
1

40-414 Compiler Design

Lecture 11

Exercise

Local Optimizations

2

Question?

Prof. Aiken

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := a + x
4 d := a * 3
5 e := b * 3
6 f := a + b
7 g := e - f

3

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := a + x
4 d := a * 3
5 e := b * 3
6 f := a + b
7 g := e - f

Copy propagation

4

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 1 * 3
5 e := 3 * 3
6 f := 1 + 3
7 g := e - f

5

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 1 * 3
5 e := 3 * 3
6 f := 1 + 3
7 g := e - f

Constant
folding

6

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 3
5 e := 9
6 f := 4
7 g := e - f

7

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 3
5 e := 9
6 f := 4
7 g := e - f

Copy
propagation

8

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 3
5 e := 9
6 f := 4
7 g := 9 - 4

9

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 3
5 e := 9
6 f := 4
7 g := 9 - 4

Constant
folding

10

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 3
5 e := 9
6 f := 4
7 g := 5

11

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := 1 + x
4 d := 3
5 e := 9
6 f := 4
7 g := 5

Dead code
elimination

12

Question?

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1
2
3
4
5
6
7 g := 5

13

Answer!

Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Common subexpression elimination:
Line 5 becomes e := d.

Dead code elimination: Line 3 is removed.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := a + x
4 d := a * 3
5 e := b * 3
6 f := a + b
7 g := e - f

14

Example: C code

void quicksort(m, n)
int m, n;
{

int i, j;
if (n <= m) return;
/* fragment begins here */
i = m-1; j = n; v = a[n];
while(1) {

do i = i+1; while(a[i] < v);
do j = j-1; while(a[j] > v);
if(i >= j) break;
x = a[i]; a[i] = a[j]; a[j] = x;

}
x = a[i]; a[i] = a[n]; a[n]= x;
/* fragment ends here */
quicksort(m, j); quicksort(i+1, n);

}

15

Augmented 3AC

An augmented 3 address code language to simplify the
code...

Let a be an array of integers starting at byte address a0

a[add] on the left-hand-side of an assignment is the
address a0+add

a[add] on the right-hand-side of an assignment is the value
of the element of the array at address a0+add

Since integers are stored in 4 bytes the offset address of
an element a[i] is 4*i

16

Augmented 3AC of the C code

01) i := m - 1 16) t7 := 4 * i
02) j := n 17) t8 := 4 * j
03) t1 := 4 * n 18) t9 := a[t8]
04) v := a[t1] 19) a[t7] := t9
05) i := i + 1 20) t10 := 4 * j

06) t2 := 4 * i 21) a[t10] := x
07) t3 := a[t2] 22) goto 5
08) if t3 < v goto 5 23) t11 := 4 * i
09) j := j – 1 24) x := a[t11]
10) t4 := 4 * j 25) t12 := 4 * i
11) t5 := a[t4] 26) t13 := 4 * n
12) if t5 > v goto 9 27) t14 := a[t13]
13) if i >= j goto 23 28) a[t12] := t14
14) t6 := 4 * i 29) t15 := 4 * n
15) x := a[t6] 30) a[t15] := x

17

Basic Blocks

01) i := m - 1 16) t7 := 4 * i
02) j := n 17) t8 := 4 * j
03) t1 := 4 * n 18) t9 := a[t8]
04) v := a[t1] 19) a[t7] := t9
05) i := i + 1 20) t10 := 4 * j

06) t2 := 4 * i 21) a[t10] := x
07) t3 := a[t2] 22) goto 5
08) if t3 < v goto 5 23) t11 := 4 * i
09) j := j – 1 24) x := a[t11]
10) t4 := 4 * j 25) t12 := 4 * i
11) t5 := a[t4] 26) t13 := 4 * n
12) if t5 > v goto 9 27) t14 := a[t13]
13) if i >= j goto 23 28) a[t12] := t14
14) t6 := 4 * i 29) t15 := 4 * n
15) x := a[t6] 30) a[t15] := x

18

Control Flow Graph

i := m – 1

j := n

t1 := 4 * n

v := a[t1]

B1

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 < v goto B2

B2

j := j - 1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

B3

t6 := 4 * i

x := a[t6]

t7 := 4 * i

t8 := 4 * j

t9 := a[t8]

a[t7] := t9

t10 := 4 * j

a[t10] := x

goto B2

if i >= j goto B6

B4

B6B5

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

19

Local Optimizations

B5 before B5 after

t6 := 4 * i t6 := 4 * i
x := a[t6] x := a[t6]
t7 := 4 * i t7 := t6
t8 := 4 * j t8 := 4 * j
t9 := a[t8] t9 := a[t8]
a[t7] := t9 a[t7] := t9
t10 := 4 * j t10 := t8
a[t10] := x a[t10] := x
goto B2 goto B2

Common Subexpression Elimination

20

Local Optimizations

B5 before B5 after

t6 := 4 * i t6 := 4 * i
x := a[t6] x := a[t6]
t7 := t6 t7 := t6
t8 := 4 * j t8 := 4 * j
t9 := a[t8] t9 := a[t8]
a[t7] := t9 a[t6] := t9
t10 := t8 t10 := t8
a[t10] := x a[t8] := x
goto B2 goto B2

Copy propagation

21

Local Optimizations

B5 before B5 after

t6 := 4 * i t6 := 4 * i
x := a[t6] x := a[t6]
t7 := t6 t8 := 4 * j
t8 := 4 * j t9 := a[t8]
t9 := a[t8] a[t6] := t9
a[t7] := t9 a[t8] := x
t10 := t8 goto B2
a[t10] := x
goto B2

Dead code elimination

22

Local Optimizations

B6 before B6 after

t11 := 4 * i t11 := 4 * i
x := a[t11] x := a[t11]
t12 := 4 * i t12 := t11
t13 := 4 * n t13 := 4 * n
t14 := a[t13] t14 := a[t13]
a[t12] := t14 a[t12] := t14
t15 := 4 * n t15 := t13
a[t15] := x a[t15] := x

Common Subexpression Elimination

23

Local Optimizations

B6 before B6 after

t11 := 4 * i t11 := 4 * i
x := a[t11] x := a[t11]
t12 := t11 t12 := t11
t13 := 4 * n t13 := 4 * n
t14 := a[t13] t14 := a[t13]
a[t12] := t14 a[t11] := t14
t15 := t13 t15 := t13
a[t15] := x a[t13] := x

Copy Propagation

24

Local Optimizations

B6 before B6 after

t11 := 4 * i t11 := 4 * i
x := a[t11] x := a[t11]
t12 := t11 t13 := 4 * n
t13 := 4 * n t14 := a[t13]
t14 := a[t13] a[t11] := t14
a[t11] := t14 a[t13] := x
t15 := t13
a[t13] := x

Dead code elimination

25

After Local Optimizations

i := m – 1

j := n

t1 := 4 * n

v := a[t1]

B1

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 < v goto B2

B2

j := j - 1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

B3

t6 := 4 * i

x := a[t6]

t8 := 4 * j

t9 := a[t8]

a[t6] := t9

a[t8] := x

goto B2

t11 := 4 * i

x := a[t11]

t13 := 4 * n

t14 := a[t13]

a[t11] := t14

a[t13] := x

if i >= j goto B6

B4

B6B5

26

Reduction in Strength

In B2 whenever i increases by 1, t2 increases by 4
In B3 whenever j decreases by 1, t4 decreases by 4

B1 Before B1 After
i := m - 1 i := m - 1
j := n j := n
t1 := 4 * n t1 := 4 * n
v := a[t1] v := a[t1]

t2 := 4 * i
t4 := 4 * j

B2: B2:
i := i + 1 i := i + 1
t2 := 4 * i t2 := t2 + 4
t3 := a[t2] t3 := a[t2]
if t3 < v goto B2 if t3 < v goto B2

B3: B3:
j := j - 1 j := j - 1
t4 := 4 * j t4 := t4 - 4
t5 := a[t4] t5 := a[t4]
if t5 > v goto B2 if t5 > v goto B3

27

Induction Variables Elimination

In B2 whenever i increases by 1, t2 increases by 4,
i and t2 are called induction variables.

In B3 whenever j decreases by 1, t4 decreases by 4,
j and t4 are induction variables, too.

If there are two or more induction variables in a loop, it
may be possible to get rid of all but one

B4: Before B4: After

if i >= j goto B6 if t2 >= t4 goto B6

28

After Loop Optimizations

i := m – 1

j := n

t1 := 4 * n

v := a[t1]

t2 := 4 * i

t4 := 4 * j

B1

t2 := t2 + 4

t3 := a[t2]

if t3 < v goto B2

B2

t4 := t4 - 4

t5 := a[t4]

if t5 > v goto B3

B3

t6 := 4 * i

x := a[t6]

t8 := 4 * j

t9 := a[t8]

a[t6] := t9

a[t8] := x

goto B2

t11 := 4 * i

x := a[t11]

t13 := 4 * n

t14 := a[t13]

a[t11] := t14

a[t13] := x

if t2 >= t4 goto B6

B4

B6B5

29

After Global Optimizations

i := m – 1

t1 := 4 * n

v := a[t1]

t2 := 4 * i

t4 := t1

B1

t2 := t2 + 4

t3 := a[t2]

if t3 < v goto B2

B2

t4 := t4 - 4

t5 := a[t4]

if t5 > v goto B3

B3

a[t2] := t5

a[t4] := t3

goto B2

t14 := a[t1]

a[t2] := t14

a[t1] := t3

if t2 >= t4 goto B6

B4

B6B5

