Chapter 2
Representations for Classical Planning
Quick Review of Classical Planning

- Classical planning requires all eight of the restrictive assumptions:
 - A0: Finite
 - A1: Fully observable
 - A2: Deterministic
 - A3: Static
 - A4: Attainment goals
 - A5: Sequential plans
 - A6: Implicit time
 - A7: Offline planning
Representations: Motivation

- In most problems, far too many states to try to represent all of them explicitly as s_0, s_1, s_2, \ldots
- Represent each state as a set of features
 - e.g.,
 - a vector of values for a set of variables
 - a set of ground atoms in some first-order language L
- Define a set of *operators* that can be used to compute state-transitions
- Don’t give all of the states explicitly
 - Just give the initial state
 - Use the operators to generate the other states as needed
Outline

- Representation schemes
 - Classical representation
 - Set-theoretic representation
 - State-variable representation
 - Examples: DWR and the Blocks World
 - Comparisons
Classical Representation

- **Function-free** first-order language
 - Finitely many predicate symbols and constant symbols, but **no** function symbols.
 - **Atom**: predicate symbol and args - e.g., on(c1,c3), on(c1,x)
 - **Ground** expression: contains no variable symbols - e.g., on(c1,c3)
 - **Unground** expression: at least one variable symbol - e.g., on(c1,x)
 - **Substitution**: \(\theta = \{ x_1 \leftarrow v_1, \ x_2 \leftarrow v_2, \ldots, \ x_n \leftarrow v_n \} \)
 - Each \(x_i \) is a variable symbol; each \(v_i \) is a term.
 - **Instance** of \(e \): result of applying a substitution \(\theta \) to \(e \)
 - Replace variables of \(e \) simultaneously.

- **State**: a set \(s \) of ground atoms
 - The atoms represent the things that are true in one of \(\Sigma \)'s states.
 - Only finitely many ground atoms, so only finitely many possible states.
Example of a State

{attached(p1,loc1), in(c1,p1), in(c3,p1),
top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2),
on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1)}.
Operators

- **Operator**: a triple \(o = (\text{name}(o), \text{precond}(o), \text{effects}(o)) \)
 - name\((o)\) is a syntactic expression of the form \(n(x_1, \ldots, x_k) \)
 - \(n \): *operator symbol* - must be unique for each operator
 - \(x_1, \ldots, x_k \): variable symbols (parameters)
 - must include every variable symbol in \(o \)
 - precond\((o)\): *preconditions*
 - literals that must be true in order to use the operator
 - effects\((o)\): *effects*
 - literals the operator will make true

```plaintext
take(k, l, c, d, p)
;; crane \( k \) at location \( l \) takes \( c \) off of \( d \) in pile \( p \)
precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)
effects: holding(k, c), ¬empty(k), ¬in(c, p), ¬top(c, p), ¬on(c, d), top(d, p)
```
Actions

- **Action**: ground instance (via substitution) of an operator

\[
\text{take}(k, l, c, d, p)
\]

;; crane \(k\) at location \(l\) takes \(c\) off of \(d\) in pile \(p\)

precond: \(\text{belong}(k, l), \text{attached}(p, l), \text{empty}(k), \text{top}(c, p), \text{on}(c, d)\)

effects: \(\text{holding}(k, c), \neg \text{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)\)

\[
\text{take(\text{crane1}, \text{loc1}, \text{c3}, \text{c1}, \text{p1})}
\]

;; crane \(\text{crane1}\) at location \(\text{loc1}\) takes \(\text{c3}\) off \(\text{c1}\) in pile \(\text{p1}\)

precond: \(\text{belong(\text{crane1}, \text{loc1}), attached(p1,loc1),}\
\text{empty(c3, crane1), top(c3,p1), on(c3,c1)}\)

effects: \(\text{holding(c3, crane1), \neg empty(c3, crane1), \neg in(c3,p1),}\
\neg \text{top(c3,p1), \neg on(c3,c1), \text{top(c1,p1)}}\)
Notation

- Let S be a set of literals. Then
 - $S^+ = \{\text{atoms that appear positively in } S\}$
 - $S^- = \{\text{atoms that appear negatively in } S\}$
- More specifically, let a be an operator or action. Then
 - $\text{precond}^+(a) = \{\text{atoms that appear positively in } a\text{'s preconditions}\}$
 - $\text{precond}^-(a) = \{\text{atoms that appear negatively in } a\text{'s preconditions}\}$
 - $\text{effects}^+(a) = \{\text{atoms that appear positively in } a\text{'s effects}\}$
 - $\text{effects}^-(a) = \{\text{atoms that appear negatively in } a\text{'s effects}\}$

$\text{take}(k, l, c, d, p)$

;; crane k at location l takes c off of d in pile p

precond: $\text{belong}(k, l)$, $\text{attached}(p, l)$, $\text{empty}(k)$, $\text{top}(c, p)$, $\text{on}(c, d)$

effects: $\text{holding}(k, c)$, $\neg\text{empty}(k)$, $\neg\text{in}(c, p)$, $\neg\text{top}(c, p)$, $\neg\text{on}(c, d)$, $\text{top}(d, p)$

- $\text{effects}^+(\text{take}(k, l, c, d, p)) = \{\text{holding}(k, c), \text{top}(d, p)\}$
- $\text{effects}^-(\text{take}(k, l, c, d, p)) = \{\text{empty}(k), \text{in}(c, p), \text{top}(c, p), \text{on}(c, d)\}$
Applicability

- An action a is *applicable* to a state s if s satisfies $\text{precond}(a)$,
 - i.e., if $\text{precond}^+(a) \subseteq s$ and $\text{precond}^-(a) \cap s = \emptyset$

- Here are an action and a state that it’s applicable to:

```plaintext
take(crane1, loc1, c3, c1, p1)
  ;; crane crane1 at location loc1 takes c3 off c1 in pile p1
precond:  belong(crane1, loc1), attached(p1, loc1),
          empty(crane1), top(c3, p1), on(c3, c1)
effects: holding(crane1, c3), ¬empty(crane1), ¬in(c3, p1),
          ¬top(c3, p1), ¬on(c3, c1), top(c1, p1)
```
Result of Performing an Action

- If \(a\) is applicable to \(s\), the result of performing it is
 \[
 \gamma(s,a) = (s - \text{effects}^{-}(a)) \cup \text{effects}^{+}(a)
 \]
- Delete the negative effects, and add the positive ones

```
take(crane1,loc1,c3,c1,p1)
  ;; crane crane1 at location loc1 takes c3 off c1 in pile p1
precond:  belong(crane1,loc1), attached(p1,loc1),
          empty(crane1), top(c3,p1), on(c3,c1)
effects:  holding(crane1,c3), \neg empty(crane1), \neg in(c3,p1),
          \neg top(c3,p1), \neg on(c3,c1), top(c1,p1)
```
move(r, l, m)
;; robot r moves from location l to location m
precond: adjacent(l, m), at(r, l), ¬occupied(m)
effects: at(r, m), occupied(m), ¬occupied(l), ¬at(r, l)

load(k, l, c, r)
;; crane k at location l loads container c onto robot r
precond: belong(k, l), holding(k, c), at(r, l), unloaded(r)
effects: empty(k), ¬holding(k, c), loaded(r, c), ¬unloaded(r)

unload(k, l, c, r)
;; crane k at location l takes container c from robot r
precond: belong(k, l), at(r, l), loaded(r, c), empty(k)
effects: ¬empty(k), holding(k, c), unloaded(r), ¬loaded

put(k, l, c, d, p)
;; crane k at location l puts c onto d in pile p
precond: belong(k, l), attached(p, l), holding(k, c), top(d, p)
effects: ¬holding(k, c), empty(k), in(c, p), top(c, p), on(c, d), ¬top(d, p)

take(k, l, c, d, p)
;; crane k at location l takes c off of d in pile p
precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)
effects: holding(k, c), ¬empty(k), ¬in(c, p), ¬top(c, p), ¬on(c, d), top(d, p)

- Planning domain: language plus operators
 - Corresponds to a set of state-transition systems
 - Example: operators for the DWR domain
Planning Problems

- Given a planning domain (language L, operators O)
 - *Statement* of a planning problem: a triple $P = (O, s_0, g)$
 - O is the collection of operators
 - s_0 is a state (the initial state)
 - g is a set of literals (the goal formula)
 - The actual *planning problem*: $\mathcal{P} = (\Sigma, s_0, S_g)$
 - s_0 and S_g are as above
 - $\Sigma = (S, A, \gamma)$ is a state-transition system
 - $S = \{\text{all sets of ground atoms in } L\}$
 - $A = \{\text{all ground instances of operators in } O\}$
 - $\gamma = \text{the state-transition function determined by the operators}$
- “planning problem” often means the statement of the problem
Plans and Solutions

- **Plan**: any sequence of actions \(\sigma = \langle a_1, a_2, \ldots, a_n \rangle \) such that each \(a_i \) is a ground instance of an operator in \(O \)

- The plan is a **solution** for \(P=(O,s_0,g) \) if it is executable and achieves \(g \)

 - i.e., if there are states \(s_0, s_1, \ldots, s_n \) such that

 \[
 \gamma(s_0, a_1) = s_1 \\
 \gamma(s_1, a_2) = s_2 \\
 \ldots \\
 \gamma(s_{n-1}, a_n) = s_n \\
 \]

 \(s_n \) satisfies \(g \)
Example

Let $P_1 = (O, s_1, g_1)$, where

O is the set of operators given earlier

$g_1 = \{ \text{loaded}(r_1, c_3), \ \text{at}(r_1, \text{loc}2) \}$

$s_1 = \{ \text{attached}(p_1, \text{loc}1), \ \text{in}(c_1, p_1), \ \text{in}(c_3, p_1), \ \text{top}(c_3, p_1), \ \text{on}(c_3, c_1), \ \text{on}(c_1, \text{pallet}), \ \text{attached}(p_2, \text{loc}1), \ \text{in}(c_2, p_2), \ \text{top}(c_2, p_2), \ \text{on}(c_2, \text{pallet}), \ \text{belong}(\text{crane1}, \text{loc}1), \ \text{empty}(\text{crane1}), \ \text{adjacent}(\text{loc}1, \text{loc}2), \ \text{adjacent}(\text{loc}2, \text{loc}1), \ \text{at}(r_1, \text{loc}2), \ \text{occupied}(\text{loc}2), \ \text{unloaded}(r_1) \}.$
Here are three solutions for P_1:

1. $\langle \text{take}(\text{crane}1, \text{loc}1, \text{c}3, \text{c}1, \text{p}1), \ \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \ \text{move}(\text{r}1, \text{loc}1, \text{loc}2), \ \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \ \text{load}(\text{crane}1, \text{loc}1, \text{c}3, \text{r}1), \ \text{move}(\text{r}1, \text{loc}1, \text{loc}2) \rangle$

2. $\langle \text{take}(\text{crane}1, \text{loc}1, \text{c}3, \text{c}1, \text{p}1), \ \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \ \text{load}(\text{crane}1, \text{loc}1, \text{c}3, \text{r}1), \ \text{move}(\text{r}1, \text{loc}1, \text{loc}2) \rangle$

3. $\langle \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \ \text{take}(\text{crane}1, \text{loc}1, \text{c}3, \text{c}1, \text{p}1), \ \text{load}(\text{crane}1, \text{loc}1, \text{c}3, \text{r}1), \ \text{move}(\text{r}1, \text{loc}1, \text{loc}2) \rangle$

Each of them produces the state shown here:
Example (continued)

- The first is _redundant_: can remove actions and still have a solution
 - \langle \text{take}(\text{crane}1, \text{loc}1, \text{c}3, \text{c}1, \text{p}1), \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \text{move}(\text{r}1, \text{loc}1, \text{loc}2), \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \text{load}(\text{crane}1, \text{loc}1, \text{c}3, \text{r}1), \text{move}(\text{r}1, \text{loc}1, \text{loc}2) \rangle
 - \langle \text{take}(\text{crane}1, \text{loc}1, \text{c}3, \text{c}1, \text{p}1), \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \text{load}(\text{crane}1, \text{loc}1, \text{c}3, \text{r}1), \text{move}(\text{r}1, \text{loc}1, \text{loc}2) \rangle
 - \langle \text{move}(\text{r}1, \text{loc}2, \text{loc}1), \text{take}(\text{crane}1, \text{loc}1, \text{c}3, \text{c}1, \text{p}1), \text{load}(\text{crane}1, \text{loc}1, \text{c}3, \text{r}1), \text{move}(\text{r}1, \text{loc}1, \text{loc}2) \rangle

- The 2nd and 3rd are _irredundant_ and _shortest_
Set-Theoretic Representation

- Like classical representation, but restricted to propositional logic

- States:
 - Instead of a collection of ground atoms …
 {on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …}

 … use a collection of propositions (boolean variables):
 {on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …}
Instead of operators like this one,

\[
\text{take}(k, l, c, d, p)
\]

;; crane \(k\) at location \(l\) takes \(c\) off of \(d\) in pile \(p\)
precond: belong\((k, l)\), attached\((p, l)\), empty\((k)\), top\((c, p)\), on\((c, d)\)
effects: holding\((k, c)\), \neg empty\((k)\), \neg in\((c, p)\), \neg top\((c, p)\), \neg on\((c, d)\), top\((d, p)\)

take all of the operator instances, e.g., this one,

\[
\text{take}(\text{crane1,loc1,c3,c1,p1})
\]

;; crane \text{crane1} at location \text{loc1} takes \(c3\) off \(c1\) in pile \(p1\)
precond: belong\((\text{crane1,loc1})\), attached\((p1,loc1)\), empty\((\text{crane1})\), top\((c3,p1)\), on\((c3,c1)\)
effects: holding\((\text{crane1,c3})\), \neg empty\((\text{crane1})\), \neg in\((c3,p1)\), \neg top\((c3,p1)\), \neg on\((c3,c1)\), top\((c1,p1)\)

and rewrite ground atoms as propositions

\[
\text{take-crane1-loc1-c3-c1-p1}
\]

precond: belong-crane1-loc1, attached-p1-loc1, empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1
Comparison

- A set-theoretic representation is equivalent to a classical representation in which all of the atoms are ground.

- Exponential blowup
 - If a classical operator contains k atoms and each atom has arity n, then it corresponds to c^{nk} actions where $c = |\{\text{constant symbols}\}|$.
An example

- Suppose a computer has a n-bit register r and a single operator inc that assigns $r \leftarrow r + 1 \mod m$, where $m = 2^n$

- Let $L = \{ val_0, \ldots, val_{m-1}\}$, where val_i means “r contains value i”

- $\Sigma = (S, A, \gamma)$, where $s \in L$, $A = \{inc\}$, $\gamma(val_i, inc) = val_{i+1} \mod m$

- Suppose $P = (\Sigma, s_0, g)$, where $s_0 = val_c$, $S_g = \{val_i| i \text{ is prime}\}$
 - There is no set-theoretic action representation for inc,
 - nor any set of proposition $g \subseteq 2^L$ that represents the set of goal states S_g
An Example (Cont.)

- However, we can define Σ' and P' as follows:
 - $L' = L \cup \{\text{prime}\}$, $S' = 2^{L'}$, $A' = \{\text{inc}_0, \ldots, \text{inc}_{m-1}\}$
 - $\gamma'(\text{val}_i, \text{inc}) = \{\text{prime}, \text{val}_{i+1 \mod m}\}$ if $i + 1 \mod m$ is prime, or
 - $= \{\text{val}_{i+1 \mod m}\}$, otherwise
 - $\Sigma' = (S', A', \gamma')$, $S'_g = \{s \subset 2^{L'} | \text{prime} \in s\}$, $P' = (\Sigma', s_0, S'_g)$
- P' has the following set-theoretic representation:
 - $g' = \{\text{prime}\}$
 - $\text{precond}(\text{inc}_i) = \{\text{val}_i\}$, $i = 1, \ldots, m$
 - $\text{effect}^{-}(\text{inc}_i) = \{\text{val}_i, \neg \text{prime}\}$, if i is prime, or
 - $= \{\text{val}_i\}$, otherwise
 - $\text{effect}^{+}(\text{inc}_i) = \{\text{val}_{i+1 \mod m}, \text{prime}\}$, if $i + 1 \mod m$ is prime, or
 - $= \{\text{val}_{i+1 \mod m}\}$, otherwise
- There are 2^n different actions, and to write them, we must compute all prime numbers between 1 and 2^n
State-Variable Representation

- Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
- For properties that can change, assign values to *state variables*
 - Like fields in a record structure
- Classical and state-variable representations take similar amounts of space
 - Each can be translated into the other in low-order polynomial time

\[
\text{move}(r, l, m) \\
\text{;; robot } r \text{ at location } l \text{ moves to an adjacent location } m \\
\text{precond: } \text{rloc}(r) = l, \text{adjacent}(l, m) \\
\text{effects: } \text{rloc}(r) \leftarrow m
\]

\[
\{\text{top}(p1) = \text{c3}, \text{cpos}(\text{c3}) = \text{c1}, \text{cpos}(\text{c1}) = \text{pallet}, \text{holding}(\text{crane1}) = \text{nil}, \text{rloc}(\text{r1}) = \text{loc2}, \text{loaded}(\text{r1}) = \text{nil}, \ldots\}
\]
Example: The Blocks World

- Infinitely wide table, finite number of children’s blocks
- Ignore where a block is located on the table
- A block can sit on the table or on another block
- Want to move blocks from one configuration to another
 - e.g.,

 ![Diagram of initial state and goal configuration]

 Initial state: a block stack with blocks c, b, a on the table, and d on top of b.
 Goal: a, b, c are stacked on top of each other.

- Classical, set-theoretic, and state-variable formulations:
 - For the case where there are five blocks
Classical Representation: Symbols

- **Constant symbols:**
 - The blocks: a, b, c, d, e

- **Predicates:**
 - ontable(x) - block x is on the table
 - on(x, y) - block x is on block y
 - clear(x) - block x has nothing on it
 - holding(x) - the robot hand is holding block x
 - handempty - the robot hand isn’t holding anything
unstack\((x, y)\)
Precond: on\((x, y)\), clear\((x)\), handempty
Effects: \neg on\((x, y)\), \neg clear\((x)\), \neg handempty, holding\((x)\), clear\((y)\)

stack\((x, y)\)
Precond: holding\((x)\), clear\((y)\)
Effects: \neg holding\((x)\), \neg clear\((y)\), on\((x, y)\), clear\((x)\), handempty

pickup\((x)\)
Precond: ontable\((x)\), clear\((x)\), handempty
Effects: \neg ontable\((x)\), \neg clear\((x)\), \neg handempty, holding\((x)\)

putdown\((x)\)
Precond: holding\((x)\)
Effects: \neg holding\((x)\), ontable\((x)\), clear\((x)\), handempty
Set-Theoretic Representation: Symbols

- For five blocks, there are 36 propositions
- Here are 5 of them:
 - `ontable-a`: block a is on the table
 - `on-c-a`: block c is on block a
 - `clear-c`: block c has nothing on it
 - `holding-d`: the robot hand is holding block d
 - `handempty`: the robot hand isn’t holding anything
Fifty different actions

Here are four of them:

unstack-c-a
- **Pre:** on-c,a, clear-c, handempty
- **Del:** on-c,a, clear-c, handempty
- **Add:** holding-c, clear-a

stack-c-a
- **Pre:** holding-c, clear-a
- **Del:** holding-c, ~clear-a
- **Add:** on-c-a, clear-c, handempty

pickup-c
- **Pre:** ontable-c, clear-c, handempty
- **Del:** ontable-c, clear-c, handempty
- **Add:** holding-c

putdown-c
- **Pre:** holding-c
- **Del:** holding-c
- **Add:** ontable-c, clear-c, handempty
State-Variable Representation: Symbols

- Constant symbols:
 - a, b, c, d, e of type block
 - 0, 1, table, nil of type other

- State variables:
 - $\text{pos}(x) = y$ if block x is on block y
 - $\text{pos}(x) = \text{table}$ if block x is on the table
 - $\text{pos}(x) = \text{nil}$ if block x is being held
 - $\text{clear}(x) = 1$ if block x has nothing on it
 - $\text{clear}(x) = 0$ if block x is being held or has another block on it
 - $\text{holding} = x$ if the robot hand is holding block x
 - $\text{holding} = \text{nil}$ if the robot hand is holding nothing
unstack($x : block, y : block$)
Precond: $\text{pos}(x)=y$, $\text{clear}(x)=1$, holding=nil
Effects: $\text{pos}(x)$=nil, $\text{clear}(x)=0$, holding=x, $\text{clear}(y)=1$

stack($x : block, y : block$)
Precond: holding=x, clear(y)=1
Effects: holding=nil, clear(y)=0, $\text{pos}(x)=y$, clear(x)=1

pickup($x : block$)
Precond: $\text{pos}(x)$=table, clear(x)=1, holding=nil
Effects: $\text{pos}(x)$=nil, clear(x)=0, holding=x

putdown($x : block$)
Precond: holding=x
Effects: holding=nil, $\text{pos}(x)$=table, clear(x)=1
Expressive Power

- Any problem that can be represented in one representation can also be represented in the other two
- Can convert in linear time and space, except when converting to set-theoretic (where we get an exponential blowup)

\[
P(x_1,\ldots,x_n) \rightarrow f_P(x_1,\ldots,x_n) = 1
\]

\[
f(x_1,\ldots,x_n) = y \rightarrow P_f(x_1,\ldots,x_n,y)
\]

Write all of the ground instances
Comparison

- Classical representation
 - The most popular for classical planning, partly for historical reasons

- Set-theoretic representation
 - Can take much more space than classical representation
 - Useful in algorithms that manipulate ground atoms directly
 - e.g., planning graphs (Chapter 6), satisfiability (Chapters 7)

- State-variable representation
 - Equivalent to classical representation
 - Less natural for logicians, more natural for engineers
 - Useful in non-classical planning problems as a way to handle numbers, functions, time