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Abstract

One can think of an /-adic Galois representation attached to an elliptic
curve over (Q, as an action of the Galois group over the £-adic completion of the
fundamental group of that elliptic curve. We use this idea to attach Galois rep-
resentations to curves over QQ of higher genus. Then, we suggest some techniques
of Galois representation theory, fit to study these new representations.

1 Introduction

Given an elliptic curve E over Q and fixing a prime ¢, Tate associated a representa-
tion

R Gal(@/@) — GLy(Zy)

by taking the inverse limit over n of the groups of £"-torsion points of E as Galois
modules. On the other hand, one can think of the ¢"-torsion points of £ as the
Galois group of the function field extension associated to the multiplication map
x{" : E — E. Since every Galois etale covering of an elliptic curve is again an
elliptic curve, we can take a limit over all Galois etale covers E' — FE of degree £"
for some n, and obtain the same Galois module structure on Z, x Z; as part of the
algebraic fundamental group of E.

For an arbitrary curve X the algebraic fundamental group 7%(X) is defined by
Grothendieck as lim Gal(K'/K) where K is the function field of X and K’ runs over
all Galois extensions of K such that the corresponding curve X’ is etale over X. For
example, w(lllg(]P’l) =1 and for every elliptic curve E we have

w9(E) =[] Z¢ x Ze.

Grothendieck proved that, for a curve X of genus g, the algebraic fundamental
group of X is isomorphic to the completion of the ordinary topological fundam_ental
group of X over C [Gr]. If X is defined over Q we can induce an action of Gal(Q/Q)

on 74 (X).
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One can define the £-adic algebraic fundamental group thlfg (X) as the limit
lim Gal(K'/K)

where K is the function field of X and K’ runs over all degree £" Galois extensions
of K such that the corresponding curve X' is etale over X. The group W?lg (X)

is isomorphic to the /-adic completion of 7r§°p (X). If X is defined over Q one can
associate an f-adic Galois representation to X which is a direct summand of the
above mentioned representation

pe : Gal(@/Q) — Aut(r?(X).

The Frattini subgroup ®(G) of the pro-£ group G = W'lllg(X ) is fixed by each
automorphism [Ri-Za]. Therefore we get a representation

pe: Gal(Q/Q) — Aut(G/B(G)).

Since ®(G) = GP[G, G] we can think of G/®(G) as a finite dimensional vector space
over the field F, with p elements [Ri-Za]. This way we have recovered the mod-p
Galois representation associated to X via Tate module.

The classical approach to definition of an £-adic Galois representation is to con-
sider the action of Galois group on the Tate module associated to the Jacobian
variety Jac(X) as above. This representation can be reconstructed from the one
we introduced above by abelianization. But we loose lots of information during this
process. We believe the structure of fundamental group can help us to understand
the Galois action better.

This research was partially supported by Sharif University of Technology (SUT).

2 The fundamental group revisited

The fundamental group plays a fundamental role in geometry. Hempel in 1976
proved that Poincaré conjecture holds iff there exists a unique epimorphism

P (X) — F(g) x F(g)

up to automorphisms of 7:””(X) and automorphisms of the components F(g) which
are free groups with g generators [He]. Existence of such an epimorphism is evident
from the presentation

g
miP(X) = (a1, ..., ag, by, ey b | [[ai, B3] = 1).
=1

Having this presentation, one can show that the fundamental group is a torsion-
free group with trivial center. We also have access on a necessary and sufficient
condition for a one-relator group to be isomorphic to the fundamental group [Co-
Zi).
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For a free group F, we say that two surjective maps @1, @9 : m.P(X) — F are
equivalent if there exist an automorphism of 7r§o” (X) and an automorphism of F'
which take @) to g, i.e. there exists a € Aut(r'”(X)) and 8 € Aut(F) such that

the following diagram is commutative

©1: wioP(X) — F
Oéti 1B
09 : 7r10p(X) — F

We say that @1 and 9 are strictly equivalent if there exist an automorphism «
of 7'(X) such that @y = ¢ o a. Zieschang in 1964 proved that if rank of F is
less than or equal to g there exists only one equivalence class of surjective maps
7% (X) — F [Zi]. With the same assumption, Kurchanov and Grigorchuk in 1989
proved that there exists only one strict equivalence class of such surjective maps
[Ku-Gr]. Existence of such a surjection is an easy consequence of the presentation of
the fundamental group. Nielsen in 1927 proved that every automorphism of 7r§°p (X)
is induced by an automorphism of the corresponding free group which preserves the
relation R [Ni].

Suppose Hy and H; are subgroups of (ai, ..., ag, b1, ..., bg| [T7_, [ai, b;] = 1) which
are generated by ai,...,ay and by, .., by respectively. The subgroups L* and L~
defined as such

L ={p € Aut(r*’(X)) : o(Ho) = Ho}
Lt = {p € Aut(ri™ (X)) : p(Hy) = H1}

are conjugate in Aut(r”(X)). The group Aut(m'’(X)) is generated by L~ and
L+,

Every automorphism of 7r§0p (X) induces an automorphism of the abelian group
TP (X) /[xP (X ), 7' (X)] whose matrix coordinatizes a representation

p: Aut(ni (X)) — Spay(Z)

Here Spoy(Z) is the group of matrices S of order 2g such that SJS* = £J where

— 0 Ig
=(50)

The representation p takes elements of L™ to lower triangular matrices

(5 2)

and elements of L™ go to upper triangular matrices

(6 ¢)
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3 The completion of fundamental group

Providing information about the completed fundamental group is the key to a bet-
ter understanding of the Galois representation. Let G denote the pro-p comple-
tion of the fundamental group. Taking pro-p completions from the surjective maps
TP (X) — F(g) x F(g) and (X)) — F(2g) one gets surjections from G to the
pro-p completions F(g), x F(g), and F(2g),. Also, every automorphism of 7/ (X)
induces an automorphism of G. One can ask if the analogue of the Poincaré conjec-
ture is true here. More precisely, one can ask if there is only one strict equivalence
class of surjections
G — F(g)p x F(9)p

The representation p : Aut(wi” (X)) — Spay(Z) induces a map
p: Aut(G) — Spag(Z)p
which after combining with the natural surjection
Spag(Z)p — Sp2g(Zy)
induces a representation
px : Aut(G) — Spay(Z).

If we combine p with the Galois action on ﬂ'?l‘q (X)) one has associated a p-adic Galois
representation to the algebraic curve X:

pp : Gal (@/ Q) — Spag(Zy).

This is the same as the Galois representation associated to the Tate module of the
Jacobian variety of X.

4 The Galois action on 7%(X)

The outer automorphism group of w'lllg (X) as a quotient of Aut(w‘flg

representation from the Galois group

(X)) accepts a

Py Gal(Q/Q) — Aut({" (X)) — Out(r'¥ (X))

Mochizuki proved that if X and X’ are curves over Q of genus greater than or equal
to 2, the map

TIsomg(X, X") — Out gy g q) (Out(ni™ (X)), Out(ny" (X))

is a one-to-one correspondence, where Out, ol(T/Q) denotes Galois equivariant iso-
morphisms between the two groups [Mo]. In particular, the Galois representation
on Out(7™9(X)) completely determines the curve X over Q.
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The representation 5 breaks through Out(r*¢(X)) because inner automorphisms

are neutral when reduced to abelianization of a group
P+ Aut(r}"(X)) — Out(n}"(X)) —> Spag(Z)y.

Thus for each prime p one can associate a p-adic representation to Out(ﬂ'flg (X)) by
considering the pro-p part of the outer automorphism group

px : Out(r (X)) — Spag(Zy)-
and therefore the Galois representation
pp : Gal(Q/Q) — Spay(Zy)

could be associated to the Galois action on Out(7™9(X)). This shows that the
language of outer automorphisms is an appropriate one for studying the arithmetic
of curves over Q. To study the geometric Galois representation

p: Gal(Q/Q) — Out(n{"(X))

the first step, is to study Out(w?lg (X)).

5 The completion of mapping class group

The mapping class group MC(X) of X is defined as the factor of the group of
homeomorphisms of X as a Riemann surface by the subgroup of elements isotopic to
identity. The mapping class group is isomorphic to the group of outer automorphisms
of the topological fundamental group

MC(X) = Out(ri(X)).

There has been many efforts to introduce a finite presentation for this group. The
ones introduced by Birman in 1974 for the case of genus 2 look particularly simple.
The generators o1, ..., 05 together with the following relations generate MC(X3).

0,05 = 004, for |7:—j|22,1§7:,j§5
0i0;i 4105 = 041030541, 1<3<4

(0'10'2...0'5)6 =1

(010203040§04030201)2 =1

010203040§04030201J_0i, 1< <5

where z Ly means that z and y commute. For g > 3 genus, Dehn 1938 [De], Licko-
rish 1965 [Li], Hatcher and Thurston 1980 [Ha-Th]|, Wajnryb 1983 [Wa], gave pre-
sentations of the mapping class group. In all these presentations, the number of
generators increases with g. However, Suzuki in 1977 showed that one can manage
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with four generators [Su]. We give automorphisms in Aut(7!°’ (X)) whose image in

MC(X) = Aut(xl?(X))/Inn(x'P (X)) generate the mapping class group.

o - a1—>b1_1,aj—>aj,j7é1
0 b1 — bl_la,lbl,bj — bj,j 7é 1

o a; —~>ai11,1<i<g—1,a9 > a1
b o by, 1<i<g—1,by = by

o - a; > a;,1 <i<g
2\ bbb 2 b,2<5<g

ag — bgag(bflalbl)(aglbglag)
aj = aj,j #2
by — b1(a2_1b2_1a2)
bj — bj,2 <j<yg

We define the groups MC~(X) and MC*(X) as the images of L™ and L™ under the
canonical homomorphism Aut(m”(X)) — MC(X). The generators for MC~(X)
and MC™(X) are also introduced by Suzuki in 1977. The automorphisms a1, ag,
and a3 generate MC~(X). The generators of MC*(X) are the following. Here s;
denotes the word b;laglbiai for1 <i<g.

a: a; — bl_lal_lbl,aj —a;,2<j<g
' by = blsy b =2 b,2<i<g

o : aq —>31_1a251,a2 —ai,a; —a;,3<j<g
5 by — 81_1b281,b2 —)bl,bj —)bj,?) <j<yg

a; ~>a;,1<1<g
bl — a1b1a2_182(bf1af1b1)
b2 — bgag(bflaflbl)agl
bj —+0;,3<j<g

Qg

By studying the mapping class group, we have considered generators of Out(wfap (X)).
In order to understand the algebraic geometric analogue Out(wflg (X)) we shall study
Aut(r™ (X)) in more detail.

It is well known that, for a profinite group G which admits a fundamental system
of open neighborhoods of the identity consisting of characteristic subgroups, there
exists a topological isomorphism,

Aut(G) = liLnAut(G/U)

where U runs over open characteristic subgroups of G. We have an injection
TP (X) — 7%9(X)). An element of Aut(w'”P(X)) fixes every characteristic open
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subgroup U and induces a compatible system of elements in Aut(A/U) for different
U and therefore an element of lim Aut(G/U). We have constructed an injection

Aut (7P (X)) — Aut(r(X)).

Inner automorphisms of 7r50p (X) induce inner automorphisms of the completion

79(X). Thus we get a second injection,

Out(mi? (X)) — Out(n9(X)).

If we prove that Aut(7%"¢(X)) is the profinite completion of Aut(w!’’(X)), we have
shown that Out(n"¢(X)) is the completion in the profinite topology of Out (w1 (X)) =
MC(X). It is enough to show that w‘lllg (X) has a fundamental system of open char-
acteristic subgroups which are completions of open subgroups of 7r§0p (X) in the
profinite topology. We know that every automorphism of 7r§0p (X) is induced by an
automorphism of (a1, ..., ag, b1, ..., bg). So it is enough to show that every free group
has a fundamental system of open characteristic subgroups. But this is proved to
be true for a finitely generated free group. Therefore we have a representation of
Galois group landing on the profinite completion of M C(X)

—

p: Gal(Q/Q) — Out(x{¥(X)) = MC(X).

6 The geometric structure of Galois action

Uchida in 1976 [Uc| and Ikeda in 1977 [Ik| proved that every automorphism of
Gal(Q/Q) is inner. Therefore the equivalence class of Galois representations

p: Gal(Q/Q) — Out(7™9(X))

has only one element. This is unlike the case of p-adic Galois representations asso-
ciated to elliptic curves.

Translating the Galois representation from the language of automorphisms to
the language of mapping class group, provides us a chance to geometrically define
invariants of the Galois representation. For example, one shall be able to give a
purely geometric definition of the conductor of a Galois representation.

On the other hand, there are particular arithmetic invariants like the weight of
a modular form, which show off in the p-adic Galois representation associated to a
modular form. In the geometric picture we have introduced, one shall be able to
give purely geometric interpretation of these arithmetic invariants.

7 Serre conjecture after Wiles

Associating Galois representations to modular forms raised the question that if a
given Galois representations is modular. Failure of characterization of these repre-
sentations, led Serre in 1987 [Se] to the following conjecture
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Conjecture 7.1 (Serre) Every 2-dimensional odd irreducible mod p Galois repre-
sentation is modular.

In fact, Serre conjecture was stated much more detailed than the above formu-
lation. But the above version is the part which has remained unproven today. Serre
predicted explicit weight and level for the modular form which is related to the given
mod p Galois representation.

In search for the right modular form, assuming the above conjecture, it was
proved that

Theorem 7.2 Let [ > 3 be a prime not dividing the conductor of p mod p and let
p come from T'1(M) where M = NI and (N,l) = 1, then p can be induced from a
modular form on I'1(N).

Th above result is the fruit of the efforts of many mathematicians. In particular,
one of the steps was due to Ribet who proved [Ri]

Theorem 7.3 (Ribet) If p comes from a modular form on T'1(N) and of weight k
where N > 3, for a prime Il > 3 for which 2 < k <1+ 1 one can induce p from a
modular form of weight 2 on T'1(NI).

On the other hand Shimura associated an elliptic curve defined over some number
field to such a modular form. So, if Serre conjecture is true, p comes from the p-adic
Galois representation associated to an elliptic curve.

Now suppose we have found an elliptic curve E over Q whose Galois represen-
tation induces p. Then by the Shimura-Tanyama-Weil conjecture which was proved
by Wiles [Wi] followed by Taylor, Diamond, and Conrad, E is modular. If p is a
representation to GLo(F,) we could hope that p comes from an elliptic curve over
Q. If this be true we have found an equivalent formulation of Serre’s conjecture,
namely

Conjecture 7.4 Every 2-dimensional odd irreducible mod p Galois representation
to GLo(F,) comes from an elliptic curve over Q.

Nevertheless the above conjecture is interesting in its own right. This conjecture
claims that every mod p representation is geometric.

Going back to the case of a smooth curve X of genus > 2, we could associate a
mod p Galois representation by mod p reduction of

pp : Gal(Q/Q) — Spay(Zy),
or by inducing a representation on 7% (X)/® (7% (X))
p: Gal(Q/Q) — Aut(r}"(X)/®(x}" (X)),

where ®(n{"(X)) denotes the Frattini subgroup of 7{*(X) and taking the mod p
component of this representation. We could also associate a mod p representation
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by considering the Jacobian variety of X and considering the action of Gal(Q/Q) on
the p-adic Tate module. One can ask again if every representation like this comes
from a curve X defined over Q. More precisely

Conjecture 7.5 Every odd irreducible mod p Galois representation to Spyg(F,)
comes from a smooth curve defined over Q.

We shall mention that, not every mod p representation associated to a curve of
genus > 2 is irreducible. For example, Jac(X) could be isogenus to a direct sum of
elliptic curves. But if we do not assume irreducibility, p could be a sum of characters,
which evidently is not induced from a smooth curve.
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