HOMOGENIZATION FOR PARTIAL DIFFERENTIAL EQUATIONS
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Homogenization.

The Hamilton-Jacobi equation
(1.1) us + H(z,u;) =0
and its viscous cousin
(1.2) ug + H(z,uy) = alu, a>0,

are often used to model the formation of crystals. When there is impurity or the lack of
experimental data, we may assume that H is random. If such randomness is stochastically
stationary and ergodic, then in macroscopic coordinates the PDE (1) or (2) simplifies to a
homogenized Hamilton-Jacobi equation. Indeed, if z and ¢t are macroscopic variables and

u(z,t) = eu(Z,t), then u satisfies
(1.3) ug + H <£,u;> = eaAu .
€

When H is stationary, the function H (%,p) is highly oscillatory in z-variable for small e.
The huge fluctuation in H results in the convergence of u¢ to a function @ that now solves
a Hamilton-Jacobi equation of the form

(1.4) g + Ho (i) =0,
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where H, is known as the effective Hamiltonian of the equation (1.2).
The simplest nontrivial randomness we may consider for H is when w is selected uniformly

from the unit cube [0, 1]¢ and
H(xapa LU) = HO(:E + wap)

for a fixed Hamiltonian Hy(z,p) that is -periodic of period one; Hy(z + e;,p) = H(z,p)
for each j where e; denotes the unit vector in the j-th direction. In this case, the role of the

randomness is rather artificial and we may simply study
€ €z € €
(1.5) ug + Hp (—, um) = ealAu
€

for a fixed (nonrandom) Hamiltonian Hy that is periodic in z-variable. The convergence of
u® to 4 in the periodic case was established by Lions et al [LPV] when o = 0. Later Evans
[E] treats the case a > 0. In both [LPV] and [E], the proof of convergence follows from the

solvability of the auxiliary equation
(1.6) Ho(z,p+ wg) = A+ cAw

where p € R?, X is a constant and w : R? — R is a periodic function. It turns out that for
every p € R?, there exists a unique constant A for which (1.6) has a periodic solution w. In
fact the unique constant X is nothing other than H, (p). To see this, observe that if w solves
(1.6), then

(1.7) u(z,t) =w(r)+p-z—tA
solves (1.5). Hence

(1.8) us (2, 1) :ew(f) tpez—tA
converges to

(1.9) u(z, t)=p-z —1tX.

But such a function % solves (1.4) if and only if A = H,(p).
We now turn our attention to the nonperiodic case. Consider a Hamiltonian H(z,p) =

H(z,p,w) that is stationary and ergodic with respect to z. As a concrete example, assume
(1.10) H(z,p,w) = 3lp|> + w(z) ,

where w is chosen randomly from the space of continuous functions Q = C(R?, R). Here we

have a probability measure P on €2 such that

(1.11) [t = [ £@)Paw)
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for every x, where

(1.12) (r2w) (y) = w(z +y)

is the shift operator. We also assume that P is ergodic;

' 1 L L
(1.13) EETOOW/_e.../_ef(Tww)dw:/fdP.

As for (1.6), we now need to solve
(1.14) H(z,vg,w) = A+ aAv
where v satisfies
(1.15) v(z) =v(z,w) =2 -p+ o(z|)

as |x| — +00. Note that this is consistent with what we had in the periodic case because if
we set v(z) = w(z) + z - p with w a solution of (1.6), then v(z) =z -p+ O(1). When a =0
and H is given by (1.10), then it is not hard to see that (1.14) cannot be solved for every
w € Q and every p € R%. If H is convex in p, then we can use control theory to represent u°

by a variational formula:

(1.16) u®(z,t,w) = inf {g(y) + €S <E,é,y,w)} ,
y € € €

t
(1.17) S(w,t,y,w) = inf { / L&, € w)db | £(0)=y, &(t) =z, € Lipschitz} ,
0

where L(z,q,w) is the convex conjugate of H(z,p,w) in the p-variable.
In Rezakhanlou-Tarver [RT] and Souganidis [So], (1.16) was used to reduce the conver-
gence of u¢ to the convergence of S¢(z,y,t,w) = S(f, E, 4 w). Using a subadditive ergodic

theorem , we obtain

e s (r—y
(1.18) E%S (z,y,t,w) = tL ( ; >
for some deterministic convex function L. In fact (1.16) and (1.18) can be used to show that
if
u®(z,0,w) = g(z) ,

then

(1.19) lim ' (2, £,w) :inf{g(y)—i—l_, <m—y)}



with probability one. By the celebrated Hopf-Lax-Oleinik formula, the right-hand side of
(1.19) is the unique solution of (1.4) with the initial condition @(x,0) = g(z), where Hy is
the convex conjugate of L.

We next study (1.2) when o > 0 and H is stationary and ergodic in the z-variable.
Without loss of generality, assume o = % It turns out that if H is of the form (1.10) then
the convergence of u¢ can be recast as a large deviation principle for a Brownian motion in
random media. More precisely, let 3(t) denote a Brownian motion and let EY denote the

expectation with respect to 8. Then by the Feymann-Kac formula,

(1.20) (2,1, w) = —clog E [exp (e_lg ((E)) 4 /0 w(ﬂ(@))d@)]

In the context of probability theory, the convergence of u¢ to u is equivalent to a large
deviation principle for a Brownian motion S in a random media w with a rate function
I(u) = L(u) — inf L. In this context, the convergence of u¢ was established by Sznitman.
See Sznitman [Sz] where such a large deviation principle is thoroughly addressed.

If H is not of the form of (1.10) the large deviation interpretation and formula (1.20) is

no longer available and the question of the convergence of 4 remains open.

Problem 1. When « > 0, show that u¢® — # for a u that solves a Hamilton-

Jacobi equation.

Central Limit Theorem.

As we mentioned in the previous section, the graph of the function u(z,t,w) may be used
to model the boundary of a crystal that is evolving with time. The limit @(z,t) gives us
a macroscopic description of the boundary surface. Microscopically though, the boundary
surface is rough and fluctuates about the macroscopic solution. A central limit theorem is
established in some cases when o = 0. The method of Rezakhanlou [R] applies to those cases
for which (1.14) has a nice solution. More precisely, imagine that there exists a continuous

(random) function v(x,p) such that
(2.1) H(z,v;) = H(p) ,

and the process

1 T
(2.2) %(GU(?P) —z-p)

converges to a continuous process B(z,p). In other words,

(2.3) v¢(z,p) = - p+ Ve Bz, p) + o(Ve) .
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It is shown in [R] that if (2.3) is true, then

(2.4) us(z,t) = u(z,t) + Ve Z(x,t) + o(Ve) ,

where the random process Z(x,t) is given by

(25) Z(.t) = inf {Bla.pe.y.t) - Bly.p(r.0.1)}

where

p(z,y,t) = VL (xt;y>

and I(z,t) is the set of y at which the infimum in (1.19) is attained.

There are several classes of examples for which the condition (2.3) can be readily verified.

Example 2.1 Suppose H : R — R is a given convex function and H(z,p,w) = H (ﬁ)

Then we may choose

v(z,p) = p/: w(y)dy -

Now (2.3) is a central limit theorem for the process fO‘T w. More precisely, if we assume

¢ / w)dy = 7+ Ve B(@) + o(ve)

then B(z,p)=pB(z) and

Z(z,t) = inf {L(xzy) (B(w)—B(y))}.

y€EI(z,t)

Example 2.2 Suppose H(z,p) = 1p® + w(z) and d = 1. Let E denote the expectation

with respect to the randomness w and assume that supw = 0 with probability one. Set

@A) =2E/X—w(0) .

The function ¢ is increasing and we write ¢! for its inverse. We then define

—p~H(—p) if p<—p(0),
H(p)=14 0 if —¢(0) <p<ep0),
o' (p) if p>—¢(0) .

If p ¢ (—¢(0), ¢(0)), we may choose

o(z.p) = { 2 [y VH(p) —w(y)dy if p>¢(0),
’ —2 [ VH@p) —w(y)dy if p<—(0).
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It is shown in [R] that if

(2.6) lim / W _ oo

with probability one, then (2.4) is valid provided that we assume (2.3) for p € (—¢(0), ¢(0))
only.

Problem 2. Establish a central limit theorem when H is given by (1.10) and
d> 1.

This problem is significantly harder than the one-dimensional case. This is because (1.14)
can not be solved explicitly , and even if we can prove the existence of the process v(z, p)

in some cases, it is not clear at all that (2.3) is any easier that (2.4).
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