.

(i) If 1 <p <n+2/n—2, then there exists A** > 0, such that for all X € (0,A**)
problem (2) has infinitely many solutions with I(u) < 0.

(i) If 1 <p<m+2/n—2, then for all X € (0,A**), (2) has infinitely many solutions
with I(u) > 0.

The proof of all these results, with the exception of Theorem 0.1, are based on variational
arguments and require the standard growth restriction [g(s)] < C(1+|s[?),p < 2£2. Indeed
solutions are obtained as critical points of I on the natural function space Hj (). Such
growth restrictions are then needed to ensure that the functional is well defined on H{ ().

Our main goal in this note is to prove a conjecture raised in [2] and show how the
presence of the “sublinear” term, A|u|?"'u, in fact enables one to use variational tools
to obtain multiplicity results like Theorems (0.2), (0.3) above, for solutions with negative
energy without any growth restriction on the “superlinear” term g. The main result of the
first section of this paper is the following :

Theorem 0.4 Let g(s) = |s|P"1s + o(|s|P) at s = 0, and assume g(s) is nondecreasing or
Lipschitz continuous in a neighborhood of zero.
(i) There exists A* > 0 such that for A € (0,A*), (2) has a third solution w with
I\(w) < 0. If, furthermore, g is C! in a neighborhood of zero, then w changes sign in .
(i) If, in addition, g(—s) = —g(s) for s near zero, then there exists A* > 0 such that,
for 0 < X < A*, (2) has infinitely many solutions with I (u) < 0.

The proof of this result is a combination of two ingredients. First we replace g with a
function § that is equal to g close to zero and has subcritical growth at infinity (recall that
p = n+2/n—2is the critical exponent from the viewpoint of Sobolev embedding). Theorems
(0.2) and (0.3) are then applied to get the respective multiplicity results for

3) { —Au=Au/T 'u+gu) in Q

u=20 on 00

Then we prove a priori Lo, estimates for solutions of (3) with negative energy, from which
it finally follows that, for A sufficiently small, the solutions of (3) with negative energy in
fact solve the original equation (2).

In section 2 we turn to the general form of equation (1) and allow a € C(£2). Since then,
we are unable to find suitable sub- and super-solutions for (1), we will use variational tools
and establish the existence of two pairs of positive (respectively, negative) solutions when
fQ a(m)ﬁ is sufficiently small. Finally, we will show how the techniques of section 1 can be
modified to prove multiplicity results, similar to those in section 1, for equation (1).

Now a few words about the notation. Throughout the paper we will make use of the
following notations. || - || denotes the norm in the space H (). |- |,,1 < p < oo, as usual,
denotes the norm in the space LP(Q). C,Cy, Cs, ... will be used to denote (possibly different)
constants whose exact values are immaterial.
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1 The case a(z) =\

Here we consider the semilinear equation

M —Au = Au|" u + g(u) in Q
u=0 on 00

We shall assume that g € C(IR;IR) satisfies
(1.5) g(s) = [s|* 25+ o(|s|* 1) at s =0, 2<a.

Note that formally, weak solutions of (I) in Hg () are critical points of the functional

|Vul? A
I = - q+1 _ Hl Q
A(u) / 5 qul|u| G(u)  uweHy(Q)
where G(s) = [ g(t)dt. However, our assumption does not allow the conclusion that Iy is

differentiable or even finite on Hj(Q). So we start by choosing 2 < 8 < 2* = 2% 3 < a,
and define a new function gy

|s|5’23 s< =)\

Y -A<s<—3%
(1.6) aa(s) =4 g(s) -3<s<3%

b 3<s<A

|s|?—2s A<s

Here, increasing functions ¢y € C([-A,—3];IR) and ¢ € C([3,A];IR) are chosen in a
suitable way so as to make g, continuous on IR. Note that if ¢ is nondecreasing in a
neighborhood of zero, then, for A sufficiently small, gy will be nondecreasing on IR. Similarly,
if g is odd close to zero, i.e.

(1.7 g9(s) = —g(—s) for|s|<d, 6>0

then for A small we can take ¥x(—s) = —@x(s) which makes g, a globally defined odd
function. Next we fix A > 0 small, and study the solutions of the semilinear equation

(1.8) u=0 on 0N

{ —Au = Nu|T u + ga(u) in 0
with negative “energy”. These are the critical points of the functional

(1.9) A = [ -

ul?*! — G (u)

where G (s) = [; ga(t)dt, with I\ (u) < 0.
Proposition 1.1 Let u € H () be a solution of (1.8) with I (u) < 0, then for X small
(1.10) [u(z)] < CXS  for all z € Q

where 0 < C and 1 < ( are independent of A.



126 Hossein Torabi Tehrani

Proof: From the definition of g, it readily follows that for A small

0< BG,\(s) < ga(s)s for |s| > A
0 < BGA(s) =B [ a(t)dt < 2812° <2800 for —A<s< A

Thus

(L.11) 0< BGr(s) < Ga(s)s + 27

(67

8 VseR

Since u is a solution of (1.8) and I(u) < 0, we have

(1.12) /|Vu|2 — A ul™ = ga(w)u =0
1 9 A e+l A
Hence, using (1.11) we get
~ 1 1
(g - 1)/G,\(U) < /\(m - 5)/|U|q+1 + M|

Consequently, taking (1.13) into account and using Sobolev inequality we have
/|Vu|2 < Cl/\/ |u|?t + CoNP

(1.14)

IN

clx(/ IVul2) 5 4+ Co)°

Next we define f : R - IR; f(t) =t — CiAtSE . Setting [ |Vu|* = a, equation (1.14)
writes as f(a) < CoAP. This implies that a = [|Vu? < C3A7,r > 1. In fact f is a C?
convex function and since ¢ < 1, f(¢) = 0 has the unique solution ty = (C /\)%. Now if
f(to+h) = C2)8, then f(to) + f'(to)h < f(to + h) = Co)?, which yields h < CoA8/ f!(to)-
Thus to + h < %)\5 + (C’l)\)l%z. So going back to equation (1.14) we infer

2 2
(1.15) /|Vu|2 < CiAT7 + CoN < CA” 1 =min(B, q) > 2
Thus, by Sobolev inequality,
(1.16) e < O([ [VuP)? < 033

Now since u solves (1.8) and g, has subcritical growth at infinity, we can use LP? elliptic
regularity theory to get L° bound on u. In fact we have
—Au = Mu|? tu + ga(u) = h(z)

so for v, =2*/(B - 1),

Al Allw(@)*r, + 192 (@)l
Alulg,, + [ulp-!
CAlul?, + C(\)z6-1)
CAN)EY 4+ C0(\)FED

r

CA\¢ ¢1 = min(1 + gq, E(ﬂ —1))>1

IN N IA

VANRVAY
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Thus, by Calderon-Zygmund inequality,

lulwzn < Cluly, + |hly)

< O\ ¢ =min(¢,7/2) > 1
After a finite number of iterations we get:
[u]oo < CXC for some ¢ > 1.
This completes the proof. d

A direct consequence of this result is that for A sufficiently small, any solution of (1.8)
with negative energy is in fact a solution of (I). Now using this device we can improve the
results of [1] and [2].

Theorem 1.1 Let g be a continuous function satisfying (1.5), i.e.
g(s) = |s|* s +o(ls|* ") ats=0, a>2

Assume further that g is either nondecreasing or Lipschitz continuous in a neighborhood of
zero. Then

(1) There exists \* > 0 such that, for 0 < A < X*, (I) has three solutions uy > 0,us < 0
and uz, with Ix(u;) < 0,4 =1,2,3. If, in addition, g is C* near zero, then uz changes sign
in Q.

(2) If g satisfies (1.7), that is

9(=s) =—g(s)  for|s|<é, §&>0,

then there exists \** > 0, such that for 0 < X\ < X**, (I) has infinitely many solutions with
I (u) < 0.

Proof : 1. The existence of a positive and a negative solution is essentially proved in [1].
Here we shall present a slightly different argument which makes it possible to get the first
two solutions under weaker conditions on g. In fact if e > 0 is the solution of —Au =1 in Q
with zero boundary condition, then by (1.5) it is clear that, for A small, u(z) = ﬁe(x) is
a super-solution, and u(x) = e¢; (), for € sufficiently small, is a sub-solution for (I), where
¢1 is the first eigenfunction of —A in  with Dirichlet boundary condition. We take € so
small that e, < u(z). Now we can apply Theorem 2.4 of [6] and obtain u;, a solution of
(I) as the solution of the following minimization problem:

1 A
min I (u) = Zfél}\}[/ §|VU|2 - q_'_—l|u|qul - G(u)

where
M = {u € H} : u(z) < u(z) <T(z),z € N}

Since g satisfies (1.5),
1
Li(egr) < € / §|V¢1|2 - q)\?eq“/(ﬁ‘frl + C1€” + o(e”) < 0 for € small,
so In(u1) < 0 and 0 < uy(z) < % for z € Q. Now if g is either increasing or Lipschitz

continuous near zero, we can apply strong maximum principle and conclude that:

u(z) <ui(z) <u(z) in
(1.17) L(uy—u) <0 on 90N
n@—u1) <0 on 0N
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Thus, u; is a local minimizer of I in C! topology and since 0 < u;(z) < %, a local minimizer
of I in C" topology as well. Now in view of Theorem 8 of [5], u1 is a local minimizer of I
in H} topology. Similarly, working with —u (respectively —u) as a sub- (respectively super-)
solution, we obtain a negative solution uz(z), Ix(u2) < 0, —% < us(z) < 0, which is another
local minimizer of Iy in H} topology. Now Theorem 2.1 part(i) of [2] applies and we find
a third solution uz of (1.8) with I(us) < 0, which by proposition 1, for A small, is in fact
a third solution of (I). If g is C! near zero, we may take jy € C'(IR,IR). Now we recall
Theorem 2.2 of [1] (note that the proof given there in fact works for arbitrary C* functions):

There exists A > 0 such that, for A small, problem (I) has at most one positive (negative)
solution uy (u_) such that |uy(u_)| < A.

Since u; > 0,us < 0 and fx(u,-) < 0 which, for A small, implies |u;(z)| < A/2 for z € Q,
the above result shows that us necessarily changes sign in €.

2. We take A < § and replace g by the odd function gy. Theorem 2.5 part 1 of [1] applies
and we get infinitely many solutions of (1.8) with Iy(u) < 0. An application of proposition
1 completes the proof. O

2 The general case

In this section we are concerned with the following equation

{ —Au = a(x)|u|?tu + g(u) in

(ID) u=20 on 0N}

where now a(x) is a nonnegative continuous function. Since a(z) is not a constant, we are
unable to find sub- and super-solutions for (IT), nevertheless we still manage to show the
existence of fixed sign solutions of (II) by using variational methods. In our first result we
shall assume that the superlinear term satisfies the standard growth restriction, although
we will remove this condition later. For u € HJ () we set

I(u) = / %|Vu|2 _ a(m)|q“|++11 e
with G(s) = [; g(t)dt. Let a* = max{a,0}.
Theorem 2.1 Let g be a continuous function satisfying (1.5), that is
g(s) = [s|* s +o(|s|* ") at s =0, a>2
Furthermore let
(2.19) lg(s)] < C(1 + |s|P) l<p<n+2/n-2
(2.20) g9(s)s >0 for all s

Then there exists 6 > 0 such that for |a| 2 <6

(1) Problem (II) has two solutions, wy > 0,ws < 0, with I(w) < 0.
(2) If, in addition, g satisfies

(2.21) 0 < BG(u) < g(u)u for |u| large, B > 2

then (II) has another pair of fized sign solutions vi > 0,vy < 0 with I(v;) >0,i=1,2.
(3) If g is odd, then (II) has infinitely many solutions with I(u) < 0.
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Proof : For u € H}(Q) we define:

+|g+1
I*(u) =/%|Vu|2—/a(:c)|1;ll Gt

—|g+1
I(u)z/%|Vu|2—/a(x)|1;Jf|_l _G(—ur)

Nonnegative (respectively, nonpositive) solutions of (II) correspond to critical points of It
(respectively, I7). Using (1.5), (2.19) and Holder inequality we have

IF(u) 2 1/2||ul® = Clal 2_[lu|"™*" — €||ul[* = C(e)l[ul|P**
So there exists d,7,a > 0 such that, for |a|1% < 4, we have
(2.22) I(u) >a>0 for ||ul| =r
1. Since g is continuous and has subcritical growth (see (2.19)), I and I~ are weakly
lower semi-continuous functionals. On the other hand if 0 < ¢; € C§°(Q) and 0 > ¢ €
C§° () then clearly
(2.23) I't(er) <0, I~ (ep2) <0 for 0 < € small

So the following minimization problems:

min I (u min I~ (u)
[lul|<r [lul|<r
are solvable and by (2.22) and (2.23)
I+(w1)zllffhif<1 I't(u) <0, lfwi ] <r
I (w2) = min I (u) <0, [|lwa]| <7
[lul[<r

Thus, w; and ws are, respectively, nonnegative and nonpositive solutions of (IT). Now since
—Aw; = a(z)|wy |7 1wy + g(wy) > 0, maximum principle implies that w; > 0. Similarly, we
have ws < 0.

2. We now use Mountain Pass Theorem (MPT) to prove the existence of v; and vs. In
fact it is clear that by (2.21), I'" satisfies (PS) condition and we can find a positive function
2T such that IT(2%) <0, [|z*|| > r. Now since w; is a local minimizer of IT we can apply
MPT to conclude that

— +
a=: ;Ielfr Orgasxl I"(v(t)) >a>0

is a critical value of IT, where
I = {y € C([0,1]; H) : 7(0) = w1,7(1) = z*,4(t) > 0,0 < ¢ < 1}

We take v; to be the corresponding critical point. Similarly we show the existence of v,
I(v2) > 0, working with I~.

3. If g is odd, then the functional I is even and we can follow the proof of Theorem
2.5-1 in [1] with minor changes. In fact set

Y={ACH;:0¢ Aue A= —uc A}
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and denote by v(A) the Zs-genus of A. Define
Apr={A€X; A compact ,A C B,,vy(A) >r}
where 7 is defined in (2.22). Then

e = 05 R T

are critical values of I. We need to show that b, , < 0 for all n € N. To see this for n € N
given, take n mutually disjoint balls By, Bs,...B, with B; C Q2,1 < i < n, and n functions
¢17¢27"'7¢n7 0< wz € C((J)O(Bz)a 1<i<n Let Hn = Span{¢l7¢27"'7¢n} then clearly
Sn,e = 0(H, N Be) € Ay, and for e sufficiently small, I(u) < —v < 0 for u € S, . This
completes the proof of the theorem. O

Next we show how by adopting the techniques used in section 1 we can prove the
existence of solutions with negative energy for (II) without growth restriction on g. Since
the argument is similar to part 1 we will be brief here. As in section 1 we assume that g
satisfies (1.5) and replace g with g where now A = |a| B For solutions of

—Au = a(x)|u|? u + gx(uw) in Q
(2.24) { u=0 on 0}
with I\(u) = [ 1|Vu[?> - a(z) |’f]‘::1 — G'\(u) < 0, we have the same a priori estimate as in

proposition 1.

Proposition 2.2 Let u € H}(Q) be a solution of (2.24) with Ix(u) < 0, then for X small,
lu(z)| < CXS  for allz € Q

where 0 < C and 1 < { are independent of A.

Proof : Following the proof of Proposition 1, we get

/|W|2 < Cl/a(w)|u|q+1+02/\6

(2.25) < Cilal o ([ [VuP)'F + X8
g+1 2 N
| < D o N
(2.26) < Cl/\(/|Vu| JE £ 0N since 12— < T
This implies:
(2.27) / VU <OXN 1 >2

But w is a solution of
—Au = a(@)ul' " u+ ja(u) = hiz)

So, for v; = 52:1, we have

1 _
< ([ @I @)+ fulf-?
< ([ a5 ([ ¥ B oxreo
2 N
(2.28) < CANully, +CN)?F=D  since noo A
oFt 1-q¢g  1—¢q
< CAull, + C(\)/2E=1
< OX¢ ¢ =min(1+r/2q,7/2(8 - 1)) > 1
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and finally
ulg, < lulwemn < Cluly, + |hly,)
< CON& G>1
where "y% = % - % Next we take v» = ﬂ:’Tll and repeat the above procedure. Note that
we only need to do this as long as v, < %, so estimate (2.28) is valid at each step, since
2 < N O
—¢ S 1=

q
With this at hand, we can now remove the growth restriction on g in Theorem 2 by
assuming a more stringent condition on a(x).

Theorem 2.3 Let g satisfy (1.5), that is
g(s) = [s|* s +o(|s|* ") at s =0, a>2,
and
g(s)s >0 for|s| <1, 1>0.

Then there exists § > 0, such that for |a|1l < 6,
—q

(1) Problem (II) has two solutions, wq > 0,ws < 0, with I(w) < 0.
(2) If g is odd in a neighborhood of zero, i.e.

g(=s) = —gls) forls|<v, v>0
then (II) has infinitely many solutions with I(u) < 0.

Proof : Follow the proof of Theorem 1. The suitable form of L, estimate is now provided
by Proposition 2. O
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