Some Results on the Spinor
L-function for the Group GSp(4)

Ramin Takloo-Bighash

To Siavash Shahshahani on the occasion of his 60th birthday

ABSTRACT. We collect some known and new results on the local Euler
factors of the spinor L-function of the similitude symplectic group of order
four using the integral of Novodvorsky.
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INTRODUCTION

In his article “Problems in the theory of automorphic forms”, Robert Langlands
set forward a series of conjectures that were to revolutionize the theory and practice
of modular forms. Langlands’ approach to the theory was via his theory of L-
functions. In this theory, the most important L-series were the ones that had an
Euler product, an infinite product of simple functions, one for each prime ideal of the
base field, including the primes “at infinity.” One also expects a functional equation
similar to the one satisfied by the Riemann Zeta function. In Langlands’ theory,
one starts with a global field F', a reductive algebraic group G defined over F', an
irreducible automorphic cuspidal representation 7 of G(Af ), and a finite dimensional
algebraic representation r of the dual of G, denoted by “G. Then 7 = ®,7,, where
for each place v, m, is a representation of G(F,). Also, there is a finite set of
places, including the places at infinity, such that for v ¢ S, the representation ,
is unramified. Next, by a process, essentially due to Satake, one associates to m,
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v ¢ S, a conjugacy class C, () in G. We define

1
L = .
VACTLEL Rl vy g i ey
For example, if FF = Q, G = G,,, 7 the trivial representation, and r the trivial
representation, then for v = p a prime number, we have

1
1—ps’

Ly(s,m,r) =

the p-Euler factor of the Riemann zeta function!
Langlands’ first conjecture, and in some sense the most basic one, asserts that it
is possible to extend the definition of L, to v € S, in such a way that if we set

L(S7 7T7 r) = H L'U(37 7T, r)’
v

then L is “nice.” Here “nice” means that L is meromorphic in the entire complex
plane with only a finite number of poles and satisfies the functional equation

L(s,m,r) = ¢e(s,m,r,)L(1 — s, 7, 7).

Here 7 is the contragradient of the finite dimensional complex representation 7.

In this generality, the conjecture is still open. There are, however, many in-
stances where it has been verified. For example, if G = GL(n) and r the standard
representation of “G = GL,(C), then the classical results of Godement, Tate, and
Jacquet, which predate the paper of Langlands, affirm the conjecture. In the works
of Godement-Jacquet, and Tate, the L-function is presented as an integral on some
adelic space, which in turn is an infinite product, the factors of which are indexed by
the places of the global field. For appropriate choices of the local data, each of these
local integrals gives the corresponding local Euler factor. In modern terminology,
this is the method of Integral Representations or the Rankin-Selberg Method. We
also note the powerful method of Langlands and Shahidi which has yielded many
interesting examples where the conjecture holds.

In this article, we concentrate on a special Rankin-Selberg Integral for the sym-
plectic similitude group of order four GSp(4) over a totally real field. The group
GSp(4) is important, both from a historical point of view and from the point of
view of applications. This group provides the natural group theoretic framework for
Siegel modular forms of genus two, and for that reason has immediate connection to
various fundamental problems in arithmetic geometry and number theory. Also in
a systematic development of the theory, it is necessary to have worked out various
non-trivial lower dimensional examples in details to provide the required empirical
data for the revelation of a universal vision.

This paper is organized as follows. Section One gives an overview of the zeta inte-
gral machine through an example from the classical work of Jacquet and Langlands
[14]. Our overview is heavily based on the exposition of [10]. The reader who is
familiar with classical modular forms is encouraged to consult Gelbart’s wonderful
monograph [9] in order to understand the relevance of the material presented here
to the classical theory. Section two contains the theory of Novodvorsky’s integral
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and the L-function represented by it. In this section, we have included the func-
tional equation, the sketch of unramified computations from [5], a review of the
computations at the bad primes from [20], and some thoughts on the archimedean
calculations. The archimedean theory described in this section is the main contri-
bution, if any, of this work. Here, we have introduced a global method in order to
perform the local computation at the real place for the generic (limit of) discrete se-
ries. Our idea is to utilize the global theta correspondence for the dual reductive pair
(GO(2,2),GSp(4)). Recently, Furusawa, Roberts, and Ralf Schmidt have applied
similar global methods involving the theta correspondence to other local problems.
We also note the work in progress of Miller and Schmidt on the real unramified prin-
cipal series. In this section, we have also included a possible arithmetic application
of our results to the work in progress of Furusawa and Shalika. Our exposition of
their research closely follows an unpublished manuscript by Furusawa.

In the preparation of this work, we have largely benefited from conversations
with Jefrey Adams, Masaaki Furusawa, Brooks Roberts, Freydoon Shahidi and most
importantly my graduate advisor Joseph A. Shalika under whose guidance the non-
archimedean computations of section two were prepared.

It is our utmost pleasure to dedicate this article to Professor Siavash Shahsha-
hani on the occasion of his 60th birthday. This author owes a great deal of the
development of his mathematical and intellectual character, including his passion
for analysis, to what he heard and learned in Professor Shahshahani’s classes and
lectures. We believe that because of Professor Shahshahani’s teachings the math-
ematical community of Iran is one long step closer to the realization of the dream
outlined in his article in the Memoirs of the 25" Mathematical Conference of Iran.

Notation. In this paper, the group GSp(4) over an arbitrary field K is the group of
all matrices g € GL4(K) that satisfy the following equation for some scalar v(g) € K:

tgJg = v(g)J,

where J = 1 . It is a standard fact that G = GSp(4) is a reductive
-1
group. The map (F*)3 — G, given by
(a,b,\) — diag(a,b,\b~", Aa™1),

gives a parameterization of a maximal torus 7' in G. Let x1, x2 and x3 be quasi-
characters of F*. We define the character x; ® x2 ® x3 of T by

(x1 ® X2 ® x3)(diag(a, b, Ab~ ", Aa™ 1)) = x1(a)x2(b)x3(A).

We have three standard parabolic subgroups: The Borel subgroup B, The Siegel
subgroup P, and the Klingen subgroup ) with the following Levi decompositions:

a 1 z 1 S
r
B ={ }

7

>

—_

=Y
— o~ 3

a ) 1 1
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P= {(g a’Tg—1> !

Here 7g is the transposed matrix with respect to the second diagonal, and finally

S
T

lg € GL(2)}.

[

o 1 z 1 r S
1 1 T
Q=1{| L |19 e csp@y.
-1
a detg 1 1

Over a local field, we will use the notation x;1 X x2xx3 for the parabolically induced
representation from the minimal parabolic subgroup, by the character x; ® x2 ® x3-
If © is a smooth representation of GL(2), and x a quasi-character of F'*, then
wxx (respectively xxm) is the parabolically induced representation from the Levi
subgroup of the Siegel (resp. Klingen) parabolic subgroup. We define a character of
the unipotent radical N(B) of the Borel subgroup by the following:

1 =z 1 r oS
1 1 ¢t r

6( 1 —z . ) = ¥(z +1).
1 1

We call an irreducible representation (IL, Vi;) of GSp(4) over a local field generic, if
there is a functional Ar; on Vi such that

An(II(n)v) = 6(n)v,

for allv € Vi and n € N(B). If such a functional exists, it is unique up to a constant
[19]. Freydoon Shahidi has given canonical constructions of these functionals in
[17] for representations induced from generic representations. We define Whittaker
functions on G x V1 by
W(H7 v, g) = )‘H(H(g)v)

When there is no danger of confusion, after fixing v and suppressing II, we write
W (g) instead of W(II, v, g). For a character ¥ of the unipotent radical of the Borel
subgroup, we denote by 7y v the twisted by ¥ Jacquet module of the representation
7. For any representation 7w, we will denote by w, the central character of m. We

will also use Shahidi’s notation for intertwining operators and local coefficients from
[17].

1. THE WORK OF JACQUET AND LANGLANDS

In this section, we examine the group GL(2). This section serves as motivation
for Section Two which contains the main results of the paper. Our exposition is
heavily based on [10], to the point of copying, especially pages 5-19. For the sake of
familiarity and simplicity, we work over Q.

Let G = GL(2). Suppose Y is a unitary character of A*. By a y-cusp form ¢ on
GL(2), we mean an L?(Z,G(Q)\G(A)) function satisfying
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/@\Aw((l f) g9)dz =0,

for almost all g € G(A). It is clear that if ¢ is a x-cusp form, and g € G(A), then
the function g.¢ on G(A) defined by

g-o(h) = ¢(hg),

is again a y-cusp form. This defines a representation of G(A) on the vector space of
x-cusp forms L2(x). It is a fundamental fact that L3(x) is a discrete direct sum of
irreducible subspaces, each of which appears with multiplicity one. An irreducible
representation 7 of GLs(A) which is realized as an irreducible subspace H; of L3(x)
is called a cuspidal automorphic representation.

Suppose 7 is an irreducible cuspidal automorphic representation of GLy(A), and
@ € H,;. We introduce a global zeta integral

) ze0= [ el(* el

If ¢ is “nice enough”, Z(y, s) defines an entire function in C. Also, the zeta function
Z(yp, s) satisfies a functional equation:

and

Z((pas) = Z(‘Pwal - S),

1 1), and " (g) = p(gw). Also

@) A (Y | e e O

with x the central character of .

The problem is to relate the function Z(y,s) to an automorphic L-function
L(s,m,r) for some representation r of “G = GLo(C). For this purpose, we start
by the Fourier expansion of ¢

6 o) = = wi(* ).

£eQx

@ wio = [ ot 7)o

where 1) is a non-trivial character of Q\A. It follows from (1) and (3) that

2 = [ w(* |t
AX 1
for Rs large enough.
Now we recall some of the properties of the Whittaker functions W;p . From now

on we suppress . We assume that ¢ is right K-finite. In this situation, W, is
rapidly decreasing at infinity and satisfies

) w1 1) 9 =i
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for all z € A. The space of all such W, provides the 1)-Whittaker model of 7. It is
known that such a model is unique ([14], or [19]), and it is equal to the restricted
tensor product of local Whittaker models W(mp,1,), where 7 = ®,m, and ¢ =
Hp 1p. In particular, we can assume that

(6) We(g) = HWp(gp),

where each W), € W(mp, 1,,) and for almost all finite p, W), is unramified, i.e. Wp(k) =
1 for k € K, = GLy(Zy).
Finally, we obtain for Rs large

(7) Z(p,s) = [[2(Wy, 9),

0 205 = [ (")l ava
QX ].
P
First, we collect some of the properties of the local zeta functions Z(W, s). The fun-
damental fact for p < oo is the following: There are a finite number of finite functions
c1,...,cn on QF, depending only on 7y, such that for every W € W(mp,p), there

are Schwartz-Bruhat functions ®,...,®x on Q, satisfying
u N
) wi(* )= e
1=

Here, a finite function is a function whose space of right translates by @; is finite
dimensional; finite functions on Q) are thus characters, integer powers of the valu-
ation function, or products and linear combinations thereof. Taking the asymptotic
expansion just mentioned for granted, we obtain from Tate’s thesis that the integral
defining Z(W, s) converges for Rs large (independent of s), and in the domain of
convergence is equal to a rational function of p~*. In particular, the integral has a
meromorphic continuation to all of C. Furthermore, the family of rational functions
{Z(W,s) |W € W(mp,1p)} admits a common denominator, i.e. a polynomial P such
that P(p~%)Z(W,s) € C[p~*,p®], for all W. Also, there exists a W* in W(mp,1p)
with the property that Z(W™*,s) = 1. The analogous result in the archimedean
situation is that there is a W* such that Z(W™*,s) has no poles or zeroes.

As in Tate’s thesis [22], we also need to establish the functional equation and
perform the local unramified computations. The functional equation asserts that
there exists a meromorphic function y(mp, 1, s) (rational function in p~* when p <
oo) such that

(10) Z(WY,1—s) =y(mp,p, s)Z(W, s).
Here W¥(g) = W(gw) and

2w = [ wi(* Dl @ae,
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with x, the central character of m,. The (non-trivial) proof of this equation follows
from the fact that the integrals Z and Z define functionals (depending on s) satisfy-
ing a certain invariance property. Next, one proves that the space of such functionals
is at most one dimensional, implying that Z and Z must be proportional. The factor
v is simply the factor of proportionality.

We recall 7, is called unramified when

mp = Ind(p1 ® p2),

with p11 and pg unramified characters of Q. We also suppose that WY is the unique
K,-invariant function in W(mp,1,). We also suppose that 1), is unramified. Then a
direct calculation, using the results of [6] for example, shows that

1
(1 = pr(wp)p=*) (1 — pa(wp)p—*)’
where w), is the local uniformizer at p. Next the conjugacy class in LG = GLy(C)
pi1(wp)

ZW0s) =

canonically associated with m, is t, = ( )> In particular, we have

MZ(wp
(11) ZWO,s) = Ly(s,m,r),

with 7 the standard two dimensional representation of GL2(C).

After this preparation, we can prove the conjecture of Langlands for L(s,m,r)
with r as above. For simplicity, we write L(s, ) instead of L(s,m,r). We start by
extending the definition of L,(s,n) to the ramified and archimedean places. We
observe that in equation (11), the right hand side is indeed the greatest common
denominator of the family of rational functions {Z(W, s)}. Since we have already
noted that such a g.c.d. exists, even when the given representation is not unramified,
we set

(12) Ly(s,m) =g.cd. {Z(W,s)},

when v < co. Also, when v = oo, we can choose an appropriate product of Tate’s
archimedean L-functions, denoted by Lo (s, m,7), such that the ratio

Z(W,s

Loo(s, )
is an entire function for all W € W(m,,,), and it is a nowhere vanishing function
for some choice of W.

With this extension, we now proceed to outline the proof. Let S be a set of places,

including the place at infinity, such that for v ¢ S, all the data is unramified. We
set

(14) Ls(s,m) = [ Lu(s,m).
vgS

For each “ramified” non-archimedean place p, we choose W), such that Z(W),s) = 1.
Also for the archimedean v, we choose W, such that Z(W,,s) is a non-vanishing
entire function e9). If we set W = [I, Wy, with W), = WIE) for p € S, we have

(15) Z((pas) = eg(s)LS(s’ﬂ-)a
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implying the holomorphicity of Lg. This immediately implies the continuation of L
to a meromorphic function with only a finite number of poles.

We finally turn to the functional equation of the completed L-function. Choosing
W), so that Z(W)p,s) = Ly(s,w), we have

L(s,m) = Z(yp, )

= Z~((pw, 1- S)
= ([ 2wy, 1-s)Ls(1 - 5,7)
peES
W“’,
H T p 13 3 ))L(l—s,fr)
H g4 Wp,¢p1a 7 S(K)/p’s))l}(l — 8, 7)
peES
H g4 ”pa¢1£’_ - 7S 7T))L(l —8,7)
pES
= (I (s, mp,95)) L(1 = 5,7),
pES
where (7, W, 8) L (s, )
Y(Tp, , S S, T
(s, mp,p) = I}/p(]; _ S,p;r) .

Hence, if we set
e(s,m) = H €(s, ﬂ-p"‘pp)a
peES
we have the functional equation

(16) L(s,w) = ¢(s,m)L(1 — s,7),
as anticipated by Langlands. One last note is that the function €(s, ) is a monomial
function of s. In particular, it has no poles or zeroes.

Remark 1.1. In equation (9), if ¢; = p;.0™, with y; a quasi-character, we have

7T) = H L(37 M’l)”

The L-functions appearing on the right hand side are Tate’s local L-factors for the
quasi-characters p;. This implies that in order to give an explicit calculation of
the local L-factors, we need to determine the finite functions ¢;. In [14], this is
established by a case by case analysis of representation types for m,, i.e. principal
series vs. special representations vs. supercuspidals.

2. THE SPINOR L-FUNCTION FOR GSP(4)

In this section, we examine the integral representation given by Novodvorsky [15]
for G = GSp(4). The details of the material in the following paragraphs appear in
[5], [20], and [21].
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2.1. The integral. Let ¢ be a cusp form on GSp(4,A), belonging to the space of
an irreducible cuspidal automorphic representation 7. Consider the integral

1z T4 Y
1 Y
——
(17) (:5) FX\AX (F\A)3(P( z 1 —f?2 1 X )

1/)(332)|y|s_% dz dzo dxy d*y.
fw= 1 , then

(18) 2(9073) :Z((pwal_s)a

where as before ¢*(g) = p(gw). Also a usual unfolding process, as described in [5],
shows that

Y
_ Y s—3 X
(19) 2o = [ [wo(| L |l iaay

1
Here the Whittaker function W, is given by
1 xz9 1 T3 T4
W(g)—/ w( ! b g)
(20) : (a1 L -z L
1 1

P(@1 + @) day dy s dz.

Equation (19) implies that, in order for Z(¢,s) to be non-zero, we need to assume
that W, is not identically equal to zero. A representation satisfying this condition is
called “generic.” Every representation of GL(2) is generic. On other groups, however,
there may exist non-generic cuspidal representations. In fact, those representations
of GSp(4) which correspond to holomorphic cuspidal Siegel modular forms are not
generic.

From this point on, we assume that all the representations of GSp(4), local or
global, which appear in the text are generic.

If ¢ is chosen correctly, the Whittaker function may be assumed to decompose
locally as W(g) = [[, Wy(gv), a product of local Whittaker functions. Hence, for
Rs large, we obtain

(21) Z(p,8) = [[2W,9),
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where

)
_3
(22) zwos) = [ [ w(l Y | et
FT)X v

T
1

As usual, we have a functional equation: There exists a meromorphic function
Y(7y, ¥y, ) (rational function in Nu™* when v < oo) such that

(23) Z(Wy,8) = YTy, P, $) Z(WE, 1 — ),

with w as above,

y

o4 _ Y -1 s—32 X

Z(WU’S)_/FUX /UWU( v 1 )xv W)lyl*™7 dzd™y,
1

and x, the central character of .

We also consider the unramified calculations. Suppose v is any non-archimedean
place of F' such that W), is right invariant by GSp(4,O,) and such that the largest
fractional ideal on which 1, is trivial is O. Then the Casselman-Shalika formula [6]
allows us to calculate the last integral (cf. [5]). The result is the following:

(24) Z(W,,s) = L(s, my, Spin).

Let us explain the notation. The connected L-group “G? is GSp(C) (cf. [4]). Let
LT be the maximal torus of elements of the form

a1
a9
t(a17025a3aa4) = s )

o7}

where aya4 = aga3. The fundamental dominant weights of the torus are A; and Ao,
where

Alt(ala 2,03, (){4) = oy,
and
-1
Xot(a, a2, a3, 04) = 103 .

The dimensions of the representation spaces associated with these dominant weights
are four and five, respectively. In our notation, Spin is the representation of GSp(4, C)
associated with the dominant weight A1, i.e. the standard representation of GSp(4, C)
on C*. The L-function L(s,w,Spin) is called the Spinor, or simply the Spin, L-
function of GSp(4).

Next step is to use the integral introduced above to extend the definition of
the Spinor L-function to ramified non-archimedean and archimedean places. Our
definition at these places would be analogous to equations (12) and (13) above.
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2.2. Non-Archimedean Theory. In this paragraph, we sketch the computation of
the local non-archimedean Euler factors of the Spin L-function given by the integral
representation of the previous paragraph. In order for this to make sense, we need
the following lemma:

Lemma 2.1 (Theorem 2.1 of [20]). Suppose II is a generic representation of GSp(4)
over a non-archimedean local field K, q order of the residue field. For each W €
WL, ), the function Z(W,s) is a rational function of g—%, and the ideal {Z(W, s)}
s principal.
Sketch of proof. For W € W(II, ), we set
Y
(25) zws = [ w([ ¥V |Jwrtew
K
1
The first step of the proof is to show that the vector space {Z(W,s)} is the same
as {Z(W, s)} (cf. Proposition 3.2 of [20]). Next, we use the asymptotic expansions
of the Whittaker functions along the torus to prove the existence of the g.c.d. for
the ideal {Z (W, s)}. Indeed, Proposition 3.5 of [20] (originally a theorem in [6])
states that there is a finite set of finite functions Sr, depending only on II, with the

following property: for any W € W(II, %), and ¢ € Sy, there is a Schwartz-Bruhat
function @,y on K such that

Yy
w(l Y |) = sewwew)yl®.

cEST

The lemma is now immediate. O
We have the following theorem:

Theorem 2.2. Suppose 11 is a generic representation of the group GSp(4) over a
non-archimedean local field K. Then
(1) IfII is supercuspidal, or is a sub-quotient of a representation induced from a
supercuspidal representation of the Klingen parabolic subgroup, then L(s,r,Spin) =
1.
(2) If m is a supercuspidal representation of GL(2) and x a quasi-character of
K>, and TI = xy is irreducible, we have

L(s,II,Spin) = L(s, x).L(s, x.wr).
(3) If x1, x2, and xs3 are quasi-characters of K*, and II = x1 X x2XXx3 i
irreducible, we have
L(s, 11, Spin) = L(s, x3)-L(s, x1x3)-L(s, x2x3)-L(s, x1X2X3)-
(4) When 11 is not irreducible, one can prove similar statements for the generic
subquotients of Il = wxx (resp. II = x1 X x2%Xx3) according to the classifi-

cation theorems of Sally-Tadic [16] and Shahidi [18] (cf. theorems 4.1 and
5.1 of [20]).
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Remark 2.3. Sally and Tadic [16] and Shahidi [18] have completed the classifica-
tion of representations supported in the Borel and Siegel parabolic subgroups. In
particular, they have determined for which representations the parabolic induction
is reducible. From their result, one can immediately establish a classification for all
the generic representations supported in the Borel or Siegel parabolic subgroups.

Sketch of proof. By the proof of the lemma, we need to determine the asymptotic
expansion of the Whittaker functions in each case. The argument consists of several
steps:

Step 1. Bound the size of Si. Fix ¢ € Sy, and define a functional A, on W(II, v)
by

(26) Ac(W) = @c,w (0).

If ¢,d € S, and ¢ # ¢, the two functionals A, and Ay are linearly independent.
Furthermore, the functionals A. belong to the dual of a certain twisted Jacquet
module Iy 5 (notation from [20], page 1095). Hence #Su = dimIly 5. Then one
uses an argument similar to those of [19], distribution theory on p-adic manifolds,
to bound the dimension of the Jacquet module. The result (proposition 3.9 of [20])
is that if IT is supercuspidal or supported in the Klingen parabolic subgroup (resp.
Siegel parabolic, resp. Borel parabolic), then #S = 0 (resp. < 2, resp. < 4). Note
that this already implies the first part of the theorem.

From this point on, we concentrate on the Siegel parabolic subgroup, the Borel
subgroup case being similar. We fix some notation. Suppose II = wxy, with 7
supercuspidal of GL(2). Let A (resp. A;) be the Whittaker functional of II (resp.
m) from [17]. It follows from the proof of the lemma 2.1 that, for f € II, there is a
positive number §(f), such that

)
3
(| ) =Y AdDewll?,
1 cEST
for |y| < 0(f). Here, A. is the obvious functional on the space of II.
Step 2. Uniformity. For f € Ind(m x x|PN K, K), and 7 € C, define f; on G by

f+(pk) = 8p(p) 37 ® x(p) £ (K).

It is clear that f; is a well-defined function on G, and that it belongs to the space
of a certain induced representation II,. The Uniformity Theorem (proposition 3.9
of [20]) asserts that one can take 6(f;) = d(f).

Step 3. Regular representations. This is the case where w; # 1. In this situation,
we have

(27) (| )n=

Ae(A(w, I (£) () x()y] 2 + CwILw™) " A (f(e))x(y)wn () ]yl
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1

for |y| < 6(f). Here w = 1 , A(w,II) is the intertwining integral

-1
-1
of [17], and C(wIl,w™") is the local coefficient of [17]. The proof of this identity
follows from the the above lemma 2.1, and the Multiplicity One Theorem [19]. The

idea is to find one term of the asymptotic expansion using the open cell; then apply
the long intertwining operator to find the other term.

Note that the identity of Step 3 also applies to reducible cases. For example, if
f € II is in the kernel of the intertwining operator A(w,II), the first term of the
right hand side vanishes.

Step 4. Irregular Representations. The idea is the following: we twist everything in
Step 3 by the complex number 7, so that the resulting representation I, is regular.
By Step 2, the identity still holds uniformly for all 7. By a theorem of Shahidi [17]
(essentially due to Casselman and Shalika [6]), we know that the left hand side of the
identity is an entire function of 7. This implies that the poles of the right hand side,
coming from the intertwining operator and the local coefficient, must cancel out.
Next, we let 7 — 0. An easy argument (I'Hospital’s rule!) shows the appearance of

X(y)\y|% and X(y)\y|% log, |y| in the asymptotic expansion.
This finishes the sketch of proof of the theorem. O

2.3. Archimedean Theory. In this section, we collect some results on the com-

putation of the L-factor at the real place. For reasons that will soon be clear, it

will be convenient to work with a different realization of the group GSp(4), and

also a different formulation of Novodvorsky’s integral. Here, in the definition of the
1

similitude group from the Notation, we take J = . Also, if ¢

-1

-1
is a cusp form on GSp(4,A), belonging to the space of an irreducible automorphic
cuspidal representation 7, we set

1
1
(28) o) = /FX\AX /(F\A)3 (p(

—_ e 2

v
w 1 )
1 Y

¢('u)\y|57% du dv dw d™y.

This is obtained from the integral of the previous section after a simple change of
coordinates. We also note that in this new form, the integral is nothing but a split
Bessel model ([7]).

We now recall the definition of the group under consideration [11]. Let V' be the
vector space Mo, of the two by two matrices, equipped with the quadratic form det.
Let (,) be the associated non-degenerate inner product, and H = GO(V, (,)) be the
group of orthogonal similitudes of V, (,). The group GL(2) x GL(2) has a natural
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involution ¢ defined by t(g1,g2) = (*b,',!b; '), where the superscript ¢ stands for
the transposition. Let H = (GL(2) x GL(2))x < t > be the semi-direct product
of GL(2) x GL(2) with the group of order two generated by ¢. There is an exact
sequence

(29) 1 —Gn — H—H—1,

where the homomorphism p : H — H is defined by p(g1,92)(v) = grvgy 1 and
p(t)v = tu, for all gi,g2 € GL(2) and v € V. Also, G,, — H is the natural map
2+ (2,2) x 1. Tt follows that the image of the subgroup GL(2) x GL(2) C H under
p is the connected component of the identity of H.

Suppose 71 and mo are two irreducible cuspidal automorphic representations of
GLy(A) satisfying

Wry-Wry, = 1, and m; # 7.

Then for ¢1 and @9 cusp forms in the spaces of m; and me, respectively, one can
think of

@(h1, ha) = p1(h1)p2(h2)

as a cusp form on the algebraic group p(H).

Next, let f be a Schwartz-Bruhat function on the space Mayx2(A) X Myyo(A). By
a process described in [11] and [24], one associates to the couple (g, f) a generic
cusp form on the group GSp(4), denoted by 6(f;¢). Here, in order to stress the
dependence on ¢; and @3, we will use the notation 6¢(¢1, p2). We then set

(30) Z(p1, 02, f38) = Z(05 (01, ¥2), 8)-

We have our first result as follows.

Theorem 2.4. We have

_1(1 0 _1(0 0
Z(p1, 02 f,5) / f(hl( )h,h ( )h)
b (DY (1) L\oo/™™ (0 1)™
(/ (03 et
F\AX

(b ) )b~ S+deb) dhy dhs,
F\AX

with subgroups p(G1) and p(D) of p(H ) defined by
G1 = {(h1, h2)| det hy = det ha},

D=1((" 4) (% p)las et

The proof of this theorem is a standard exercise in the theory of the oscillator
representation (cf. for example [12], proof of lemma 5.)

It follows from the functional equation of the Jacquet-Langlands Zeta function
and the Fourier-Whittaker expansion of the cusp form o that

and
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Corollary 2.5. We have
Z((pla ¥2, fa S) =

/ f(h! ((1) 8) w™ how, byt (g (1)> w™ how)
p(D")(A\p(G1)(4)

a _1
(/A le(( 1) h)lal* ™% d%a)

b _1 _
( /A ) WW(( 1) how)|B*~ 2wy} (b) de) dhy dhy,
1
where w = (_1 ), and

o =(((* 5)-(7 J)1apetn)

Next, if f = ®yfy, Wy, = ®,W{, then we obtain
Z(p1,00,f,5) = [ [ ZW,, W5, fu, 8),
v

with the appropriate local zeta functions. The local zeta function introduced here
satisfy local functional equations similar to the ones considered before. Also, if all
the data is unramified, one can easily perform the local computation.

We now consider the local archimedean computations. Suppose v is a real archimedean
place, and Wy, W5 in the spaces of w1 and o, respectively, then we can prove the
following result:

Theorem 2.6. For every Schwartz- Bruhat function f, as above, the complezx func-
tion Z(WL, W2, f,,s) has an analytic continuation to a meromorphic function on
the complex plane. Furthermore, the ratio

Z(Wy, W5, fus5)
L(Saﬂﬂl})L(l - 8,71'3)
has an analytic continuation to an entire function. Also, there is a choice of the
data in such a way that the resulting entire function is nowhere vanishing.

(31)

The idea of the proof is the same as that of the proof of Theorem 5.15 of [14].

The most interesting case in the above analysis is when the representations Y
and 7§ are in the discrete series, and the data W, WJ, and f are K-finite. In this
situation, one can explicitly calculate the ratio (31) in the terms of hypergeometric
functions and gamma functions. Here, the main idea is to use a two-variable version
of the zeta function introduced above. There is a description of the discrete series
in terms of the Weil representation (paragraph 1, [14]). The final results are indeed
given in terms of Meijer’s G-function, in which the variable s appears in the param-
eters, not the argument. The particular G-function which appears in this work is a
finite linear combination of functions of the form

I'(s+ A)2F3(s+ A,B;C,D,E; F)

for various values of the parameters A,..., F.
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2.4. A possible application. In [2], Bocherer has proclaimed the following con-
jecture:

Conjecture 2.7. Let ® be a holomorphic cuspidal Siegel eigenform of degree two
and weight k with respect to Spy(Z). Let

o(2) = a(T,®) exp(2rv/—1tr(TZ))

>0

be its Fourier expansion. For a fundamental discriminant —D, i.e. a discriminant
of an imaginary quadratic field Q(v/—D), let

a(T,®
(T det(1)=2}/~

where ~ denotes the equivalence relation defined by Ty ~ Ty when Ty =t yIyy for
some v € SLy(Z) and e(T) = #{vy € SLy(Z) |'yTy = T}.

Then there exists a constant Cg which depends only on ® such that

1 _
L(3,ms ® xp) = Ca.D™**' - |Bp(®),

where me s the automorphic representation of GSps(Aqg) associated with ®, xp
is the quadratic character of A& associated with Q(v/—D) and the left hand side
denotes the central critical value of the quadratic twist by xp of the degree four
Spinor L-function for ng.

Bocherer proved this assertion in the cases of the Klingen Eisenstein series and
the Saito-Kurokawa lifting in [2]. Later he and Schulze-Pillot proved this in the case
of the Yoshida lifting in [3]. More recently Masaaki Furusawa and Joseph Shalika
have started investigating this conjecture from a different angle. Their approach
to the problem is to generalize Hervé Jacquet’s relative trace formula for GL(2) to
GSp(4). Jacquet has used his GL(2) relative trace formula in [13] to give another
proof for an important theorem of Waldspurger [23]. Bocherer’s conjecture provides
a natural generalization of this theorem for Siegel modular forms.

From Furusawa-Shalika’s conjectural relative trace formula, one should be able to
draw a conclusion similar to the one in [13], namely:

Assertion 2.8. For a globally generic cuspidal automorphic representation of GSpy(Ar)
with the trivial central character, E a quadratic extension of the base number field
F, and xg, the quadratic character of Ay corresponding to E, we have:

(32) L(3:m) L5 7 ® x6) 0

if and only if there exists a triple (D, np, ¥ p), where D is a central simple quaternion
algebra over F containing E, wp is a cuspidal automorphic representation of Gp,
the quaternion similitude unitary group of degree two over D, which corresponds to
7 in the functorial sense, and Vp is a cusp form in the space of mp such that

(33) Up(r)r(r)dr #0.

/Az); Rp(F)\Rp(Ar)
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Here Ry denotes the Bessel subgroup of Gp and 7 is a certain character of Rp(Ar)
(cf. [8] for precise definitions).

Moreover, the detailed analysis should yield an identity that expresses the special
value (32) as the square norm of one of the period integrals (33) multiplied by
a positive constant C, which itself depends only on 7 and not on the quadratic
extension F. Also a simple explicit formula for C;, given essentially as a ratio of
Petersson inner products, is expected. It is believed that since the expected formula
for C; involves the Petersson inner product of certain vectors in the Whittaker model
of the representation 7 , the proof of Bocherer’s conjecture in general is out of the
reach of classical methods.

The special L-values considered above appear in Furusawa-Shalika’s relative trace
formula as Novodvorsky’s integral. For this reason, in order to prove the conjecture
of Bocherer, one needs precise information about the local behavior of Novodvorsky’s
integrals at all the places of the number field F', including the ramified places and
the places at infinity.

2.5. Open problems. Below we list two problems directly related to the subject
matter of this work.

2.5.1. Comparison with the Langlands-Shahidi Method. It is a natural question to
determine whether the local L-factors given by Novodvorsky’s integral are the same
as the ones given by the Langlands-Shahidi method (see page 116 of [10]). The
ambient group to consider is the group GSpiny which has a parabolic subgroup
with Levi factor isomorphic to GSpins x GLi. It is well-known that GSpins is
isomorphic to GSp(4). Then we can use the results of [1] at least for the cases
where the given representations are tempered. We hope to address this problem in
a subsequent joint work with Mahdi Asgari.

2.5.2. Test Vectors. In [20], we have determined the local L-function given by Novod-
vorsky’s integral. It is easy to see that this local L-factor is actually the value of the
integral at a distinguished vector in the space of the representation. For trace for-
mula applications, it is necessary to have some information about this distinguished
vector. This is still an open problem which we would like to address in a subsequent

paper.
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