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Abstract

Let f : M — M be an isometric immersion between complete Riemannian
manifolds. We prove a rigidity type theorem for spheres in M under some
conditions on the curvatures of manifolds and external diameter of the image
of f. In particular, we show that spheres are the only complete hypersurfaces
of the Euclidean spaces which are inside a ball of radius R > 0 such that
the norm of their mean curvature is < 1/R and their Ricci curvature is non-
negative. Moreover, as a second application, we give a partial affirmative answer
to this conjecture that the Gauss image of a complete, oriented and non-compact
hypersurface of Euclidean space of non-zero constant mean curvature cannot lie
totally inside an open hemisphere. The statement of the main theorem of this
paper, Theorem 1.5 (see also Theorem 1.6), is based on the correction of the
main result of the paper of Coghlan-Ttokawa-Kosecki [CIK]. The proofs are
based on an estimate for the first eigenvalue of the Laplacian on Riemannian
manifolds.

Introduction

In this paper, we extend the following rigidity type theorem of Markvorsen [M1] to
the complete Riemannian manifold M which is not necessarily compact:

e Suppose that f: M" — M is an isometric immersion from a connected
compact manifold M into a complete manifold M whose sectional curvature
is bounded from above by some constant b. Suppose that the image of f is
contained in a closed normal ball B, of radius r with r» < 7/2vb if b > 0.
Suppose that the maximum of the absolute value of the mean curvature of
f(M) is equal to my(r) where

Vb cot(r Vb) if b >0,
mp(r) =4 1 if b =0,

v —bcoth(r+/—b) if b < 0.

Then M is equal to the boundary of B,.
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In fact, this paper is based on the paper of Coghlan-Itokawa-Kosecki [CIK] whose
main theorem is not correct. The proofs are based on a lower bound for the first
eigenvalue of the Dirichlet problem on Riemannian manifolds in terms of non-positive
C?-functions which satisfy a partial differential inequality. That is a generalization
of a result which is due to Barta, see [Ch, p. 70] and also [CY, Cor. 1]. Moreover,
the main theorem of this paper, Theorem 1.5, can be interpreted as a generalization
of Hopf’s theorem to complete Riemannian manifolds which are not necessarily
compact. This paper is a continuation of the author’s work in [R]. See also [JX].

Moreover, as a second application, we prove the following conjecture under an
extra condition on the first eigenvalue of Laplacian (see [HOS] and [L]):

e The Gauss image of a complete, oriented and non-compact hypersurface of a
FEuclidean space of non-zero constant mean curvature cannot lie totally inside
an open hemisphere.

Also, our result generalizes and sharpens the result of [L, Thm. 3], see Corollary
3.3.

1 Lower Bound for the First Eigenvalue

In this section, we find a lower bound for the first eigenvalue of the Dirichlet problem
on Riemannian manifolds.

Let N be a Riemannian manifold (of class C?) and let (-, -) denote the Rieman-
nian metric on N. We denote the associated covariant derivative of N by D. For
p € N, we denote the distance from p to = by r(z) = rp(z). The function rp(z) is
smooth on N\ ({p} U C}), where C,, denotes the cut locus of p. Also, we denote the
Hessian of r(x) by Hess(r)(v, w) := (DY ,w), for all vectors v and w in the tangent
bundle of N. We denote the closed ball with center at ¢ € N and radius R > 0 by
B(q, R).

Lemma 1.1. Let M be a complete Riemannian manifold and let Q be a bounded
domain with smooth boundary in M. Let v be a non-positive C?-function which is
defined on an open neighborhood of Q and

Av > —dv >0,

where § is a non-negative number. Let u be a non-negative C?-function which is
defined on the domain of v and

Au > —Au, in €,
u =0, on 0N,

where X is a non-negative number. Suppose that fn uv # 0, then we have § < .
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Proof. By Green’s theorem, we have

ov ou
Av — v Au) = P,
/Q(u v—vAu) /(muan Y on

where g—z denotes the exterior normal derivative of v on 9€). Since u > 0 in £} and
u = 0 on 052, we have % < 0. Then we obtain

/ (uAv — vAu) <0,
Q

/uAUS/UAu.

Q Q

—6/uv§/uAv§/vAu§—)\/uv.
Q Q Q Q

This completes the proof of the lemma. O

or

Therefore, we have

Definition 1.2. Let M be a complete Riemannian Manifold. If M is compact, we
define A\ (M) := 0. If M is non-compact, we define

)\1(M) = lim Al(B(a,R)),

R—

where A (B(a, R)) denotes the first eigenvalue of the Dirichlet problem

Ah = —M\h, in B(a,R),
h=0, on 0B(a, R),

where B(a, R) denotes the open ball with radius R and center at a. When 0B(a, R)
is not smooth, it is possible to define A\;(B(a, R)) as well, see [Ch, p. 21].

Next corollary generalizes (half of) a result which is due to Barta [Ch, p. 70].
See also [CY, Cor. 1] and [FS, Thm. 1].

Corollary 1.3. Let M be a complete Riemannian manifold. Let v be a non-positive
C?-function which is defined on the closed ball B(a,r) C M with smooth boundary
and

Av > —dv >0,

where & is a non-negative number. Let A := A\ (B(a,r)) denote the first eigenvalue
of the Dirichlet problem on the ball B(a,r) (see Definition 1.2). Suppose that v is
not identically zero on B(a,r), then § < A1.
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Proof. By basic properties of the first eigenvalue (see for instance [Ch]), we
know that there is a non-negative C?-function u which is defined on B(a,r) and

Ay = —M\u, in B(a,r),
u=0, on 0B(a,r),
By Lemma 1.1, we have § < A\;. This completes the proof of the corollary. O

Next corollary generalizes Lemma 1 of [P] and [Ch, p. 53].

Corollary 1.4. Let M be a complete Riemannian manifold and let £ be a bounded
domain with smooth boundary in M. Let w be a C?-function which is defined on an
open neighborhood of Q and Aw > 1. Let u be a non-positive C?-function which is
defined on an open neighborhood of Q and

Au> —du, in €,
u =0, on 090,
where X\ is a non-negative number. Then we have

1

max w — minw
Q Q

<A

Proof. Define the function v (on the domain of w) as

v(z) := w(r) — maxw.

Q

Then we have

1 1

Av>1="p>— | —— o
v max w — minw
Q Q
Therefore, by Lemma 1.1, we have
1
———— <A
max w — minw
Q Q

This completes the proof of the corollary. O

Now, we state and prove a theorem on complete Riemannian manifolds which
can be viewed as a generalization of this fact that on every compact manifold every
subharmonic function is constant (Hopf’s theorem). Also, it can be interpreted as
a generalization of Theorem 2 of [F'S]. See also [F].

Theorem 1.5. Let M be a complete and connected Riemannian manifold and let v
be a non-positive C%-function on M. Suppose that

Av > —dv >0,

where 6 > A\ (M) is a non-negative number. Then v is constant (zero).
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Proof. If M is compact, the theorem follows from the (strong) maximum prin-
ciple. So we can assume that M is not compact.

By contradiction, suppose that there is g € M such that v(zg) # 0. Then, by
Corollary 1.3, we have § < A\;(M). This is a contradiction. This completes the proof
of the theorem. O

The following theorem is stimulated from the false result of [CIK], Theorem 1,
page 196. The counter-example can be obtained by using [CY], Theorem 7, page
351. In fact, for any complete (non-compact) manifold M, there exists a negative
function f, defined on M, such that Af = -\ (M) f.

Theorem 1.6. Let M be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bounded from below by some constant k. Suppose that a non-
positive function v is defined on an open neighborhood of the closure of B(z,r) C M,
for some r >0, and

Av>—dv >0,

—1)2
where 6 > maX{O, —k %} is a positive constant. Then there is a positive

number R, depending on k, n and ¢ such that either v is identically zero on B(x,r)
or r < R.

Proof. Without loss of generality, we can assume that v is not identically zero
on B(z,r). We define Ry,4; > 7 as the supremum of all numbers s such that the
function v with the properties of the theorem can be defined on B(z, s).

(i) Let & > 0. By the Bonnet-Myers theorem [Ch, p. 73], we know that M
is compact and the diameter of M is bounded from above by wk~1/2. So, by the
maximum principle,  is identically zero, if » > 7 k~/2. Therefore, we can choose
R:=mwk™1/2

(ii) Let £ = 0. By the Laplacian comparison theorem (see [Chg] or [Ch, p. 74,
Thm. 7]), we have (¢ > 0)

c
M(B(z,1)) < M(B(1) =
where B(t) denotes a ball of radius ¢ in the n-dimensional Euclidean space, and ¢,
is a constant which depends on n. Then, by Corollary 1.3, we have

§ < M(B(z,5)) < M(B(s)) =

Cn
s’

for all 0 < s < Ryyuz- So we can choose R := (%")1/" + 1.
(iii) Now, let & < 0. By the Laplacian comparison theorem, we have (¢ > 0)

AL(B(z, 1)) < M(B(2)),

where B(t) is a ball of radius ¢ in the space form of constant curvature k. By a
result which is due to McKean (see [Mc| or [Ch, p. 46, Thm. 5]), we know that

(n—1)?

M(BE) 2 -k
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for ¢ > 0, and
—1)2
lim 1 (B(t) = —k "1

t—o0 4

On the other hand, by Corollary 1.3, we know that 6 < A;(B(s)), for all 0 < s <
Rynaz- Therefore, we have

for all 0 < s < Rypaq, and

Tim Xy (B(1)) = —h

This completes the proof of the theorem. O

Corollary 1.7. Let M be an n-dimensional complete Riemannian manifold whose
Ricci curvature is non-negative (or A1 (M) = 0). Suppose that a non-positive func-
tion v is defined on an open neighborhood of the closure of B(xz,7) C M, for some
r >0, and

Av>—dv >0,

where 0 is a positive constant. Then there is a positive number R, depending on n
and § such that either v is identically zero on B(x,r) or v < R.

Proof. It is an immediate consequence of Theorem 1.6. O

2 A Rigidity Type Theorem

In this section, we extend the rigidity theorem of Markvorsen [M1] to the complete
(not necessarily compact) manifolds. See also [R, Question 5.8]. The following
lemma is stimulated from [M2, Lemma 2] and [R, Thm. 2.1].

Lemma 2.1. Let f : M" — M be an isometric C2-immersion between Rie-
mannian manifolds. Suppose that the image of f is contained in B(p, R)\ (Cp U {p}),
for some p € M and R > 0. Suppose that the Hessian of the distance function on
M, r(y) = rp(y) = d(y,p), is bounded from below by m(r) > 0 on the tangent bundle
of 0B(p,r), i.e. Hess(r)(v,v) > m(r)|[v|[? for all vectors v in the tangent bundle
of 0B(p,r). Let ® : [0, R] — R be a C%-function. Then we have

A(®(ro f))(z) = (Z[Q"(Nf)—Q'(TOf)m(TOf)]IWT‘,ei)l2>
+n ®'(r o f)(z)[m(r o f)(z) — (Vr, H(f(z)))],



Applications of an Estimate for the first Eigenvalue of A 81

where {e1,e2,...,en} is an orthogonal basis for T, M and H denotes the mean cur-
vature vector of M in M. In particular, if ®"(r) > ®'(r) m(r), we have

A(2(ro f)) > n@'(ro f)m(ro f) — (Vr, H(f(z)))].

Proof. Let y be a geodesic in M which is parametrized by arc-length and v(0) =
z € M and v/(0) = e € T, M. By abuse of notation, we denote f o~y by 7 (note that
f is an isometric immersion). Define

Then we have
W (s) = (Vr, v'(s)),
B'(s) = (Db )+ vr, D
() = (D3t , /() + (Vr, DL,
h'(s) = (D 1y, V4 vr, D
(3) < 'ylf(s)’IYT(s))_'_( T, 7’(s)>a

where D denotes the covariant derivative of M and +/4(s) denotes the projection of
v'(s) on the tangent bundle of dB(p,r(y(s)))- So, we have

h”(S)

v

[1 —|(Vr, 7’(5)>|2] m(r o) — (Vr, D))

Vv

[1 — (vr, 7’(8))I2] m(r o) — (Vr, D — DL, (¥)

where D denotes the covariant derivative of M and since y is a geodesic in M, we
know that Dz, (jg = 0 (see the proof of Thm. 2.1 in [R]). Now, let {ej,es,...,e,} be
an orthogonal i)asis for T, M. Let ; be a geodesic in M which is parametrized by
arc-length and 7;(0) = z € M and +(0) = ¢; € Ty M, for i = 1,2,...,n. Then we
have

n

A(@(rof))(z) = Y ADF I ¢

=1

_ 2 [ o 1))
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where h;(s) := 7(7;(s)). Then, by the chain rule, we obtain
~ d

A@(ro f))(z) = ;E[é’(hi(s))hé(S)]
_ g[@'% () a()? + @) )] g
. Zj [ (ha(s)) (T, 24N + @' (ha(s) B (9]
= zn: [®"(r 0 f)(z) [(Vr, (0))]> + &'(r o f)(z) h(0)] -
Then, by (), we have h
A®(rof))(z) > Z(I)"ro (Vr, e + &' (ro f)(z)

. [m(T o £)(@) (1= [(Vr, &) - (Vr, D — D&

> [@"(ro @) = @'(ro (@) mir o f)(@)| [(Tr, ei)?

>
i=1
+@/(r o f)(w) [m(r o f)(w) = (Vr, Dt — DE)]
> Y@ (r) — @' (r) m(r)] (Vr, ei>|2]
=1

+

|| )

n®(r)im(r) — |(Vr, H(f(2)]-

O

Proposition 2.2. Let f : M — M be an isometric C2-immersion between
Riemannian manifolds. Suppose that the image of f is contained in B(p, R)\ (Cp U {p}),
for some p € M and R > 0. Suppose that the Hessian of the distance function on
M, r(y) = rp(y) = d(y,p), is bounded from below by m(r) > 0 on the tangent
bundle of OB(p,r), i.e. Hess(r)(v,v) > m(r)||v||*> for all vectors v in the tan-
gent bundle of OB(p,r). Let ® : [0,R] — R be a C?-function. Suppose that
" (r) — ®'(r)m(r) > 0 and also we assume that

n®'(r) [m(r) — m(R)] > =6 [®(r) — ®(R)],

where § is a positive number. Suppose that ||H(f(z))|| < m(R), for all z € M.
Then we have
Aw > —dw,

where w( ) = ®(r o f)(z) — ®(R). In particular, if ® is non-increasing, we also
have w < 0.
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Proof. By Lemma 2.1, we have

A@(ro () > n¥(ro f)(a) [mlro f)(a) ~ [(Vr, H(f ()]
Then, by the assumptions, we have
A(®(ro f))(z) = =6[®(ro f)(z) — ®(R)].
This completes the proof of the proposition. O

Example 2.3. Let M be a complete Riemannian manifold whose sectional curva-
ture is bounded from above by some constant b. Then, by the Hessian comparison
theorem [SY, p. 4], we can choose m(r) as follows

Vb cot(r vb) if b >0,
m(r):={ 1% ifb=0,

r

v —=bcoth(r+/—b) ifb<O0.
Also, it is easy to see that the function

1—cos(r vb) ifb>0

=l

o(r):=4 % ifb=0,
l—coshIEr V—b) ifb <0,
and the number b .
m lf b > 0,
0 := % ifb=0,
m if b <0,

satisfy the assumptions of Proposition 2.2; the number R is less than or equal to

QL\/I;’ if b > 0. See [M2] and [CIK, p. 206].

Theorem 2.4. Let f : M" — M be an isometric C?-immersion between
complete and connected Riemannian manifolds. Suppose that the image of f is
contained in B(p, R)\ (Cp U {p}), for some p € M and R > 0. Suppose that the
Hessian of the distance function on M, r(y) = rp(y) = d(y,p), is bounded from
below by m(r) > 0 on the tangent bundle of OB(p,r), i-e. Hess(r)(v,v) > m(r)|v|?
for all vectors v in the tangent bundle of OB(p,r). Let ® : [0,R] — R be a C?-
function. Suppose that
®"(r) — @' (r)m(r) >0

and also assume that

n®'(r) [m(r) = m(R)] > =6 [2(r) — B(R)].

Suppose that ||H(f(z))|| < m(R), for all x € M, and m(r) is a non-increasing
function of r. Moreover, assume that 6 > Ai(M). Then f(M) is contained in the
sphere 0B(p, R).
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Proof. It is an immediate consequence of Theorem 1.5 and Proposition 2.2. O

Theorem 2.5. Let f : M" —> M be an isometric C?-immersion between
complete and connected Riemannian manifolds. Suppose that the image of f is
contained in B(p,R)\ (CpU{p}), for some p € M and R > 0. Suppose that
[|H(f(z))|| < m(R), for all z € M, where

Vb cot(r v/b) if b>0,
m(r) =4 % ifb=0,

v/—bcoth(r+/=b) ifb<0.

Suppose that the sectional curvature of M is bounded from above by some constant
b and the Ricci curvature of M is bounded from below by some constant k. Suppose
that R < "=, if b > 0, and also

2V’
nb :
(,n _ 1)2 sin?(R V/b) ifb>0,
max{0, —kT} <q 7 . sz =0,

Then f(M) is contained in the sphere 0B(p, R).

Proof. By the Hessian comparison theorem [SY, p. 4], we know that the Hessian
of the distance function on M, r(y) = r,(y) = d(y,p), is bounded from below by
m(r) on the tangent bundle of 0B(p,r), i.e. Hess(r)(v,v) > m(r)|[v||* for all
vectors v in the tangent bundle of B(p,r), for r < R < 2L\/5’ if b > 0. Now, the
theorem is an immediate consequence of Theorem 1.6, Theorem 2.4 and Example
2.3. O

Remark 2.6. In Theorem 2.5, when M is not compact, the requirement

b .

(n B 1)2 Slnz(nT\/E) lf b > 0,

max{0, ~k- -} <& 2 if b =0,
—nb .

sinhz(gx/—_b) ifb <0,

or a lower bound on Ricci (scalar) curvature cannot be omitted. Indeed, there exists
an example, which is due to Calabi [BZ, 28.2.7], of a complete minimal (H = 0)
surface which is contained in a ball of R%.

Corollary 2.7. Let f : M — M be an isometric C2-immersion between
complete connected Riemannian manifolds. Suppose that the image of [ is contained
in B(p, R)\ (Cp U {p}), for somep € M and R > 0. Suppose that the Ricci curvature
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of M is non-negative and the sectional curvature of M is bounded from above by some
constant b. Suppose that ||H(f(z))|| < m(R), for all z € M, where

Vb cot(r v/b) if b>0,
m(r):=¢ ifb=0,

r

v—bcoth(r+/—-b) ifb<0.
Then f(M) is contained in the sphere 0B(p, R).

Proof. It is an immediate consequence of Theorem 2.5. O

3 Hypersurfaces of Constant Mean Curvature

Let M be a complete and oriented hypersurface of R"*! with unit normal vector
v. Suppose that M has constant (parallel) mean curvature, then we have (see for
instance [HOS))

Av = —||dv|[*v, (3.1)

where ||dv||? is the square norm of the second fundamental form of M (in R™*!),
ie. ||dv|]? = doij=1 |<E§j , V)|, where (-, -) and D denote the usual inner product
and covariant derivative on R"*! and {ey, es,...,e,} is an orthogonal basis for the
tangent space of M.

Theorem 3.1. Let M be a complete and oriented hypersurface of R™ with unit
normal vector v. Suppose that M has constant (parallel) mean curvature. Then

(i) Suppose that the image of M under the Gauss map, v(x), lies in some closed
hemisphere. Then we have

e cither there is a unit vector e € R"*! such that (v(z), €) =0, for all x € M,

> i .
e or A\ (M) _zlng/[HdV(x)H

(i) Suppose that the image of M under the Gauss map, v(x), lies in some open
hemisphere. Then

M) > inf 2,
Ar( )_xlgMHdV(ﬁv)H

Proof. By the assumptions, there is a unit vector e € R"*! such that
w(z) := (v(z), e) <0.
Then, by (3.1), we obtain

Bu(w) > (inf 402 ) w(o)

Now, the theorem follows from Corollary 1.3. O



86 Alireza Ranjbar-Motlagh

The following corollary gives a partial affirmative answer to this conjecture that
the Gauss image of a complete, oriented and non-compact hypersurface of a Eu-
clidean space of non-zero constant mean curvature cannot lie totally inside an open
hemisphere (see [L]).

Corollary 3.2. Let M be a complete and oriented hypersurface of R™ with unit
normal vector v. Suppose that M has constant mean curvature. Suppose that the
Ricci curvature of M is non-negative (or \y(M) =0). Then

(i) Suppose that the image of M under the Gauss map, v(x), lies in some closed
hemisphere. Then, either there is a unit vector e € R" such that (v(x), e) = 0
for all x € M, or M has zero mean curvature.

(ii) Suppose that the image of M under the Gauss map, v(x), lies in some open
hemisphere. Then M has zero mean curvature.

The following corollary sharpens and generalizes Theorem 3 of [L].2

Corollary 3.3. Let M be a complete and oriented hypersurface of R™1 with unit
normal vector v. Suppose that M has constant mean curvature Hy. Suppose that
M (M) < n|Hp|?. Suppose that the image of M under the Gauss map, v(z), lies in
some closed hemisphere. Then there is a unit vector e € R™! such that (v(z), e) =
0, forallx € M.
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[Z, p. 54], is not correct. For correct statement (and proof) of Lemma 2.3, [Z, p. 54], see [B, Thm.
1]. See also [CZ].
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