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Abstract

We review recent progress in the study of cyclic cohomology of Hopf algebras
and Hopf algebroids, starting with the pioneering work of Connes-Moscovici.

1 Introduction

It is well known that the theory of characteristic classes of vector bundles, more
precisely the Chern character, can be extended to the noncommutative geometry,
thanks to the noncommutative Chern-Weil theory of Connes [5, 3, 10]. In order to
have a similar extension for quantum principal bundles, for example Hopf-Galois ex-
tensions, one needs first appropriate analogues of group and Lie algebra cohomology
Hopf algebras. The recent works of Connes-Moscovici [9, 7, 6] on the index theory
of transversely elliptic operators, more precisely their definition of cyclic cohomology
of Hopf algebras, provides one with such a theory.

It is the goal of the present article to review the developments in the study of
cyclic cohomology of Hopf algebras, starting with the pioneering work of Connes-
Moscovici [9, 7, 6]. We will present a dual cyclic theory for Hopf algebras, first
defined in [16], and independently in [29]. One motivation is that, as it was observed
by M. Crainic [11], cyclic cohomology of cosemisimple Hopf algebras, e.g. the
algebra, of polynomial functions on a compact quantum group, due to existence
of Haar integral, is always trivial. In other words it behaves in much the same
way as continuous group cohomology. Let HP® and HP, denote the resulting
periodic cyclic (co)homology groups in the sense of [9] and [16], respectively. We
present two very general results: for any commutative Hopf algebra #H, HP*(H)
decomposes into direct sums of Hochschild cohomology groups of the coalgebra H
with trivial coefficients, and for any cocommutative H, HP.(H) decomposes as
Hochschild homology groups of algebra H with trivial coefficients. So far very few
examples of computations of HP* and HP, for quantum groups are known. We
present what is known in Sections 3 and 4.

In Section 5 we review the main results on cyclic cohomology of extended Hopf
algebras known so far, following [6, 18]. Extended Hopf algebras are closely related to
Hopf algebroids. It seems that now the question of finding an appropriate algebraic
framework to define cyclic cohomology of Hopf algebroids is settled by [18].
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Finally, in Section 6 we present some of the results obtained in [1] on cyclic
cohomology of smash products.

It was not our intention to cover all aspects of this new branch of noncommutative
geometry. For applications to transverse index theory and for the whole theory one
should consult the original Connes-Moscovici articles [9, 8, 6] as well as their review
article [7]. We also recommend [30] for a general introduction to applications of Hopf
algebras in noncommutative geometry. Much remains to be done in this area. For
example, the relation between cyclic homology of Hopf algebras and developments in
Hopf-Galois theory (see e.g. Montgomery’s book [24]) remain to be explored. Also,
what is missing is a general conjecture about the nature of Hopf cyclic homology of
the algebra of polynomial functions (or smooth functions, provided they are defined)
of quantum groups.

2 Preliminaries on Hopf algebras

In this paper algebra means an associative, not necessarily commutative, unital
algebra over a fixed commutative ground ring k. Similar convention applies to
coalgebras, bialgebras and Hopf algebras. The undecorated tensor product ® means
the tensor product over k. If H is a Hopf algebra, we denote its coproduct by
A:H — H®H, its counit by € : H —> k, its unit by n : k — H and its
antipode by S : H — H. We will use Sweedler’s notation A(h) = A1) @ 2,
(A ®id)A(h) = MV @ h?) @ A etc., where summation is understood.

If ‘H is a Hopf algebra, the word H-module means a module over the underlying
algebra of 7. Similarly, an #-comodule is a comodule over the underlying coalge-
bra of H. The same convention applies to H-bimodules and H-bicomodules. The
category of (left) H-modules has a tensor product defined via the coproduct of H:
if M and N are left H-modules, their tensor product M ® N is again an H-module
via

h(m ®@n) = hMm o h®n,

Similarly, if M and N are left {-comodules, the tensor product M ® N is again an
‘H-comodule via
A(m®n) = mE DD @ m©® @ n0),

We take the point of view, standard in noncommutative geometry, that a non-
commutative space is encoded by an algebra or by a coalgebra. The idea of symme-
try, i.e. action of a group on a space, can be expressed by the action/coaction of a
Hopf algebra on an algebra/coalgebra. Thus four possibilities arise. Let H be a Hopf
algebra. An algebra A is called a left H-module algebra if it is a left H-module and
the multiplication map A® A — A and the unit map are morphisms of H-modules.
That is

h(ab) = KD (a)hP (),  h(1) = e(h)1,

for h € H,a,b € A. Similarly an algebra A is called a H-comodule algebra, if A
is a left H-comodule and the multiplication and the unit maps are morphisms of
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‘H-comodules. In a similar fashion an H-module coalgebra is a coalgebra C' which
is a left H-module, and the comultiplication A : C — C' ® C and the counit map
are H-module maps. Finally an H-comodule coalgebra is a coalgebra C' which is an
‘H-comodule and the coproduct and counit map are comodule maps.

The smash product A#H of an H-module algebra A with H is, as a k-module,
A ® H with the product

(a®g)(b®h) =a(gVd) ® gPh.

It is an associative algebra under the above product.
Examples

e 1. For H = U(g), the enveloping algebra of a Lie algebra, A is an H-module
algebra iff g acts on A by derivations, i.e. we have a Lie algebra map
g — Der(A).

e 2. For H = kG, the group algebra of a (discrete) group G, A is a H-module
algebra iff G acts on A via automorphisms G — Aut(A). The smash product
A#H is then isomorphic to the crossed product algebra A x G.

e 3. For any Hopf algebra #, the algebra A = #H is an H-comodule algebra
where the coaction is afforded by comultiplication H — H ® H. Similarly,
the coalgebra H is an H-module coalgebra where the action is given by the
multiplication H ® H — H. These are analogues of the action of a group on
itself by translations.

¢ 4. By a theorem of Kostant [28], any cocommutative Hopf algebra H over an
algebraically closed field of characteristic zero is isomorphic (as a Hopf algebra)
to a smash product H = U(P(H))#kG(H), where P(#) is the Lie algebra of
primitive elements of % and G(H) is the group of all grouplike elements of H
and G(H) acts on P(H) by inner automorphisms (g, h) + ghg™!, for g € G(H)
and h € P(H).

3 Cyclic modules

Cyclic co/homology was first defined for (associative) algebras through explicit com-
plexes or bicomplexes. Soon after, Connes introduced the notion of cyclic module
and defined cyclic homology of cyclic modules [10]. The motivation was to define
cyclic homology of algebras as a derived functor. Since the category of algebras and
algebra homomorphisms is not an additive category, the standard (abelian) homo-
logical algebra is not enough. In Connes’s approach, the category of cyclic modules
appears as “abelianization” of the category of algebras with the embedding defined
by the functor A — A?, explained below. For an alternative approach one can con-
sult ([13]), where cyclic cohomology is shown to be the nonabelian derived functor
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of the functor of traces on A. It was soon realized that cyclic modules and the
flexibility they afford are indispensable tools in the theory. A recent example is the
cyclic homology of Hopf algebras which cannot be defined as the cyclic homology of
an algebra or coalgebra.

In this section we recall the theory of cyclic and paracyclic modules and their
cyclic homologies. We also consider the doubly graded version, i.e. biparacyclic
modules and the generalized Eilenberg-Zilber theorem [10, 13, 14].

For r > 1 an integer or r = oo, let A" denote the r-cyclic category. An r-cyclic
object in a category C is a contravariant functor A" — C. Equivalently, we have
a sequence X,,n > 0, of objects of C and morphisms called face, degeneracy and
cyclic operators

5i:Xn_>Xn—17 O'i:Xn—)Xn_H, T: Xy, = X, 0<1<n

such that (X, d;,0;) is a simplicial object and the following extra relations are sat-
isfied:

0T = TO0;—1 1<i<n
doT = On
o;T = TO-1 1<1<n
ooT = Tlop
) = i,
For r = oo, the last relation is replaced by the empty relation and we have a

paracyclic object. For r = 1, a Al object is a cyclic object.

A cocyclic object is defined in a dual manner. Thus a cocyclic object in C is a
covariant functor A — C. Let k be a commutative ground ring. A cyclic module
over k is a cyclic object in the category of k-modules. We denote the category of
cyclic k-modules by Ay.

Next, let us recall that a biparacyclic object in a category C is a contravariant
functor A* x A*® — C. Equivalently, we have a doubly graded set of objects X, ,,,
n,m > 0, in C with horizontal and vertical face, degeneracy and cyclic operators
d;, 04, T,d;, S;,t such that each row and each column is a paracyclic object in C
and vertical and horizontal operators commute. A biparacyclic object X is called
cylindrical if the operators 7™+ ¢"*1 : X,,, ,, — X, , are inverse of each other. If X
is cylindrical then it is easy to see that its diagonal, d(X), defined by d(X), = X, ,
with face, degeneracy and cyclic maps d;d;, 0;s; and Tt is a cyclic object.

We give a few examples of cyclic modules that will be used in this paper. The
first example is the most fundamental example which motivated the whole theory.

1. Let A be an algebra. The cyclic module Af is defined by A% = A®(+D) 5 > 0,
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with the face, degeneracy and cyclic operators defined by

0i(ap®a1 Q- Qay) = Q- ®ajai+1® - Qay
In(ap®a1®---®ay) = apag®a1 Q-+ ® ap_1
oi(la®a1® - ®ap) = @WR - QaeOLIR - Qan
T(a®a1® - ®ay) = @, Rag @ an 1-

The underlying simplicial module of A” is a special case of the following sim-
plicial module. Let M be an A-bimodule. Let C,(A, M) = M Q@ A®", n > 0.
For n = 0, we put Cy(A, M) = M. Then the following faces and degeneracies
di, 0; define a simplicial module structure on C4(A, M):
do(m®a1 ® - ®ay,
dilm®a1 ®@---®ay,
n(m®a1 @+ Qay
oo(m®a1 @+ Qap
oi(m®a; ® - R ay

ma; @az ®---Q ap

m@ar @+ Qa;a;4+1 Q- Qay

aym®a; Q---Qap_1
mR1Qa1 Q- Qan

= mM®a® - ®al®---Qa, 1i<n.

~— ' ' '

Obviously, for M = A we obtain A". In general, there is no cyclic structure
on Co(A, M).

2. let C be a coalgebra. The cocyclic module Cj is defined by G}t = centl p >
0, with coface, codegeneracy and cyclic operators:

Silcn®c1®®cy) = @ 0d)@d?®e 0<i<n
Int1(co®c1®---®¢p) = c(()2)®cl®---®cn®c(()1)
oilcg®c1®---Q®¢y) = ¢®...c;Q¢e(ciy1)® - ®cy, 0<i<n-—1
T(C()®Cl®"'®cn) = 1 Q@c® --Qcp Ry,
where as usual A(c) = ¢ @ ¢{?) (Sweedler’s notation). The underlying cosim-
plicial module for C}; is a special case of the following cosimplicial module. Let
M be a C-bicomodule and C"(C, M) = M @ C®". The following coface and
codegeneracy operators define a cosimplicial module.
(50(m®01®"'®cn) = m(0)®m(1)®cl...®cn
dim®c1®---®cy) = m®cl---®cgo)®c§1)®cn for 1<i<n
(5n+1(m®cl®"'®cn) = m(0)®C1®"'®C7L®m(_1)
oi(m®c1®--®¢y) = mcy...e(cr1)®---®c¢, 0<i<n-—1,
where we have denoted the left and right comodule maps by A;(m) = m_1) ®
m(y and Ap(m) = m©® @ m). Let

n+1
d= E )is; : C™(C, M) — C™TL(C, M).
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Then d? = 0. The cohomology of the complex (C*(C, M), d) is the Hochschild
cohomology of the coalgebra C' with coefficients in the bicomodule M. For
M = C, we obtain the Hochschild complex of C};. Another special case occurs
with M =kand A, : k- kQC=Cand A;: k— CQ®k=C, are given by
Ar(1) =1® g and Ay(1) = h® 1, where g, h € C are grouplike elements. The
differential d : C™ — C™*! in the latter case is given by

dlci1®c2-"Qcp) =9gQc1® - ®cy

n
+) (D) ® @A) ® Qe+ (—1)"Me1 @ ® ¢y @ b
=1

3. Let g: A — A be an automorphism of an algebra A. The paracyclic module
AE, is defined by AE,yn = A®(+1) with the same cyclic structure as A%, except
the following changes

n(ag®ar1---®ay) = glap)ag -+ ap_1
T(ag®ar-®a,) = g(a,) ®a @+ Qan_1.

One can check that Ag is a A°°-module and if g" = id, then it is a A"-module. For
g = id, we obtain example 1.

Next, let us indicate how one defines the Hochschild, cyclic and periodic cyclic
homology of a cyclic module. This is particularly important since the cyclic ho-
mology of Hopf algebras is naturally defined as the cyclic homology of some cyclic
modules associated with them. Given a cyclic module M € A, its cyclic homology
group HCp(M), n > 0, is defined (in [10]) by

HC,(M) := Tor™ (M, k%),
and similarly the cyclic cohomology groups of M are defined by
HC™(M) := Ext} (M, k).

Using a specific projective resolution for k!, one obtains the following bicomplex
to compute cyclic homology. Given a cyclic module M, consider the following first
quadrant bicomplex, called the cyclic bicomplex of M.

My <+ My <+ My +——
N
My < My N vy AT
N
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We denote this bicomplex by CC*(M). The operators b, b’ and N are defined by

Y o= 712(—1)%51-
N = Z(—1)m7i.

Using the simplicial and cyclic relations, one can check that b = b? = 0, b(1 —
(=1)"7) = (1—(=1)""17)b' and ' N = N¥'. The Hochschild homology of M, denoted
by HH.(M), is the homology of the first column (M,,b). The cyclic homology of
M, denoted by HC,(M), is the homology of the total complex TotCC™(M).

To define the periodic cyclic homology of M, we extend the first quadrant bi-
complex CCt(M) to the left and denote it by CC(M). Let TotCC(M) denote the
“total complex” where instead of direct sums we use direct product,

TotCC(M)y = [ [ M.
=0

It is obviously a 2-periodic complex and its homology is called the periodic cyclic
homology of M and denoted by HP,(M).

The complex (M,,b') is acyclic with contracting homotopy ¢_1 = 70,,. One can
then show that CCT (M) is homotopy equivalent to Connes’s (b, B) bicomplex

Where B : M, — My, is Connes’s boundary operator defined by B = (1 —
(=1)"7)o_1N.

Finally we arrive at the 3rd definition of cyclic homology by noticing that if & is
a field of characteristic zero, then the rows of CC™ (M) are acyclic in positive degree
and its homology in dimension zero is

)=
S - (M

CNM
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It follows that the total homology, i.e. cyclic homology of M can be computed,
if k is a field of characteristic zero, as the homology of Connes’s cyclic complex
(C(M),b)

Now, if A is an associative algebra, its Hochschild, cyclic and periodic cyclic
homology, are defined as the corresponding homology of the cyclic module A?. We
denote these groups by HH,(A), HC.(A) and H P,(A), respectively. Similarly, if C
is a coalgebra, its Hochschild, cyclic and periodic cyclic cohomology are defined as
the corresponding homology of the cocyclic module Cj.

Our next goal is to recall the generalized Eilenberg-Zilber theorem for cylindrical
modules from [14, 17]. This is needed in Section 6 to derive a spectral sequence for
cyclic homology of smash products.

A parachain complex (M,,b, B) is a chain complex (M,, b) endowed with a map
B: M, - M, such that B2 =0 and T = 1 — (bB + Bb) is an invertible operator.
For example, a mized compler is a parachain complex such that bB + Bb = 0.
Given a mixed complex M one can define its (b, B)-bicomplex as the Connes’s (b, B)
bicomplex. One can thus define the Hochschild, cyclic and periodic cyclic homology
of mixed complexes. The definition of a bi-parachain complez should be clear. Given
a bi-parachain complex X, ;, one defines its total complex T'0otX by

(TotX), = ®X,q b=by+by, B=B,+TBy,

where v and h refers to horizontal and vertical differentials. One can check that
TotX is a parachain complex [14].

Now if X is a cylindrical module and C(X) is the bi-parachain complex obtained
by forming the associated mixed complexes horizontally and vertically, then one can
check that Tot(C(X)) is indeed a mixed complex. On the other hand we know
that the diagonal d(X) is a cyclic module and hence its associated chain complex
C(d(X)) is a mixed complex.

The following theorem was first proved in [14] using topological arguments. A
purely algebraic proof can be found in [16].

Theorem 3.1. ([14, 16]) Let X be a cylindrical module. There is a quasi-isomorphism
of mized complexes fo+ufi : Tot(C(X)) — C(d(X)) such that fy is the shuffle map.

4 Cyclic cohomology of Hopf algebras

Thanks to the recent works of Connes-Moscovici [9, 8, 6], the following principle
has emerged. A reasonable co/homology theory for Hopf algebras and Hopf algebra
like objects in noncommutative geometry should address the following two issues:

e It should reduce to group co/homology or Lie algebra co/homology for H =
kG, k[G] or U(g); Hopf algebras naturally associated to (Lie) groups or Lie
algebras.

e There should exist a characteristic map, connecting the cyclic cohomology of
a Hopf algebra # to the cyclic cohomology of an algebra A on which it acts.
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For example, for any H-module algebra A and an invariant trace 7: A — C,
there should exist a map

v:HC*(H) — HC*(A).

Let us explain both points, starting with the first. It might seem that given
a Hopf algebra H, the Hochschild homology of the algebra H might be a good
candidate for a homology theory for H in noncommutative geometry. After all, one
knows that for a Lie algebra g and a U(g)-bimodule M,

H,(g,M"%) = H,(U(g), M)

where the action of g on M is given by g-m = gm — mg [20]. Thus Hochschild
homology of U(g) can be recovered from the Lie algebra homology of g. Conversely, if
M is a g-module we can turn it into a U (g)-bimodule where the left action is induced
by g-action and the right action is by augmentation: mX = e(X)m. It follows
that He(g, M) = H.(U(g), M), which shows that the Lie algebra homology can
also be recovered from Hochschild homology. In particular H,.(g,k) = He(U(g), k)-
Similarly, if G is a (discrete) group and M is a kG-bimodule then H,(G; M) =
HH,(kG, M) where the action of G on M = M is given by gm = gmg~'.

In [16] these type of results were extended to all Hopf algebras in the following
way. Let H be a Hopf algebra and M a left H-module. One defines groups Hq(H, M)

as the left derived functor of the functor of coinvariants from #-mod— k-mod,
M — My := M/ submodule generated by {hm —e(h)m |h € H, m € M}.

Obviously, My = k ® M which shows that H,(H,M) = Tor}(k, M). For H = kG
or U(g), one obtains group and Lie algebra homologies.

Now let ‘H be a Hopf algebra and M be an #H-bimodule. We can convert M to
a new left H -module M = M, where the action of # is given by

h-m = hDmSnM).

Proposition 4.1. ([16/)(Mac Lane isomorphism for Hopf algebras)
Under the above hypotheses there is a canonical isomorphism

Hp(H, M) = Hy(H; M) = Torl(k, M%),
where the left hand side is Hochschild homology.

Note that the result is true for all Hopf algebras irrespective of being (co)commutative
or not.

This suggests to define Ho(#,k), where k is an H-bimodule via augmenta-
tion map, in analogy with the group homology. This is not, however, a reason-
able candidate as can be seen by considering # = k[G], the coordinate ring of
an affine algebraic group. Then by the Hochschild-Kostant-Rosenberg theorem
HH,(k[G]; k) = A*(Lie(G@)) and hence is independent of the group structure.
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Next we discuss the second point above. Some interesting cyclic cocycles were
defined by Connes in the context of Lie algebra homology and group cohomology.
For example let A be an algebra and ¢;,02 : A - A two commuting derivations.
Let 7 : A — C be an invariant trace in the sense that 7 is a trace and 7(d1(a)) =
7(d2(a)) = 0 for all @ € A. Then one can directly check that the following is a cyclic
2-cocycle on A [5]:

p(ag, a1,a2) = 7(ao(01(a1)d2(az) — d2(a1)d1(az))).

This cocycle is non-trivial. For example, if A = Ay is the algebra of smooth non-
commutative torus and e € Ay is the smooth Rieffel projection, then ¢(e, e, e) = +q,
where 7(e) =| p —¢q0 | [5].

For a second example let G be a (discrete) group and ¢ be a normalized group
cocycle on G with trivial coefficients. Then one can easily check that the following
is a cyclic cocycle on the group algebra CG [7]:

_ Jelgi,92---59n) if gogi-..gn =1
(10(90591 LI 7gn) - { 0 Otherwise

It is highly desirable to understand the origin of these formulas, put them in a
conceptual context and generalize them. For example we need to know in the case
where a Lie algebra g acts by derivations on an algebra A, g — Der(A), if there is
a map

v: He(g,C) - HC*(A).

Now let us indicate how the cohomology theory defined by Connes-Moscovici [9,
8] and its dual version in [16] resolve both issues. Let H be a Hopf algebra. Let ¢
be character and o a group like element on #H, i.e. § : H — k is an algebra map
and o : k — H a coalgebra map. Following [9, 8], we say (6,0) is a modular pair if
6o = idy and a modular pair in involution if, in addition, (0*1.§)2 = 1dy where the
twisted antipode S is defined by

S(h) =" 8(RM)S ().
(k)

Given H, and (9, 0), Connes-Moscovici define a cocyclic module 'HE 5,0) 38 follows.

Let HE(’S?U) = k and thfg) = H®" | n > 1. The coface, codegeneracy and cyclic
operators d;, o;, T are defined by

do(h1 @+ ® hy,
5i(h1®
Opnt1(h1 ® - ® hy
(h1 ®
(

= 134h ® - Qhy,
hi®---QAMh)®---®hy, for 1<i<n
h1®---®hn®0'

= h®--Qehit1)® - Qh, for 0<i<n
= A" 'S(h) - (h2® - ® hy ® ).

o;(h
T(h1® - Q hy

~— O~ ' ' ~—
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These formulas were discovered in [9] and then proved in full generality in [8].
In [11], M. Crainic gave an alternative approach based on Cuntz-Quillen formalism
of cyclic homology [12]. Note that the cosimplicial module H 5,0) is the cosimplicial
module associated to the coalgebra H with coefficients in k via the unit map and
o. The passage from the cyclic homology of (co)algebras to the cyclic homology of
Hopf algebras is remarkably similar to passage from de Rham cohomology to Lie
algebra cohomology. The key idea in both cases is invariant cohomology.

It is not difficult to see that the above complex is an exact analogue of invariant
cohomology in noncommutative geometry. In fact, under the multiplication map
H Q H — H the coalgebra H is an H-module coalgebra. Let ?:lh be the cocyclic
module of the coalgebra H. The cocyclic module ’}:[h becomes a cocyclic H-module

N N ~d ~ 0
via the diagonal action H ® Hy — Hy. We have Hy, = HE 5,1) Where H; is the space
of §-coinvariants.

The cohomology groups H P('&,U_) (H) are so far computed for the following Hopf
algebras. For quantum universal enveloping algebras no examples are known except
for Uy(sl2) that we recall below.

1. If H = H,, is the Connes-Moscovici Hopf algebra, we have [9]

HFj,(H) = @ H'(a,,C)

i=n (mod 2)
where a,, is the Lie algebra of formal vector fields on R”.

2. If H = U(g) is the enveloping algebra of a Lie algebra g, we have [9]

HPjG ()= P Hils,Cs)
i=n (mod 2)

3. If H = C[G] is the coordinate ring of a nilpotent affine algebraic group G, we
have [9]
HP(Z,I)(H) = @ HZ(Q,C),

i=n (mod 2)

where g = Lie(QG).
4. If H admits a normalized left Haar integral, then [11]
HPj,(H) =0,  HPj, (M) =F.

Recall that a linear map [ : H — k is called a normalized left Haar integral
if for all h € H, [(h) = [(R))R® and [(1) = 1. Compact quantum groups,
finite dimensional Hopf algebras over a filed of characteristic zero, and group
algebras are known to admit normalized Haar integral in the above sense. In
the latter case [ : kG — k sending g — 0 for all g # e and e — 1 is a Haar
integral. Note that G need not to be finite.
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5. If H = Ugy(sl2(k)) is the quantum universal algebra of slo(k), we have [11],

HP] (M) =0, HP,,(H)=kok.

6. Let 7 be a commutative Hopf algebra. The periodic cyclic cohomology of the
cocyclic module ’Hh6 1y can be computed in terms of the Hochschild homology
of coalgebra H with trivial coefficients.

Proposition 4.2. ([16]) Let H be a commutative Hopf algebra. Its periodic cyclic
cohomology in the sense of Connes-Moscovici is given by

HP (H)= € H'(H k).

i=n (mod 2)

For example, if H = k[G] is the algebra of regular functions on an affine algebraic
group G, the coalgebra complex of % = k[G] is isomorphic to the group cohomology
complex of G where instead of regular cochains one uses regular functions G x G x
-++ X G — k. Denote this cohomology by H*(G, k). It follows that

HPL(kG) = €D HI(Gk).

i=n (mod 2)

As is remarked in [7], if the Lie algebra Lie(G) = g is nilpotent, it follows from Van
Est’s theorem that H*(G,k) = H'(g,k). This gives an alternative proof of Prop., 4
and Remark 5 in [7].

Let A be an H-module algebra and Tr : A — C a é-invariant linear map, i.e.,
Tr(h(a)) = 6(h)Tr(a) for h € H, a € A. Equivalently, T'r satisfies the integration
by part property:

Tr(h(a)b) = Tr(aS(h)(D)).

In addition we assume T'r(ab) = Tr(boa). Given (A,H,Tr), Connes-Moscovici
show that the following map, called the the characteristic map, defines a morphism
of cyclic modules 7 : H(h;’ s = Af, where A" = hom(Ay, k) is the cocyclic module
associated to A,

Y(h1 @ -+ ® hy)(ao, a1,...,an) = Tr(aphi(ai) ... hp(hy)).

We therefore have well-defined maps

v HC(’JJ)(’H) — HC*(A)
v:HPj (H) — HP*(A).
Examples show that, in general, this map is non-trivial. For example let g be

an abelian n-dimensional Lie algebra acting by derivations on an algebra A. Let
d; € Der(A) be the family of derivations corresponding to a basis Xi,...,X, of g,
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and Tr : A - k an invariant trace on A, i.e. Trd;j(a) =0, 1 <i < mn. We have
H;(g,k) = A'g. In particular H,(g, k) is 1-dimensional. The inclusion

t=n mod 2

combined with the characteristic map -y defines a map
v:Hy(g, k) =k — HC"(A).
The image of X1 A X2 A --- A X, under 7 is the cyclic n-cocycle ¢ given by

0(a0,a1,---,an) = Y (—1)"Tr(a001(ag(1))02(ag()) - - - 6n(@a(n)))-
oES,

The rest of this section is devoted to a dual cyclic theory for Hopf algebras
which was defined, independently, in [16, 29]. There is a need for a dual theory
to be developed. This is needed, for example, when one studies coactions of Hopf
algebras (or quantum groups) on noncommutative spaces, since the original Connes-
Moscovici theory works for actions only. A more serious problem is the fact that
if ‘H has normalized left Haar integral then its cyclic cohomology in the sense of
Connes-Moscovici is trivial in positive dimensions [11], but the dual theory is non-
trivial.

In [16] we associated a cyclic module to any Hopf algebra # over k if H has a
modular pair (§,0) such that §2 = idy, where S(h) = §(h®)oS(h(). This cyclic
module can be seen as the dual of the cocyclic module introduced in [8] by A.
Connes and H. Moscovici. Using € and § one can endow k with an #-bimodule
structure, i.e.,

Rid:HR®k—>k and idQRec:kQH — k.

Our cyclic module as a simplicial module is exactly the Hochschild complex of H
with coefficients in k where k is an H-bimodule as above. So if we denote our cyclic

module by 7-756’0), we have ﬁéi’a) = H®" for n > 0 and ﬁég’a) = k. Its faces and
degeneracies are as follows:

= 6(h1)h2 Rh3® ... hy,

( - ® hn)

Si(hi®hy®...Qh,) = hi1®ho®..®hihiy1 ®...Q hy,
on(hi®h2®...Q~n) = 0(hn)h1 @h2 @ ... ® hn—1
oo(h1®ha®...Qh,) = 1M ®...Qh,
Uz‘(h1®h2® ..®hn) = h1®h2...Q"h;i QL@ hjy1... ® hy
on(h1®hy®...Qhy,) = h1Qhy®...Q®1.

To define a cyclic module it remains to introduce an action of cyclic group on our
module. Our candidate is

T ®h2 ® . ® hy) = Y 6(hP)a SRR D KD @ P @ ... @ Y

n—1-
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Theorem 4.1. ([16]) Let H be a Hopf algebra over k with a modular pair (6,0)
such that S = idy . Then Héé’a) with operators given above defines a cyclic module.

Conversely, if (§,0) is a modular pair such that ’ﬁéd’a)

S2 = idy,.

is a cyclic module, then

Now let A be an H-comodule algebra. To define the characteristic map we need
an analogue of an invariant trace.

Definition 4.1. A linear map Tr : A — k is called d-trace if

Tr(ab) = Tr(d®a)s(pM) Va,b € A.
(b)

It is called o-invariant if for all a,b € A,
> 1) (6®) =Y Tr(@@b)S, (ah)
(b) (a)

or equivalently
Tr(a)aV) = Tr(a)o.

Consider the map v : Ay, — ﬁé‘;’a) defined by

Y(ap ®a1 ®---Qap) = Tr(aoago) e ag?))agl) ® agl) ®...al),

It is proved in [16] that 7 is a morphism of cyclic modules.

Corollary 4.1. Under the above conditions, v induces the following canonical maps:

v: HC4(A) — I?E’EJ’U) (H)

i HPJ(A) —» HPY? (30).

Next, we state a theorem which computes the cyclic homology of cocommutative

Hopf algebras.

Theorem 4.2. ([16]) If H is a cocommutative Hopf algebra, then
N((571)
HC, (M) = P Hn-2(H, ks),
i>0
where kg is the one dimensional module defined by 6.

Example 4.1. Let g be a Lie algebra over k and U(g) be its enveloping algebra.
One knows that H,(U(g);k) = Hp(g; k) [20]. So by Theorem 4.2 we have

N(Jal)
76" (g) = € Hilas ko).
>0



A Survey of Cyclic Cohomology for Hopf Algebras 29

Example 4.2. Let G be a discrete group and H = kG its group algebra. Then from
theorem 4.2 we have

HC(E)
(,)

(kG) = Dyzo Hn—2i(G F)
(kG) @i:n (mod 2) H’L(G7 k)

Example 4.3. Let G be a discrete group and H = CG. Then the algebra H is a
comodule algebra for the Hopf algebra H via coproduct map H — HQH. The map

Tr : CG — C defined by
1 =e
ORI

is a 0-ir mvarmnt o-trace for § =€, 0 = 1. The dual characteristic map
v* HC’(6 1)((CG) — HC™(CG) combined with the inclusion

H"(G,C) — HC(6 1)(CG) s ezactly the map H"(G,C) — HC"(CG) described
earlier in this section.

It would be very interesting to compute the Hopf cyclic homology HC, for com-
pact quantum groups. Of course, one should look at algebra of polynomial or smooth
functions on compact quantum groups, the C*-completion being uninteresting from
cyclic theory point of view. In the following we recall two results that are known so
far about quantum groups.

Let k be a field of characteristic zero and ¢ € k, ¢ # 0 and ¢ not a root of
unity. The Hopf algebra H = A(SLy(2,k)) is defined as follows. As an algebra it is
generated by symbols a, b, ¢, d, with the following relations:

ba = gab, ca = qac, db = qbd, dc = qcd,
be = c¢b, ad —q ‘be = da — gbe = 1.

The coproduct, counit and antipode of ‘H are defined by
Ala)=a®a+b®c, A(b)=a®b+b®c
Alc)=c®a+d®c, Ad)=c®b+d®d

e(a) =e(d) =1, €b)=elc) =0,
S(a) =d, S(d) =a, Sb)=—gb, S(c)=—q ‘c.

For more details about H we refer to [19]. Because S? # id, to define our cyclic
structure we need a modular pair (¢,6) in involution. Let § be as follows:

And o0 = 1. Then we have 3(21,5) = 1d.
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For computing cyclic homology we should at first compute the Hochschild ho-
mology H,.(H,k) where k is an H-bimodule via d, € for left and right action of H,
respectively.

One knows H,(H,k) = Tor! (H,k), where H* = H ® HP’. So we need a
resolution for k, or H as H®-module. We take advantage of the free resolution for
H given by Masuda et al. [16]. By a lengthy computation one can check that
Hy(H,k) = 0, Hi(H,k) = Ho(H,k) = k @k, and Hp(H,k) = 0 for all n > 3.
Moreover we find that the operator B = (1 — 7)oN : Hi(H,k) — Ha(H, k) is
bijective and we obtain:

Theorem 4.3. ([16]) For any q € k which is not a root of unity one has
HC.(A(SLy(2,k))) =k @k and HC,(A(SLg(2,k))) =0 for all n # 1.

P o~

In particular, HPy(A(SLy(2,k))) = HP1(A(SLy(2,k))) = 0.

The above theorem shows that Theorem 4.2 is not true for non-cocommutative
Hopf algebras.

The quantum universal enveloping algebra U,(sl(2,k)) is an k-Hopf algebra
which is generated as an k-algebra by symbols o, 0!, z, y subject to the following
relations

1 o—o1

oo t=¢"1

oc=1, ox=¢’zo, oy=q *yo, Yy —yr=——.
q—q

The coproduct, counit and antipode of U, (sl(2, k)) are defined by:

Al)=z@0+1Qz, Aly) =y®1+0 ' ®y, Alo) =00,

It is easy to check that S%(a) = cac~!, so that (¢7!,¢) is a modular pair in
involution. As the first step to compute its cyclic homology we should find its
Hochschild homology group with trivial coefficients. (k is a U,(sl(2, %)) bimodule
via €.) We define a free resolution for % = Uy(sl(2,k)) as a H¢-module as follows

(+) Hot My <2 M B My <2 M.

where My is H®, M is the free H*-module generated by symbols 1®e,,1®e;, 1 Rey,
Ms is the free H®-module generated by symbols 1 ® e; A ey, 1 @ ey Aeg, 1 @ ez A ey,
and finally M3 is generated by 1 ® e; Aey A e, as a free He-module. We let M, =0
for all n > 4. We claim that with the following boundary operators, () is a free
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resolution for H:

d(l®e;) =z01-1Q0«z
d(l®e)=y®1l-1®y
d(l®Rey) =01 -1Q0

(

(

(

L

1(1®ezNey) =(0®1-10¢%°0)®e; — ((*T7®1-1®7) Qe
di(1®eyNey) =(001-10¢%0) Qe — ((TYR1-10y) ®e,
di(l@ez Ney) =(y®1-10yY) Qe — (2®@1-1Q7) ey
1
q9—q
d2(1®ew/\ey/\eg)=(y®1—1®q2y)®ez/\eg

—(07'®0T +1®1) Qe

P (Pr®1-107)QeyNes +* (001 -1R0)@ey Aey

31

To show that this complex is a resolution, we need a homotopy map. First we
recall that the set {o'z™y" |l € Z,m,n € Ny} is a P.B.W. type basis for H [19].

Let

dla,b,n) = (@ '@1+a"t@b...a@b" +10b" 1)

where n € Nja € H,b € H®, and ¢(a,b,0) = 0, and w(p) = 1 if p > 0 and 0

otherwise.

The following maps define a homotopy map for (x), i.e. sd+ds = 1:

S_1:H — M,,
S(a) =1®a,
So: My — My,
So(o'z™y" ®b) = (1 ®b)((olwm®1)¢(y,y,n)®ey+
+ (o' @ y")p(x, 2,m) @ e5) + w(l)(1 @ 2™y")p(0,0,1) @ e,
+ (w(l) — )(1 Qz™y") (o Lo, —l)(oc '@ ®e,),
S1: My — Mo,

Si(o'z™y" @ b® e,) = 0,

Si(0'z™y" @b @ ez) = (1®@D)((0'z™ @ 1)(y, y,n) @ ez Agy
1— 2n

+

(g—q¢H(1—-¢?)

+

q —
Si(clg™y" @ b®e,) = (1@ b)(¢*(c'z™ @ 1)d(y, ¢y, n) @ ey A e,

+ q2(n_1)(Ul ® yn)¢(xa q—2x’ m) ez A ea)a

d @y Nz, z,m)(c 10 14+¢201)QeyAey

1
q_1 (0l$m &® 1)¢(ya Yy,n — 1)(0_1 Q®o—1+ q2 b 1) ® €y A 60),
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Sy : My — M3,

S2(a®@b® ey Aey) =0,

S2(a®@b®ey Nes) =0,

Sa(alz™y" @b ® ey Aey) = (1 ®D)(0'z™ @ 1)¢(y, ¢*y,n) ® ex A ey A ey,
Sp=0: M, - My, for n>3.

Again, by a rather long, but straightforward computation, we can check that
ds + sd = 1. By using the definition of Hochschild homology as Tor™" (H,k) we
have the following theorem:

Theorem 4.4. ([16]) Ho(Uy(sl(2,k)),k) = k and H,(Uy(sl(2,k)),k) = 0 for all
n # 0 where k is Uy(sl(2, k))-bimodule via € for both sides.

Corollary 4.2. f/fan(Uq(sl(Q,k))) =k when n is even, and 0 otherwise.

5 Cohomology of Hopf algebroids

In their study of index theory for transversely elliptic operators and in order to
treat the general non-flat case, Connes and Moscovici [6] had to replace their Hopf
algebra H, by a so-called “extended Hopf algebra” Hras. In fact Hras is neither a
Hopf algebra nor a Hopf algebroid in the sense of [21], but it has enough structure
to define a cocyclic module similar to Hopf algebras [9, 8, 7].

In attempting to define a cyclic cohomology theory for Hopf algebroids in general,
we were led instead to define a closely related concept that we call an extended Hopf
algebra. This terminology is already used in [6]. All examples of interest, including
the Connes-Moscovici algebra Hgjs, are extended Hopf algebras.

Our first goal in this section is to recall the definition of extended Hopf algebra
from [18]. This is closely related to, but different from, Hopf algebroids in [21, 31].
The reason we prefer this concept to Hopf algebroids is that it is not clear how to
define cyclic homology of Hopf algebroids, but it can be defined for extended Hopf
algebras as we will recall from [18]. The whole theory is motivated by [6].

Broadly speaking, extended Hopf algebras and Hopf algebroids are quantizations
(i.e. not necessarily commutative or cocommutative analogues) of groupoids and
Lie algebroids. This should be compared with the point of view that Hopf algebras
are quantization of groups and Lie algebras. Commutative Hopf algebroids were
defined as cogroupoid objects in the category of commutative algebras in [26], the
main example being algebra of functions on a groupoid. The concept was later
generalized to allow noncommutative total algebras. A decisive step was taken in
[21] where both total and base algebra are allowed to be noncommutative. From the
point of view of noncommutative geometry, however , this definition is too restrictive
because it demands the existing of a section v: H g H — H ® H and at the same
time its coproduct A : H -+ H ®p H is not an “anticoalgebra” map.
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To define a cocyclic module one does not need -, but one needs an antipode pair
(S, S) as we define below. Motivated by this observation and also the fundamental
work of [6], we were led to define extended Hopf algebras and their cocyclic modules.
Recall from [21, 31] that a bialgebroid (H,R,A,¢) consist of

1: An algebra H, an algebra R, an algebra homomorphism a : R — H, and
an algebra antihomomorphism g : R — H such that the images of a and 3
commute in H. It follows that H can be regarded as R-bimodule via azb =
afa)B(b)z, a,b € Rz € H.

H is called the total algebra, R the base algebra, a the source map and 8 the
target map.

2: A coproduct, i.e. an (R, R)-bimodule map A : H — H ®p H with A(1) =
1 ®g 1 satisfying the following conditions

i) Coassociativity :
(A Qpridg)A = (idg @R A)A: H - HQpr H Qg H.
ii) Compatibility with product:
Ala)(B(r)®1 -1 a(r)) =0inH g H foranyr € R a € H
A(ab) = A(a)A(b) for any a,b € H.

3: A counit, i.e. an (R, R)-bimodule map € : H — R satisfying
6(1H) =1g and (6 QR idH)A = (’idH Rr G)A =idyg : H— H.

Definition 5.1. Let (H, R, o, 3, A, ) be a k-bialgebroid. We call it a Hopf algebroid
if there is a bijective map S : H — H which is a antialgebra map satisfying the fol-
lowing conditions,

i) SB = a.
i) mp(S®id)A =peS: H— H.

i1i) There ezists a linear map v : H g H — H ® H satisfying
noy=tidyg,n : HQrH — HQr H and mpy(id ® S)yYA =ae: H - H
where m: H® H — H Qg H is the natural projection.

Definition 5.2. Let (H,R) be a bialgebroid. An antipode pair (S,S) consists of
maps S,S : H — H such that

(i) S and S are antialgebra maps.
(ii) SB =SB = a.
(iii) my(S ® id)A = BeS : H— H and my (S @ id)A = BeS : H — H.
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(iv) S is an anticoalgebra map, i.e.

AS(h) =" S(h?)@r S(hV) for all h e H.

(v) S is a twisted anticoalgebra map, i.e.

AS(h) =Y S(h?) @k S(h™M) for all h e H.

Remark. The exchange operator H ®p H - H ®p H, t Qr y — y Qg x, is not
well-defined in general. It is, however, part of our assumption that for all h € H,
Y S(h?) ®@g S(hV) and Y S(h?)@rS (A1) are well-defined and equal to A(S(h))
and AS (h) respectively. This happens in all examples of interest in this paper. We
have relaxed the condition (ii) of Definition 5.1, the existence of a section, and
added the extra conditions on S and S. This is motivated by the fact that many
examples do not admit a section and also the section is not needed to define a
cocyclic module. The extra conditions are needed to define a cocyclic module.

Let (H, R) be a bialgebroid with an operator S : H — H such that S satisfies
axioms (i), (ii) of Definition 5.1 and S is an anticoalgebra map. Assume R is com-
mutative and o, 8 : R — Z(H), where Z denotes the center. Let J be a character
in the sense that § : H — R is an algebra map, and 68 = idr. Let S = § x S be the
convolution of § and S, so that

S(h) =Y Ba(hM)S(h®).
Then S is well defined and we have:

Lemma 5.1. By above construction (S, §) is an antipode pair on H.

Now let H s be the Connes-Moscovici algebra [6]. The operators S and 4 are
defined by

S(Y)) ==Y/, S(Xp)=—-Xp+0L;Y] S(L;) = -0

2

(Y7 =06,  8(Xp)=0 3(8%;) =0.

One can check that § xS is equal to the twisted antipode S of Connes-Moscovici.
Since S? = idy, we have

Corollary 5.1. The Connes-Moscovici algebra Hppr is an extended Hopf algebra.
We give a few more examples of extended Hopf algebras.

1. Let H be a Hopf algebra over k with a modular pair (6,1) in involution.
Then (H, o, 8,4A,¢,S,85) is an extended Hopf algebra, where a = f: k — H
is the unit map. More generally, given any algebra R, let H = R Q@ H ® R°.
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With the following structure H is a Hopf algebroid and extended Hopf algebra
over R:

afa)=a®1®1, Bla)=1®1Ra,
Al@h®b)=a®@hV 101012 b
ela®@h®b) =¢€(h)ab, S(a®h®b) = (b S(h)®a)
S(a@h®b) = (b®S(h) ®a)

2. The universal enveloping algebra, U(L, R), of a Lie-Rinehart algebra (L, R) is
an example of an extended Hopf algebra over the algebra R where the other
structures are:

AX)=X®rl1+1QrX A(r)=r®grl
eX)=0 e(r)y=r Vr € RandX € L.
S(X)=-X S(r)=r

The source and target maps are the natural embeddings, and S = S. Lie
Rinehart algebras are defined further in this section.

3. Let G be a groupoid over a finite base (i.e., a category with a finite set of
objects, such that each morphism is invertible). Then the groupoid algebra
H = kG is generated by morphism ¢ € G with unit 1 = ZXeObj(g) idx, and
the product of two morphisms is equal to their composition if the latter is
defined and 0 otherwise. It becomes a Hopf algebroid over R = kS, where S
is the subgroupoid of G whose objects are those of G and Mor(X,Y) = idx
whenever X =Y and 0 otherwise, for all X,Y € Obj(G).

The Hopf algebroid structure of H is given by:

a = : R — H are natural embeddings.

The coproduct map A: H — H®r H is A(g) = g ®rg-

The counit map e : H — R by €(g) = idsqrget(q)-

The antipode pair S = S : H — H by S(g) = g *.

The section map v: HQgr H — H® H by y(h®rg) =h®g.

It can be easily checked that H is both a Hopf algebroid and an extended Hopf
algebra.

Given an extended Hopf algebra (H, R) we define a cocyclic module H, h. as follows:
HhO:R, andH?:H®R®R---®RH (n factors), n > 1.
The coface, codegeneracy and cyclic actions ¢;, o; and 7 are defined by
do(h1 ®r " ®rhn) = 1g®rh1 ®r - Qrhn
Si(h1®r -+ ®rhyp) = M ®r--QrAh)®r Qrhy for 1<i<n
Ont1(M ®r ®rhn) = h1®r:--®rhy Qrly
( n)
( n)

hi®r - ®rhp) = h1Qr--Qre(hit1) Qr--- Qg hy for 0<i<n
T(h1 ®r - Qrh = A”_ls(hl)-(h2®---®hn®1H).

0q
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These formulas were obtained in [6] by transporting a cocyclic submodule of A} via
a faithful trace to Hpuy, where A is an algebra on which Hpps acts. In [18] we
proved directly that these formulas define a cocyclic module for any extended Hopf
algebra.

Theorem 5.1. [18] For any extended Hopf algebra (H, R), the above formulas define
a cocyclic module on Hh.

The periodic cyclic cohomology of the universal enveloping algebra of Lie-Rinehart
algebras is computed in [18]. Lie-Rinehart algebras interpolate between Lie alge-
bras and commutative algebras, exactly in the same way that groupoids interpolate
between groups and spaces. In fact Lie-Rinehart algebras can be considered as the
infinitesimal analogue of groupoids. In the following all algebras are unital, and all
modules are unitary. For more information on Lie-Rinehart algebras one can see
[2, 15, 27].

Let k be a commutative ring. A Lie-Rinehart algebra over k is a pair (L, R)
where R is a commutative k-algebra, L is a k-Lie algebra and a left R- module, L
acts on R by derivations p : L — Dery(R) such that p[X,Y] = [p(X), p(Y)] for all
X,Y in L and the action is R-linear, and the Leibniz property holds:

[X,aY] =a[X, Y]+ p(X)(a)Y forall X,Y € Landa € R.
Instead of p(X)(a) we simply write X (a).

Example 5.1. Let R = C*°(M) be the algebra of smooth functions on a manifold
M and L = C®°(TM) = Derr(C*®(M)), the Lie algebra of vector fields on M. Then
(L, R) is a Lie-Rinehart algebra, where the action p : L = Derr(R) — Derr(R)
is the identity map.

Example 5.2. Let R = C*°(M) and (L,R) a Lie-Rinehart algebra such that L
is a finitely generated projective R-module. Then it follows from Swan’s theorem
that L = C*°(E) is the space of smooth sections of a vector bundle over M. Since
p:C®(E) — C®(TM) is R-linear, it is induced by a bundle map p: E — T M.
In this way we recover Lie algebroids as a particular example of Lie-Rinehart alge-
bras.

Next we recall the definition of the homology of a Lie-Rinehart algebra [27].
This homology theory is a simultaneous generalization of Lie algebra homology and
de Rham homology. Let (L, R) be a Lie-Rinehart algebra. A module over (L, R)
is a left R-module M and a left Lie L-module ¢ : L — Endi(M), denoted by
©(X)(m) = X(m) such that for all X € L, a € R and m € M,

X(am) =aX(m) + X(a)m
(aX)(m) = a(X(m)).

Alternatively, we can say an (L, R)-module is an R-module endowed with a flat
connection defined by Vx(m) = X(m), X € L, m€ M.
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Let C, = Cu(L,R; M) = M ®g Alt}(L), where Alt},(L) denotes the n-th ex-
terior power of the R-module L over R. Let d : C,, — C,_1 be the differential
defined by

dm X1 N---NX)p) = Z;‘:l(_l)i—lXi(m) QXiA-AX;--AX,
+El§z’<j§n(_1)z+Jm® (X, XGIANX - AX - - ANX--- AN X,

It is easy to check that d> = 0 and thus we have a complex (C,,d). The homology
of this complex is, by definition, the homology of the Lie-Rinehart algebra (L, R)
with coefficients in M and we denote this homology by H,(R, L; M). To interpret
this homology theory as a derived functor, Rinehart in [27] introduced the universal
enveloping algebra of a Lie-Rinehart algebra (L, R). It is an associative k-algebra,
denoted by U(L, R), such that the category of (L, R)-modules as defined above is
equivalent to the category of U (L, R)-modules. It is defined as follows.

One can see eagily that the following bracket defines a k-Lie algebra structure
on R@ L:

r+X,s+Y]=[X,Y]+X(s) = Y(r) forr,s € Rand X,Y € L.

Let U = U(R & L) be the enveloping algebra of the Lie algebra R & L, and let
Ut be the subalgebra generated by the canonical image of R @ L in U. Then
U(L,R) = Ut/I, where I is the two sided ideal generated by the set {(r.Z) —r'Z’ |
r € Rand Z € R® L}. In [27] Rinehart showed that if L is a projective R-module,
then

H.(L,R; M) = Tor! “B(R, M).

Next we compute the cyclic cohomology groups of the extended Hopf algebra
U(L, R) of a Lie-Rinehart algebra (L, R). Let S(L) be the symmetric algebra of the
R-module L. It is an extended Hopf algebra over R. In fact it is the enveloping
algebra of the pair (L, R) where L is an abelian Lie algebra acting by zero derivations
on R. Let A(L) be the exterior algebra of the R-module L. The following lemma
computes the Hochschild cohomology of the cocyclic module S(L)y.

Lemma 5.2. Let R be a commutative k-algebra and let L be a flat R-module. Then
HH*(S(L)y) = A*(L).

The following proposition computes the periodic cyclic cohomology of the ex-
tended Hopf algebra U(L, R) associated to a Lie-Rinehart algebra (L, R) in terms
of its Rinehart homology. It extends a similar result for enveloping algebra of Lie
algebras from [9].

Proposition 5.1. ([18]) If L is a projective R-module, then we have
HP"(U(L,R) = € Hi(L,R;R),
i=n mod 2

where HP* means periodic cyclic cohomology.
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Corollary 5.2. Let M be a smooth closed manifold and D be the algebra of differen-
tial operators on M. It is an extended Hopf algebra and its periodic cyclic homology
s given by

Proof. We have D = U(L, R), where L = C*®(TM) and R = C*(M). Dualizing
the above proposition, we obtain

HP,(D)= @ H(LR= € HipM).

i=n (mod 2) i=n (mod 2)

Definition 5.3. (Haar system for bialgebroids) Let (H, R) be a bialgebroid.
Let 7 : H — R be a right R-module map. We call 7 a left Haar system for H if

> a(r(AD)AR) = a(r(h) 1k
(h)
and at = 1. We call 7 a normal left Haar system if T(1y) = 1.

We give a few examples of Haar systems. Let H be the Hopf algebroid of a
groupoid with finite base. Then it is easy to see that 7 : H — R defined by
T(idy) = idy for all x € Obj(G) and 0 otherwise is a normal Haar system for H.
This example can be generalized. Let H = CZ°(G) be the convolution algebra of
a smooth e'tale (Hausdorff) groupoid. The map 7 : CX(G) — C°(Gy), defined as
the transpose of the map Gy — G, z +— id,, is a normal Haar system for C°(G). In
a related example, one can directly check that the map 7 : Ay — C[U,U '] defined
by

T(U"V™) = b oU"
is a normal Haar system for the noncommutative torus Ay.

Proposition 5.2. Let H be an extended Hopf algebra that admits a normal left
Haar system. Then HC**tY(H) = 0 and HC?(H) = ker{a — 8} for all i > 0.

Finally in this section we compute the Hopf periodic cyclic cohomology of com-
mutative Hopf algebroids in terms of Hochschild cohomology. Given an extended
Hopf algebra (H, R), we denote the Hochschild cohomology of the cocyclic module
Hy by HY(H, R). It is the cohomology of the complex

R—%sH » Hop H —2 HopHopH —2— ...
where the first differential is dy = a — 8 and d,, is given by

d1

dn(h1 ®r - - ®rhn) =1g ®rh1 ®r -+ QR hn+

n

Z(—l)ihl ®r - Qr A(hi) ®r -+ @R hn+
=1
(—1)"*'hy ®g - - ®r hn ®r 1u.
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Theorem 5.2. ([18]) Let (H, R) be a commutative Hopf algebroid. Then its periodic
Hopf cyclic cohomology is given by

HP'(H)=2 @ H(H,R).
i=n (mod 2)

6 Cohomology of smash products

A celebrated problem in cyclic homology theory is to compute the cyclic homology
of the crossed product algebra A x G, where the group G acts on the algebra A by
automorphisms. If G is a discrete group, there is a spectral sequence, due to Feigin
and Tsygan [13], which converges to the cyclic homology of the crossed product
algebra. This result generalizes Burghelea’s calculation of the cyclic homology of
a group algebra [20]. In [14] Getzler and Jones gave a new proof of this spectral
sequence using their Eilenberg-Zilber theorem for cylindrical modules. In [1], this
spectral sequence has been extended to all Hopf algebras with invertible antipode.
In this section we recall this result.

Let ‘H be a Hopf algebra and A an H-module algebra. We define a bicomplex,
in fact a cylindrical module, AjH as follows: Let

(AgH)p,q = HOPTD) @ AB@H) 4 g > 0.

The vertical and horizontal operators, 774, 674, oP9 and tP1,dP?, sP? are defined

(g, gp | a0, ) = (g6, g8 | 5798”9l - g") - ags a0, ag1)
5f’q(g0,...,gp|a0,...,aq)=(g ..,gp|a0,.. ,Qiiq1,-..,0q) 0<i<q
0G0, 2 9p | a0, ag) = (95 0 | (57 (0”01”08 - ag)ao, - @)
o (go,---,9p | @0,.-.,aq) = (9o, - ..,gp|a0,... ai,1,ai41,...,a4) 0<i<yq
t?9(g0, .-+ 9p | G0y - - -, aq):( (g+1) 1905~ gp— 1|g(0) ao,...,gz(,q)-aq)
a7 (gos-- - 9p | @0, ---,aq) = (9o, - 9igi+15---+9p | a0,-..,a) 0<i<g
42 (go, - - gp | Go; - -5 ag) = (95" g0, 91, -, 9p-1 | 9 - a0, ., 959 - ay)

(

go,---,9p | a07"'7aq) = (907"'7gi717.g’t+17"'7gp | a07"'7aq) 0<i<g.

Remark. The cylindrical module AjH in [1] is defined for all Hopf algebras. For
applications, however, one has to assume that S is invertible. The above formulas
are essentially isomorphic to those in [1], when S is invertible.

Theorem 6.1. ([1]) Endowed with the above operations, A4H is a cylindrical mod-
ule.
O
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Corollary 6.1. The diagonal d(A4H) is a cyclic module.
O

Our next task is to identify the diagonal d(AfH) with the cyclic module of the
smash product (A#7);. Define a map ¢ : (A#H), — d(AfH) by
¢(a0®90a"'7an®gn) =

(68", g, gD | 5L (gl gl

) a0, 579" 68" ... g V) .
57 952190) - a1, S (9 - an)

By a long computation one shows that ¢ is a morphism of cyclic modules [1].

Theorem 6.2. ([1]) We have an isomorphism of cyclic modules d(AjH) = (A#H )y.

Proof. Define a map 1 : d(AfH) — (A#H);, by ¥(gos---,9n | @0s---,an) =

0) (0 1 1 2
(967 .. g a0 @ 95", (0" ... gD) - a1 @ 9P, gV - an @ g1F).
Then one can check that ¢ o1 =19 o ¢ = id. U
Now we are ready to give an spectral sequence to compute the cyclic homology

of the smash product A##. By using the Eilenberg-Zilber theorem for cylindrical
modules, we have:

Theorem 6.3. There is a quasi-isomorphism of mized complexes
Tot((AfH)) = d(AFH) = (A#H)",
and therefore an isomorphism of cyclic homology groups,
HC.(Tot(AgH)) = HC.(A#H).
O

Next, we show that one can identify the E?-term of the spectral sequence ob-
tained from the column filteration. To this end, we define an action of H on the

first row of AfH, denoted by AFH ={H® A®(n+1)}n20’ by
he(g]ao....an) = (A g | O ag,... A" . a)

where h("t1) . g = p(ntD) g §=1(B("+2)) is an action of H on itself. We let C*(A) be
the space of coinvariants of H ® A®(™*+1) under the above action. So in C¥(A), we
have

h-(g|ao,...,an) = €(h)(g | ao,-- ., an)
We define the following operators on C7t(A),

Tn(g | agp, - -- ’an) = (g(l) | (571(9(0)) - an)aao’- .. 7an—1)
di(g | ao,-..,an) = (9| ag,---,aiGi+1,...,0ap)

671(9 | ag, - - - 7a’n) = (g(l) | (S_l(g(O)) ) Cl/n)(l(),al,... aa"fl—l)

oi(g ] ao,---,an) = (9] ao,---,ai,1,ai41,...,an).
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Proposition 6.1. ([1]) C*(A) with the operators defined above is a cyclic module.
O

Let M be a left H-module. Then M is an H-bimodule if we let H act on the right
on M via the counit map: m.h = e(h)m. We denote the resulting Hochschild homol-
ogy groups by H,(#,M). Explicitly it is computed from the complex C,(H, M) =
H®P @ M, p >0, with the differential § : Cp(H, M) — Cp_1(H, M) defined by

6(91792,---,gp7m) = E(gl)I(QQa".'agpam)
+ Zzpzl(_l)z(gl"-'7gigi+17"'agp’m)+(_1)p(gla"'7 p—lagp'm)'

Let Cq(AE{) = ’H®‘1®A5{ and let # act on it by h- (g1,-..,9p | m) = (g1,---,9p |
h - m), where the action of H on AE{ is given by conjugation. So we can construct
Hy(H, C,(43)).

Now we can show that our original cylindrical complex (AWH, (d,0,7),(d, s,t))
can be identified with the cylindrical complex (Cp(#, Cq(AHH), (0,s5,1),(0,5,t)) un-
der the transformations 8 : (AtH)pq — Cp(’H,Cq(Ag_i)) and vy : CP(H,Cq(AE{))
— (AhH)p,q defined by

18(90,---19;0 | aOa---,a'q) = (gg())a--" 1(10) ‘9099)"'91()1) ‘ aOa---aalI)

V(G159 | 9| avs---raq) = (95 g\ .. g, 0, gl | ap, -, ap).

One checks that Sy = 78 = id. To compute the homologies of the mixed complex
(Tot(C(AH),b+b+u(B+ B)) we filter it by the subcomplexes (column filteration)

F;')q = Z(H®(p+1) ® AR,

q<t

Theorem 6.4. ([1]) The E°-term of the spectral sequence is isomorphic to the com-
plex
Epy = (Cp(H, Cy(43)). )

and the E'-term is
Epg = (Hp(H,Cq(4), b+ uB)).

The E?-term of the spectral sequence is
Epq = HCq(Hy(H, Cq(453)))),

the cyclic homologies of the cyclic module H,(H, Cq(AFH)).
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