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Abstract

The aim of this paper is to introduce the theory of Abelian integrals for
holomorphic foliations in a complex manifold of dimension two. We will show
the importance of Picard-Lefschetz theory and the classification of relatively
exact 1-forms in this theory. Finally we will calculate Melnikov functions under
some generic conditions.

0 Introduction

Let us be given a differential equation

dy _ P(z,y)
dr  Q(z,y)

in the real plane R?, where P and @ are two polynomials in z and y. Let H(P,Q)
denote the number of limit cycles of the above differential equation and

(1)

Hy, = maz{H(P,Q) | deg(P),deg(Q) < n}

The Hilbert sixteenth problem claims that H), is a finite number. An equation (1)
has a first integral or is called integrable if there are two polynomials F and G in R?
such that g is constant on its solutions. In this case the equation (after reducing)
has the form

dy GF, — FG,

dr ~ GF, - FG,
When G = 1 the equation is called Hamiltonian. Let S, (resp. S,) denote the
space of equations (1) defined by real (resp. complex) polynomials P and @,
deg(P),deg(Q) < n. Every element of S, is parameterized by the coefficients of P
and Q.
One of the first attempts to solve the mentioned problem was made by two
Russian mathematicians I. G. Petrovskii and E. M. Landis ([LP1],[LP2]). They
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complexified the equation (1) and considered the equation in C? and tried to find
another set of cycles C(P, @) in the solutions of (1) whose cardinality is not less
than the number of limit cycles in the related real equation. Then they tried to
calculate a uniform upper bound for the cardinality of C(P, @) (and hence H,) by
perturbation of integrable equations. Let {d;};c(r) be a family of closed solutions
of an integrable equation. They observed that the bifurcation of limit cycles from
this family of closed cycles is related with the zeros of a certain Abelian integrals.

Although their work had errors, the idea of using Abelian integrals to count the
number of limit cycles of a perturbed Hamiltonian equation has been one of the
useful tools in approaching the Hilbert Sixteenth Problem. For this see the book
[Ro] and its references. The aim of this text is to introduce an algebro-geometric
approach to these Abelian integrals. Instead of C?> we consider an arbitrary two
dimensional compact complex manifolds and instead of Hamiltonian fibrations we
consider the fibrations of meromorphic functions on M. In sections 1 and 2 holo-
morphic foliations and the Picard-Lefschetz theory of meromorphic functions on M
are introduced. In section 3 we see how Abelian integrals appear in the formula
of the first Melnikov function. In section 4 we will encounter with relatively exact
1-forms and finally in section 5 we will calculate higher order Melnikov functions
under some generic conditions.

Initial pages of this text was written in IMPA-Brazil. I would like to inform
my sincere thanks to C. Camacho, A. Lins Neto and P. Sad, my teachers in IMPA,
for their support. The final version of this text was obtained in IPM-Iran. Here I
express my special acknowledgment to S. Shahshahani.

1 Holomorphic Foliations

Let M be a compact complex manifold of dimension two. A holomorphic foliation
in M with isolated singularities is given by a collection of holomorphic 1-forms wq
defined on U,, a € I, where {U, }qecr is an open covering of M, and such that

(2) Wa = Gapwg, o, €1

where g,4 is a holomorphic without zero function in U, N Ug. Furthermore we
assume that the set of points in which w, is zero has codimension greater than one
(discrete set). In other words w, has not zero divisor.

Therefore for any foliation F there is associated a line bundle L given by the
transition functions {gagtaper € H'(M,0*) = Pic(M). We also say that the
foliation F is of degree L. The data (2) can be considered as a holomorphic section
w € H(M,Q! ® L) without zero divisor, where Q! is the cotangent bundle of M.
Since M is compact, H'(M,Q! ® L) is a finite dimensional space (this is a simple
corollary of Grauert direct image theorem). By F(w) we mean that the foliation F
is given by the 1-form w € HO(M,Q! ® L). It is easy to check that for any foliation
F there exists a unique line bundle L in M such that F is given by a holomorphic
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without zero divisor element of H°(M,Q! ® L). From now on we fix a line bundle
L and assume that H%(M, Q! ® L) has a holomorphic without zero divisor section.
In this case the set of 1-forms w € H°(M, Q! ® L) without zero divisor is an open
subset of HY(M, Q! ® L).

If w € H(M,Q' ® L) has a zero divisor we use the following trick: Let w €
H°(M, Q! ® L) be a holomorphic section with the zero divisor Z. Let Lz be the line
bundle associated to Z and s € H°(M, L) be the holomorphic section with the zero
divisor Z. Now < is a holomorphic without zero divisor section of H O(M, Q/\L/\Lgl),
and so, we can substitute L for L A Lgl.

Two holomorphic without zero divisor sections w,w’ € HY(M, Q! ® L) induce the
same foliation if and only if w = c.w’, where c is a constant. Therefore the space of
foliations of degree L, namely F(M, L), form an open subset of the projective space

Proj(H*(M,Q' ® L))

Many times we need the foliation F to be given by a meromorphic 1-form in
M. In these cases we assume that H°(M, L) # 0 and choose a non-zero section s of
H°(M, L). Now the foliation F(w),w € H*(M,Q!® L) is given by the meromorphic
1-form % in M.

Definition 1.1 The meromorphic section s € H°(M, L) is called the integrating
factor of F(w),w € H'(M,Q' ® L) if ¥ is a closed meromorphic function in M.
F(w) is called integrable if there exists an integrating factor s € H°(M, L) such that
® =df, where f is a meromorphic function on M. In this case f is constant on the
leaves of F. We also say that f is a first integral of F.

Let F be an integrable holomorphic foliation given by a without zero holomorphic
1-form w € HY(M,Q! ® L). Let also f be a first integral of F. The fibers of f have
the same linear bundle which we denote it by L4, where A is a generic fiber of f
. Let A;,As,..., As be irreducible components of the fibers of f in which f has
multiplicities greater than one, namely n1,n9,...,ng, respectively. It is easy to see
that

L= Loa-5m;-1)a;

2 Picard-Lefschetz Theory

This section is mainly based on the papers [La] and [Ho2]. For more information
the reader is referred to that papers. Throughout the text when we do not write
the coefficients used in the homology we mean homology with coefficients in Z.

Let f be a meromorphic function on a complex manifold M of dimension two.
The indeterminacy set R of f contains the points of M in which f has the form %.
R is a discrete set and the following holomorphic function is well-defined:

f:M—-R—P
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We use the following notations
Lg =f YK), Mk =Lk, K CP!

For any point ¢ € P!, by L. and M, we mean the sets Ly and My, respectively.
Throughout the text by a compact f-fiber we mean M; and by a f-fiber only we
mean L;. Performing a finite number of blow-ups (see [CaSa]) at the points of R
and using Ehresmann’s Fibration Theorem (see [La]), we can see that there exists
a finite subset C' = {c1,co,-..,c,} of P! such that f fibers M — R locally trivially
over B = P! — C, i.e. for every point b € B there is a neighborhood U of b and
a C*-diffeomorphism ¢ : U x f!(c) — f }(U) such that f o ¢ = m; = the first
projection. We say that C is the set of critical values of f. The regularity of f along
a fiber L, does not imply that it is fiber bundle over a neighborhood of ¢. This
situation happens when M, has a tangency point with the divisor of the blow-up in
which the leaves are separated from each other. In this case we say that the critical
point related to the value c is in R.

Now we are able to use the Picard-Lefschetz theory for understanding the topol-
ogy of the fibers of f. Let A be a path in B with the initial and end points by and
bi. There is an isotopy

H:Lbo X [0,1] — Ly

such that for all z € Ly, t € [0,1],
H(z,0) =z, H(z,t) € Ly

For every ¢ € [0,1] the map hy = H(,t) is a homeomorphism between Ly, and Ly -
The different choices of H and paths homotopic to A in B would give the class of
isotopic maps

{h)\ : Lbo — Lbl}

where hy(-) = H(-,1). The class {hy : Ly, = L, } defines the map
hy : Hi(Ly,) — Hi(Ly,)
For any regular value b of f, we can define
h:m(B,b) x Hi(Ly) — Hi(Lp)

h(X,+) = ha(")

m = m1(B,b) is called the monodromy group and its action h on H;(Ly) is called the
action of monodromy on the first homology group of L;. We also say that H;(L.)
is a m-module.

Definition 2.1 Let K be a subset of B and b be a point in K\C. Any relative
2-cycle of Lg modulo L is called a 2-thimble above (K, b) and its boundary in L,
is called a vanishing 1-cycle above K.
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Suppose that f has a nondegenerate critical point at p; € M — R and f(p;) = ¢;.
Let A; be a path in B U {¢;} connecting a regular value b to ¢;. This path passes
through ¢; only in its end point. The leaf L; contains a cycle which vanishes above
A; and is called the Lefschetz vanishing cycle. Roughly speaking, when the value of
x varies from b to ¢;, the Lefschetz vanishing cycle in L, moves in the leaves and
arrives to the leaf L., at the point p;. The locus of this movement is exactly the
related 2-thimble.

Fix a point co € P!, which may be a critical value. Let C' = {c1,co,...,c.} be
the subset of C = P! — {oo} containing critical values of f. Consider a system of r
paths Aq,..., A, starting from b and ending at ¢, ca,..., ¢, respectively, and such
that:

1. each path \; has no self intersection points;

2. two distinct paths A; and A; meet only at their common origin ;(0) = A;(0) =
b.

This system of paths is called a distinguished system of paths. Let K be the union
of these paths and small disks around ¢;’s. The set of vanishing cycles above K
in Ly is called a distinguished set of vanishing cycles related to the critical points
C1,C2y-..,Cp.

Theorem 2.1 (Theorem 2.2.1 [Ho2]) Suppose that Hi(M — My,,Q) = 0. Then
a distinguished set of vanishing I1-cycles related to the critical points in the set

C\{oo} ={c1,c,...,¢;} generates Hy(Ly, Q).

Again note that in the above theorem oo can be a critical value of f. If M, is smooth
and its homology class in Hy(M,Q) is not zero (for example if My, is a smooth
hyperplane section) then the condition Hy (M, Q) = 0 implies that H1(M—My,,Q) =
0. The reason is as follows: By Leray (or Thom-Gysin) isomorphism (see [Ch] p.
537) we have Ho(M,M — My,) ~ Hy(My) ~ Z. Now we write the long exact
sequence of the pair (M, M — M) :

o Hy(M — Moo) 5 Ho(M) —» Z 5 Hy(M — Ms) — 0

Therefore Hi(M — M) = Z/nZ or Z for some natural number n. In the first
case we have Hy(M — My,,Q) = 0. In the second case j is one to one and so i is
surjective. But this means that the intersection of M., with any 2-cycle in Hy(M)
is zero. By Poincaré duality the class of My, in Ho(M,Q) must be zero which is a
contradiction.

Definition 2.2 The cycle § in a regular fiber Ly is called simple if the action of
on 0 generates Hy(Ly, Q).
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Note that in the above definition we have considered the homology group with ratio-
nal coefficients. Of course, not all cycles are simple. For instance if the meromorphic
function in a local coordinate (z,y) around ¢ € R has the form 4 then the cycle
around q in each leaf has this property that it is fixed under the action of monodromy,
therefore it cannot be simple. In the next paragraph we are going to introduce some

fibrations with simple cycles.

Lefschetz pencil: The hyperplanes of P are points of the dual projective space
P"™. We use the following notation:

H,cP*, yeb"

Let M be a closed irreducible smooth subvariety of P". Its dual variety M consists
of all points y in P" such that H, is tangent to M at some point. M may have
singularities. A Lefschetz pencil in P consists of all hyperplanes which contain a
fixed (n — 2)-dimensional projective space A, which is called the axis of the pencil.
We denote a pencil by

{Hi}iea

or G itself, where G is a projective line in P". The pencil {H;};c¢ is in general
position with respect to M if G is in general position with respect to M. Sometimes
we parameterize the line G = P! and consider the meromorphic function f on M
induced by the pencil. The meromorphic function associated to a pencil in general
position is called the generic Lefschetz meromorphic function and has the following
properties:

1. In a local coordinate system (z,y) around an indeterminacy point ¢ of f, f

has the form %;

2. f has r = deg(M) nondegenerate critical points p1, ..., p, in M — A such that
f(pi) = ¢;’s are distinct values in P;

3. For every critical value ¢; of f, the hyperplane H., has a unique tangency of
order two with M which lies out of A. The other hyperplanes are transverse
to M (see [Lal).

Theorem 2.2 Suppose that Hi(M — My,,Q) =0 and Hi(My,) # 0, where My, is
a reqular fiber of a generic Lefschetz meromorphic function f. Then every Lefschetz
vanishing cycle in a regular fiber of f is simple.

Note that the regular compact fibers of f have the same topology and so Hy (M) #
0 means that the genus of any regular compact fiber is greater than 0 and so the
fibration is not rational.

Almost all the arguments to prove the above theorem exist in [La]. That article
have worked with the topology of M;’s, and not L;’s. Therefore we have proved
above theorem in [Ho2] Theorem 2.3.2.
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Let F be a foliation in P? with a first integral of the type %, where F' and G are

two relatively prime irreducible polynomials in an affine chart C? of P?, Zﬁg—g = 1%

and g.c.d.(p,q) = 1. Assume that F has the following generic properties:
1. {F =0} and {G = 0} are smooth and intersect each other transversally;

2. The critical points of & in P?\({F = 0} U {G = 0}) are nondegenerate with
distinct images.

Let ¢y, ¢, ..., ¢ denote these critical values. In [Ho2] it is proved that these condi-
tions are generic, i.e. there exists a dense open subset in the space of coefficients of
F and G such that all polynomials F' and G whose coefficients are chosen from this
set satisfy conditions 1 and 2. The meromorphic function Z—Z is a fiber bundle over
P! — {c1,c2,---,¢r,0,00}. It has multiplicity p along F = 0 and ¢ along G = 0.

Theorem 2.3 (/Ho2/) If deg(F')+deg(G) > 4 then every Lefschetz vanishing cycle
in a reqular fiber of g—z s simple.

The condition deg(F) + deg(G) > 4 is equivalent to this fact that the genus of
a generic compact fiber of % is not zero. If p = ¢ = 1 then % is a Lefschetz
meromorphic function and the above theorem is a particular case of Theorem 2.2. In
the case where G is a linear polynomial we have p = 1 and ¢ = deg(F'). Considering
G = 0 as the line at infinity in P?, we have the Hamiltonian fibrations in C2. In this

case the above theorem is proved by Ilyashenko [I1] using a theorem of Zizcenko.

3 Deformation of Holomorphic Foliations and Abelian
Integrals

Let F be an integrable holomorphic foliation in F(M, L) and F¢(we) € F(M, L), € €
(C,0) a holomorphic deformation of F = F;. The set H'(M,Q! ® L) is a vector
space and so we can write

we =wy + ew) + wy + -, w; € H(M, Q' ® L)

The 1-form w; is called the tangent vector of the deformation.

Let § be a cycle in a leaf of F and ¥ ~ (C,0) a holomorphic section to F in a
point p € 0. Let also s be an integrating factor of wg whose zero divisor does not
intersect § and w

D — g
where f is a meromorphic function on M.

Throughout the text we assume that the transverse section ¥ is parameterized
by t = f |n. Assume that the holonomy of F along ¢ is identity. Note that if f has
multiplicity one along the leaf containing ¢ then the holonomy is always identity.
We can consider F¢’s as a codimension two foliation F = {F}.c(co) in M x (C,0)

S
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and ¥ x (C,0) as a transverse section to F. So we have the holonomy map defined
by
H:¥ x (C,0) - X x(C0)

H(t, €) = (he(t), €)

he(t) is a holomorphic function in € and ¢ and is called the holonomy of F, along
the path § (note that by hypothesis ho(t) = t). We write

- O'h,
he(t) =t = Mi(t)e + Mo(t)e” + -+ My(t)e' + -+, Mi(t) = 55 le=o
M; is called the i-th Melnikov function of the deformation along the path §. Let
M, = My = -+ = Mp_1 =0 and My # 0. It is a well known fact that the

multiplicity of M}, at t = 0 is the number of limit cycles which appear around § after
the deformation. This fact shows the importance of these functions in the local
study of Hilbert’s 16-th problem. The following proposition gives us a nice formula
for the first Melnikov function.

Proposition 3.1 The first Melnikov function is given by

w
Mi(t) = — 5 ?1
t

where w1 is the tangent vector of the deformation and 0; is the lifting up of 0 in the
leaf through t € % .

Proof: The proof is completely formal in the literature of differential equations (see
[Ro] and [Fr]). The deformed foliation is given by the meromorphic 1-form

(3) df + ¢ + 0(&)

Let 0y p. (1) be a path in the leaf of F. through ¢ which connects ¢ to h¢(t) along the
path §. Since ¥ is parametrized by ¢t = f |y, by integrating the 1-form (3) over the
path d; p, (s) we have

he(t) = t+e( | % +0(e) + 0(?) =0

The coefficient of € in the above equality gives us the desired equality. O
We want to have an explicit formula for higher Melnikov functions. For this purpose
we must classify a certain class of relatively exact 1-forms modulo an integrable
foliation.

4 Relatively Exact 1-forms

First let us give the definition of a relatively exact 1-forms modulo a foliation.
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Definition 4.1 Let F be a foliation in M. A meromorphic 1-form w1 on M is called
relatively exact modulo F if the restriction of w; to each leaf £ of F is exact, i.e.
there is a meromorphic function f on £ such that wy |L= df.

In fact we are interested in the above definition when F is integrable. It is easy to
check that a meromorphic 1-form w; is relatively exact modulo F if and only if

(4) /lezo

for all closed cycles in the leaves of F, where this integral is well-defined.

Relatively exact 1-forms have been studied by many authors. Ilyashenko in [I1]
proves that if the integral of a polynomial 1-form of degree n along a continuous
family of level lines of a Morse type polynomial of two variables and of degree n is
identically equal to zero, then the form is relatively exact modulo the polynomial
and then he proves that it must be exact. This is generalized to higher dimensions in
[Pu]. The classification of relatively exact polynomial 1-forms modulo an arbitrary
polynomial is done by P. Bonnet in [Bo] and L. Gavrilov in [Ga]. J. Mucifio in
[Mu] has classified a certain class of relatively exact 1-forms modulo a Lefschetz
pencil. In a generalization of Ilyashenko’s result to integrable foliations in M, I had
to classify another types of relatively exact 1-forms in [Hol].

Let S be a complex curve. The meromorphic function f : M — S is called
noncomposite if a general compact f-fiber is irreducible. It is easy to see that
f: M — S is noncomposite if and only if f cannot be factored as a composite

(5) ML is

where S’ is a complex curve and i is a holomorphic map of degree greater than one.
Let F be an integrable foliation. There exists a complex curve S and a noncom-
posite meromorphic function f : M — S such that f is constant in the leaves of F
(see [Go]). We say that f is a noncomposite first integral of F.
Let f: M — S be noncomposite as above. Any other first integral f': M — S’
of F is factored as

where 7 is a holomorphic function.

Poincaré in his article [Po] has studied integrable foliations in P? and has proved
(pp- 52-53) that every integrable foliation F in P2 has a noncomposite first integral
M — P! (this is also a consequence of Stein factorization theorem).

Let F be an integrable foliation with the noncomposite first integral f : M — S
and wi a meromorphic 1-form in M with the pole divisor

n
i=1
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In what follows when we say that a meromorphic object (function, 1-form, ...) Z
has the pole divisor D, we mean that

pol(Z)+D >0
Let
n
Dy=>_D;
i=1
be the reduced part of D.

Theorem 4.1 Keeping the notations used above, assume that

1. All f-fibers are connected (for us a f-fiber does not contain the indeterminacy
points of f);

2. D is F-invariant;

3. Every component of D is an irreducible f-fiber (f may have multiplicity along
some D;);

4. There exists a non F-invariant Riemann surface embedded in M — R.

Then every relatively exact meromorphic 1-form w1 modulo F with the pole divisor
D has the form

(6) wi =dg+w

where g is a meromorphic function on M with the pole divisor D and w is a mero-
morphic 1-form in M inducing the foliation F and with the pole divisor D + Dy.

The above theorem is no more true if we assume that some f-fibers are dis-
connected. P. Bonnet in [Bo] gives the example f = z(1 + zy) in C? having the
disconnected fiber f = 0. The 1-forms y**'dz + zy*dy, k > 0 are relatively exact
modulo f but they are not of the form (7). Without the hypothesis of connect-
edness of f-fibers the classification of relatively exact polynomial 1-forms modulo a
polynomial is done in [Bo]. In [Hol] we have classified relatively exact 1-forms in P?
with non-invariant divisors. The forth condition is trivial for an algebraic manifold
with a Lefschetz pencil in it. I do not know yet that the third and forth conditions
in the above theorem is really necessary or not. The above classification of relatively
exact 1-forms will suffice for our purpose.

Proof: Let R be the indeterminacy set of f and C a non F-invariant Riemann
surface in U = M — R. For any point x € U let

Lx nc = {p17p27' .. ape}

where L, = f !(g(z)) is the fiber through z and e is the intersection number of C
with a generic f-fiber (p;’s are counted with multiplicity). Define

g: M\(UiL, Di) = C
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o2) =2 [

where |, f ‘ is an integral over a path in L, which connects x to p;. Since the f-fibers
are connected, [ :f * is well-defined. The idea of the definition of g comes from the
paper [Mu]. According to the hypothesis this integral does not depend on the choice
of the path connecting z to p; on L,. The function g is a well-defined holomorphic
function in M\(U}_;D;). We claim that g is a meromorphic function on M with
pole divisor D. According to Levi extension theorem it is enough to prove that g is
meromorphic in U.

For instance let us prove that g has a pole of order at most n; at U N D;. Let
m; be the multiplicity of f along D;, ¢; = f(D;) be the value associated to D; and
zeU ﬂnDZ In a small neighborhood of the path connecting z to p; the function

(f — ) mi is a univalued holomorphic function and
Pi _n; Pi ng
/ wi = (f—¢) ™ / (f —ci)miw
T T

(f — c,-)’"_liwl is a holomorphic 1-form along U N D; and therefore integrals of this
type has a pole of order at most n; at {D; = 0}. This implies that g has pole of
order at most n; at {D; = 0}. Note that in the above formulas we have chosen a
local chart z(c),c € (S,¢;) around ¢; and instead of z o f — z(c¢;) we have simply
written f — ¢;.

Every integral | f ‘ wy satisfies the equation

P
d(/ wl)/\wozwl/\wo
x

where wy is a meromorphic 1-form inducing F. The function g is the mean value of
these integrals and so

dg ANwy =wi Awy = (w1 —dg) Awy =0

S w =dg+w

where w is a meromorphic 1-form inducing F and with the pole divisor D + Dy. O

Let F be a holomorphic foliation in M considered in Theorem 4.1. Assume
that F has a non-composite meromorphic first integral f (S = P!). Denote by D a
generic fiber of f.

Corollary 4.1 Every relatively exact 1-form wy in M with the pole divisor nD has
the form
w1 = dg + pdf

where g and p are meromorphic functions with the pole divisors nD and (n — 1)D,
respectively.
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5 Melnikov Functions

In this section we follow the notations introduced in the first lines of Section 3. Let
us suppose that f is non-composite and D = M, is a generic compact f-fiber. The
integrating factor s of wy with
wo
= —gf
has 2D as the zero divisor. For simplicity let us write w, instead of “ and w; instead
of “t, 1 =1,2,....

S

Theorem 5.1 Suppose that § is a simple cycle defined in Section 2. If M1 = My =
-« = My =0 then

k
M1 (t) = —/ ) piwrr1—i + wrs1)

0 =1

where p; and g; are meromorphic functions in M with the pole divisors iD and
(1 4+ 1)D, respectively, and are defined recursively by

1—1
w; + pidf + dg; = —ijwi_j, 1=1,2...,k
=1

Proof: The proof essentially follows from [Ro], Proposition 6, p. 73. We prove by
induction on k. The case k = 1 is proved in Proposition 3.1. Let us suppose that

the theorem is true for k — 1, i.e. if M1 = My =--- = Mp_1 =0 then
k—1
M (t) = _/5 OO piwi—i + wi)
t =1

Now suppose that M} = 0. Since 0 is a simple cycle, the 1-form

ko1
(7) () piwr—i + w)
i=1

is a relatively exact 1-form with the pole divisor (k + 1)D and so by corollary 4.1
there exist py and g with the pole divisors kD and (k + 1) D, respectively, such that

k-1
— () piw—i + wi) = dgi + prdf

=1

A direct expansion gives

k k k
1+ pic)we =d(f =Y gi€") + O piws1-i + wpp1)e T + O("F?)
i=1 i=1 i=1



Algebro-Geom. Approach to Abelian Integrals in Diff. Equations 57

Let 6; (1) be a path in the leaf of F through ¢ which connects ¢ to h.(t) along the
path 0. Since ¥ is parameterized by ¢ = f |x, integrating the above equality over
the path d; 5, (1) we have

k k
o he
(he(t) —t) — (Z giet) | -I-ekﬂ/ (Zpiwlc—i-l—i + wrt1) + O(F12) =0
i=1 Ot,he(t) =1
i) Sonec) = /, 5 +0(e) and so by putting zero the coefficient of € in the above formula,
we get the desired equality. O
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