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Abstract

For a GI/G/c queue, a full busy period is a period commencing when an
arrival finds ¢ — 1 customers in the system and ending when, for the first time
after that, a departure leaves behind ¢ — 1 customers in the system. A proba-
bilistic proof for the necessary and sufficient conditions for the finite moment
conditions of the full busy periods of GI/G/c queues is presented. The results
on which this proof relies are much easier to prove than those previously used.

FULL AND PARTIAL BUSY PERIODS; REMAINING BUSY PERIODS; FAST SINGLE-
SERVER

1 Introduction

A GI/G/c queue is a system in which customers C1,Cy, ... arrive respectively and,
letting the inter-arrival time between C, and C,y; be T, and the service time of
C, be S, n=1,2,3,..., the random variables in the sequences {7} and {S,} are
mutually independent, the random variables within each sequence are identically
distributed and customers are served in the order of their arrival by ¢ channels
(servers) operating in parallel. The inter-arrival and the service time distributions
will be denoted by H and G, respectively, and p = A/cu, where 1/\ = E(T},),
1/u = E(S,). We assume throughout that p < 1; under this assumption, the queue
is stable. For GI/G/c queues, a full busy period, first introduced by Kiefer and
Wolfowitz in [7], is a period commencing when an arrival finds ¢ — 1 customers
in the system and ending when, for the first time after that, a departure leaves
behind ¢ — 1 customers in the system. By a partial busy period we mean a period
commencing when an arrival finds no customers in the system and ends when, for
the first time after that, a departing customer leaves behind no one in the system.
An interval between successive partial busy periods is called an idle period, and an
interval composed of a partial busy period and the immediately following idle period
is called a busy cycle. Whitt in [10] has shown that if P{T,, — S, > 0} > 0, then,
with probability 1, customers find the system empty infinitely often. This means
that with probability 1, there are infinitely many partial busy periods and cycles. At
epochs where an arrival finds the system empty, the process restarts itself, and the
system is regenerative. Let K be the number of customers served during a partial
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busy period, since K is the number of transitions between returns to 0, Whitt also
proved that E(K) < co. Now B, < 25:1 Sn, where Bj, is the corresponding partial
busy period. From Wald’s equation, we have E(B),) < co. This shows that full busy
periods also, if they occur, have finite means.

Let {X1, X, ...} be the sequence of busy cycles, where {X;}%°, isi.i.d. Assuming
A > 0, we have that F(X) = Zle T, < oo. Every cycle contains a random
number (possibly zero) of full busy periods. Let B;; be the jth full busy period
in cycle ¢ and N; be the number of full busy periods in the ith cycle. Clearly,
E(N;) < E(K) < co. We want to ensure that P(N; > 0) > 0, i.e. that full busy
periods occur. The following are sufficient conditions: either P(T},, > €) > 0 for any
e >0, or P(S, <t) <1for any ¢t > 0. If both of these conditions fail, then there
is an upper bound on the number of arrivals that can occur during a service time
and, for sufficiently large ¢, full busy periods never occur. For any finite ¢, there
are weaker sufficient conditions, depending on ¢, that ensure the occurrence of a full
busy period.

For a GI/G/c queue, for t > 0, let V(t), called the work in system at epoch ¢,
be the sum of all service times of all customers in queue and the remaining service
times of all customers in service at ¢. Also let

J(u,5) = { 1 ifV(u) >z

0 otherwise,

then V', the stationary work in system at any random epoch, has the following

distribution .

1
PV >z)= tligloz ; J(u, z)du

and is called virtual work. Kiefer and Wolfowitz in [6] establish conditions for the
delay in queue to converge in distribution to a unique stationary distribution and
conditions for the stationary distribution to have finite moments. For an elementary
proof of their results and related references, see Wolff [11]. Ghahramani in [3] has
shown that for a GI/G/c queue with A > 0 and P{T,, —S,, > 0} > 0 for any r > 0,
E(S™1) < oo if and only if E(V") < oo.

Thorisson in [9] has established moment and stochastic domination results for
delay and recurrence times of a certain regenerative process associated with a certain
multichannel queue leading to results of uniform rates of convergence. In [8] he has
studied cycle variables of GI/G/c queues and has established conditions for finite
geometric moments and ¢-moments for these variables, where ¢(z) = z™(z) and 9
is a concave function.

Let By be a full busy period of a GI/G/c queue. In this paper we prove the
following theorem.

Theorem. For a GI/G/c queue with A > 0, and P(N; > 0) > 0 for any r > 1,
E(S]) < oo implies that E(B}) < oo.
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General moment results for the busy cycle length and for the number of customers
served during a busy cycle are given in [8]. The proof we present here is a short
probabilistic one, the results on which it relies are much easier to prove than those
used by Thorisson.

2 Proof of the Main Result

We will now prove the theorem that we stated above. Let A be the event that “a
full busy period is in progress at a random time” (see [1] for the precise definition of
this notion). Let 1 — F'(z) be the fraction of full busy periods that have length > z.
Suppose that a full busy period is in progress at a random time, then given this, B,
the remaining full busy period, has distribution

Fy(z) = E(jgf) /0£(1 _ Fu))du, z >0,

the equilibrium distribution of F' (see [4]). Therefore

E(B"
BB - o

and it suffices to prove that E(ST) < oo implies that E(B7~!) < oc.

To do this, note that similar to the remaining full busy period, the stationary
work in system at a random time has also a well defined distribution. Since a full
busy period is found to be in progress, we denote by (V | A) the corresponding
random variable conditioned on this event. We will find an upper bound on B,
random variable B say, by a combination of two devices:

1. While B, is in progress, work at each arrival epoch increases by the service
time of the arriving customer, and decreases at rate c¢ at all points in between.
Suppose we compare work in system during B, with work in system for a corre-
sponding “fast single service” GI/G/1 queue with the same initial conditions,
(V| A) and arrival process. The service times for the GI/G/1 system are Sy /c
for all n (this is the fast single channel system first introduced by Brumelle
in [2]). For the GI/G/1 queue, work increases during B, at the same arrival
epochs and decreases at rate c at points in between, i.e. work in system is the
same stochastic process during B.. When B, ends, work in system (usually) is
still positive, and the GI /G /1 busy period will continue. Hence the remaining
GI/G/1 busy period is an upper bound on B,.

2. Now for the GI/G/1 queue, let the time between our random epoch and next
arrival be T, and the service time of the next arrival be S. Suppose we shift
the entire arrival process forward by 7', so that the next arrival occurs at our
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random epoch. Doing this can only make the remaining busy period longer.
That is if B denotes the remaining busy period with this shift, then

B, < B. (1)

With this shift, inter-arrival times are i.i.d., and B has the distribution of an
exceptional first service busy period with exceptional first service S+ (V | A).

Now E(S") < oo implies that E(V™™!) < oo (see [3] for a short proof of this), so
E(S+ (V | A)"! < oo and hence by Lemma 2 of [5], E(B"!) < oc. Therefore
by (1), E(B;™!) < oo.

Q. E. D.
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