40-414 Compiler Design

Local Optimizations

Lecture 11

Exercise

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

O O O O

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

Prof. Aiken

NOOUPWNE

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation 4

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

NOOUPWNE

Dead code elimination: Line 3 is removed.

O O O O

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

a:=1
b:=3
c:=a+Xx
d:=a*3
e=b*3
f:=a+b
g=e-f

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

O O O O

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

NOUPEWN R

‘M PO oo oo
1
(DI_\U)HHUQI—\

Il
T % 5 +
wUUUuX

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d :=a * b.

_ o Constant
Common subexpression elimination: folding

Line 5 becomes e ;= d.

NOUPEWN R

Dead code elimination: Line 3 is removed.

O O O O

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

‘M PO oo oo
1
(DI_\U)HHUQI—\

1
+ « % +
wUUUuX

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

O O O O

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

NOOUPWNE

a:=1
b:=3
c:=1+X
d:=3
e.=9
fi=4
g=e-f

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination: Copy <:
_ propagation
Line 5 becomes e :=d.

NOOUPWNE

Dead code elimination: Line 3 is removed.

O O O O

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

a:=1
b:=3
c:=1+X
d:=3
e.=9
fi=4
g=e-f

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

O O O O

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

NOOUPWNE

a:=1
b:=3
c:=1+x
d:=3
e:=9
f:=4
g:=9-4

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x

are referenced outside of this basic block.

O O O O

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Constant

Line 5 becomes e := d. folding \

Dead code elimination: Line 3 is removed.

NOOUPWNE

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

a:=1
b:=3
c:=1+x
d:=3
e:=9
f:=4
g:=9-4

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

O O O O

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

NOOUPWNE

i
wkFk Wk

cm:wo O 0O WD
II -Ii o e
v+ o

10

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x

are referenced outside of this basic block. =1
Dead code =3
elimination
=1+Xx
Copy propagation: Line 4 becomes d :=a * b. 3

O O O O

Common subexpression elimination:
Line 5 becomes e :=d.

NOOUPWNE

cm_—.hm O 0O WD
II -Ii o e
G IE NV

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

11

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x

are referenced outside of this basic block.

O O O O

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

NOOUPWNE

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

12

Answer!

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d :=a * b.

Common subexpression elimination:
Line 5 becomes e :=d.

Dead code elimination: Line 3 is removed.

O O O O

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

NOUPWN -

a:
b:=3
cC:=a+X
d:=a*3
e:=b*3
f:=a+b
g=e-f

13

Example: C code

void quicksort(m, n)
int m, n;

{

inti, j;

if (n<=m) return;

/* fragment begins here */

i=m-1; j=n; v=a[n]

while(1) {
do i = i+1; while(a[i]<Vv);
do j = j-1. while(a[j]> v):
if(i>=j)break;

x=alil; a[i]=a[j) a[j] = x;

}
x =a[i]; a[i] = a[n]; a[n]= x;
/* fragment ends here */

quicksort(m, j). quicksort(i+1, n),

14

Augmented 3AC

An augmented 3 address code language to simplify the
code...

Let a be an array of integers starting at byte address a,,

aladd] on the left-hand-side of an assignment is the
address a,+add

aladd] on the right-hand-side of an assignment is the value
of the element of the array at address a,+add

Since integers are stored in 4 bytes the offset address of
an element afi] is 4%i 15

Augmented 3AC of the C code

0)i:=m-1
02)j:=n
03)tl:=4*n

04) v :=a[tl]
05)i:=i+1
06)t2:=4%*i

07) t3 := a[t2]

08) if t3 <vgoto 5
09)j:=j-1
10)t4:=4*

11) t5 := a[t4]

12) if t5> v goto 9
13) if i >= j goto 23
14)t6:=4*i

15) x := a[t6]

16)t7 :=4*|
17)t8 =4 *
18) t9 := a[t8]
19) a[t7] := t9
20) t10 := 4 * |
21) a[tl0] := x
22) goto 5

23) tll =4 %
24) x := a[tll]
25)t12 =4 %
26) t13 :=4 *n
27) t14 := a[t13]
28) a[t12] := t14
29)tl15:=4*n
30) a[t15] := x

16

Basic Blocks

0)i:=m-1
02)j:=n

03)tl:=4*n
04) v :=a[tl]

05)i:=i+1
06)t2:=4%*i

07) t3 := a[t2]
_08) if t3 <vgoto b
09)j:=j-1
10)t4:=4*j

11) t5 := a[t4]

12) if t5>vgoto 9

13) if i >= j goto 23

)6 =4~
15) x := a[t6]

16)t7 =4 *i
17)t8 =4 *
18) t9 := a[t8]
19) a[t7] := t9
20) t10 := 4 * |
21) a[tl0] := x
22) goto 5

23) tll =4 %
24) x := a[tll]
2h)t12 =4 *|
26)t13:=4*n
27) t14 := a[t13]
28) a[t12] := t14
29)tl15:=4*n
30) a[t15] := x

17

Control Flow Graph

Bl

[=m-1
Jj=n
t1:=4%*n

v :=at

y B2

N/ =j+1
2:=4%*i
13 :=aft2]

[f13 <vagoto B2 |

4 B3

Jj=j-1
t4:=4%f

t5 .= aftd]

ift5 > v goto B3

2 B4

ifi >=j goto B6

6.:=4%j
X .= aft6]
17:=4%*i
8:=4%j
19 = aft8]
aftz] .= t9
t10:=4*j
aftio] .= x
goto B2

55A

B6

t11.=4%*j
x.=aftil]
t12:=4*j
t13.=4*n
t14 .= aft13]
aftiz] = ti4
t15.=4*n
aftis] .= x

18

Local Optimizations

B5 before

té6 =4 %
x = a[t6é]
t7 =4 7%
t8:=4%*j
t9 = a[t8]
a[t7]:= t9
t10:=47*|
a[tl0] := x
goto B2

B5 after

t6:=4%*i
X = a[t6]
t7 = t6
t8:=4%*j
t9 = a[t8]
a[t7] = t9
t10 := t8
a[tl0] := x
goto B2

Common Subexpression Elimination

19

Local Optimizations

B5 before

t6:=4%*|
x = a[t6é]
t7 = tb
t8:=4%*j
t9 = a[t8]
a[t7] := t9
t10 := t8
a[tl0] := x
goto B2

Copy propagation

B5 after

t6:=4%*i
X = a[t6]
t7 ;= té
t8:=4%*j
t9 = a[t8]
a[t6] = t9
t10 := t8
a[t8] := x
goto B2

20

Local Optimizations

B5 before

t6:=4%*|
x = a[t6é]
t7 = té
t8:=4%*j
t9 = a[t8]
a[t7]:= t9
t10 := t8
a[tl0] := x
goto B2

Dead code elimination

B5 after

t6:=4%*i

X = a[t6]

t8:=4%*j

t9 = a[t8]
a[té6] := t9
a[t8] = x

goto B2

21

Local Optimizations

B6 before B6 after
tll1:=4* tll:=4 *
x = aftll] x = af[tll]
t12 =4 % t12 := til
tl13:=4 *n tl13:=4 *n
t14 := a[tl3] t14 := a[t13]
a[ti2] := t14 a[ti2] := t14
tl15:= 4 * n t15 := ti13
a[tlh] := x a[tlh] := x

Common Subexpression Elimination

22

Local Optimizations

B6 before B6 after
tl1:=4*| tll1:=4*|
x = aftll] x = af[tll]
t12 = til t12 := til
t13:=4*n t13:=4*n
t14 := a[tl3] t14 := a[t13]
a[ti2] := t14 a[tll] := t14
t15 := t13 t15 := t13
a[tl5] = x a[tl3] = x

Copy Propagation

23

Local Optimizations

B6 before

t1l =4 * |
x = aftll]
t12 := tl1
t13:=4*n
t14 .= a[tl13]
a[tll] := t14
t15 := t13
a[tl3]:= x

Dead code elimination

B6 after

t1l1 =4 *|
x = aftll]
t13:=4*n
t14 .= a[tl13]
a[tll] := t14
a[tl3]:= x

24

After Local Optimizations

B1

2:=4%*i
3= aft2]
Ift3 <vgoto B2

\ 4 B3

Jj=j-1
4:=4%f

t5 = aftd]

ift5 > v goto B3

v B4

6:=4%*j
X .= aft6]
8:=4*j
19 .= afts]
aft6] := t9
aft8] .= x
goto B2

ifi >=j goto B6

B5 A

B6

t11:=4*J
Xx:=afti1]
t13:=4*n
t14 := aft13]
aft11] := t14
afti3] .= x

25

Reduction in Strength

In B2 whenever i increases by 1, t2 increases by 4
In B3 whenever j decreases by 1, t4 decreases by 4

Bl Before
i:=m-1
ji=n

tl =4 *n
vz a[tl]

B2:
i=i+1
t2:=4%*|
t3 = a[t2]
if t3 < v goto B2
B3:
ji=j-1
t4:=4%*j
th := a[t4]
if t5 > v goto B2

Bl After
ii=m-1
ji=n
tl:=4*n
v.=aftl]
t2:i=4%*|
t4:=4%*j
B2:
f:i=i+1
t2:.=t2+4
t3 = a[t2]
if t3 < v goto B2
B3:
j=j-1
t4:=t4-4
th = a[t4]

if t5 > v goto B3

Induction Variables Elimination

In B2 whenever i increases by 1, t2 increases by 4,
i and t2 are called induction variables.

In B3 whenever j decreases by 1, t4 decreases by 4,
j and t4 are induction variables, too.

If there are two or more induction variables in a loop, it
may be possible to get rid of all but one

B4: Before B4: After

if i>= j goto B6 if t2 >= t4 goto B6

27

After Loop Optimizations

B1
f=m-1
j=n
t1:=4%*n
v.:=aftl]
2:=4%*
4.=4%*
\ 4 B2
v=r+4
13 :=aft2]
Ift3 < v goto B2
v B3
t4:=t4-4
t5 = aftd]
ift5 > v goto B3
i B4
if 12 >= t4 goto B6|

B5 A/\A B6

6:=4%j t11:=4*j
X:= a[z‘é‘]_ x:=afti1]
8:=4%) t13:=4%*n
19 := aftg] t14 = aft13]
afte] := 19 afti1] == 14
aft8] :=x aftiz] :=x
goto B2

After Global Optimizations

B1
f.=m-1
t1:=4%*n
v:=aftl]
2:=4%*
4=t

i B2
r=12+4
13.:=aft2]
ift3<vgoto B2

\ 4 53
HM4:=t4-4
th = aft4]
ift5> v goto B3

B4

\ 4

If 12 >= 4 goto B

B5 A B6

aftd] = 13 aftz] = t14
gOfO B2 ﬁ[f]] =13

29

