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Section 1

Approach Definition
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Unsupervised Learning

Principle Component Analysis

o Experience E: Set of N samples D = {z,})_,;

e Task T: Projecting data into low dimensional subspace which captures its
main aspects

e Performance measure: Preserving data variations

Clustering

o Experience E: Set of N samples D = {z,,}_;
e Task T": Partition the input into regions that contains similar points.

o Performance measure in Compression: Compression loss
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Section 2

Principle Component Analysis
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Subsection 1

Interpretation Via Maximum Projection Spread
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Frame Title

o Assume x € R? is a random variable and you have observed N copies of
it as {z;}, (Equivalently the dataset).

o As before, we stack these copies into a Matrix X as:

T 1 D
X — Ty _ Zo ) ERNXD
T 1 D

o Each column is a feature (covariate or predictor)
o Each row is an observation
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Characterizing Dataset [1]

Characterizing Dataset
The dataset point create a point cloud in R” space.
@ The expectation of this point cloud, calculated below, determines the

center of point cloud.

@ The covariance matrix of this point cloud, calculated below, determines

the spread of point cloud.
Cov[z] £ E [(z — E[z])(xz — E[z])"] = E[zz”] — E[z]E[z]” = =

COV[Xl,Xl] COV[Xl,XQ] R COV[Xl,XD]
COV[XQ,Xl] COV[XQ,XQ] e COV[XQ,XD]
COV[XD,Xl] COV[XD,XQ] te COV[XD,XD]

Principle Component Analysis
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Characterizing Dataset [1]

Utilizing Empirical Distribution

The empirical distribution for dataset {z;}Y , is defined as:

N
E (x —x,)

We can use it to compute the empirical (sample) mean and empirical (sample)
covariance matrix as:
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Characterizing Dataset [1]

Eliminating Summation Using Linear Algebra
For sample mean, we have:

N I . 1

1 1 1

| | | pxnN |1

Nx1

For sample covariance matrix, we use forth method for matrix multiplication
as:

R .
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Characterizing Dataset [1]

Idempotent Matrix

Matrix P is said to be idempotent matrix if P? = P

Projection Matrix

Matrix Z is said to be projection matrix if it is symmetric and idempotent.

Working on H Matrix

Matrix H is a projection matrix because:
o H' =(I-+tn")" =1- L117
o Idempotent property:

N
H? :HH:(I—iuT)(I—iuT):I—311T+i11T11T
N N N N2
2 1
=I--11"+=-11"=H
NN
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Characterizing Dataset [1]

Characterizing the Projection H
Assume v € RY, then:

17w

1
Hv=v—- —11Tv=v-—1=v—-%
N N
Thus H removes the mean of the vector from each coordinate. Equivalently
Hv=0
Thus H is the projection onto the subspace of vectors with zero mean (Projec-
tion onto hyperplane which is orthogonal to 1 vector).

Re-writing S

Based on the projection matrix H, we have:

1 1 1 1
S=—XTHX = = X"H>’X = —X"H"HX = —(HX)"(HX
N N N N( ) ( )

where H X result in centered features.
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Linear Combination of Features [1]

Original Formulation

Assume an arbitrary direction of w € R”, then consider the following value:

u'Su =u” [E[zz"] — E[z]E[z"]] u Y E[(u"z)(u"2)"] - Elu’ z|E[(u’z)"]

=E[(u"x)?] — E[u’z]? = var(u’x)

Switching to Empirical Distribution

Using empirical distribution, we have the empirical variance for {u”z;}¥ ;:
1 & 1
u’ Su =u” [N Zw;‘rwz - ﬁT] u = N Z(UT%)@;‘FU) - (UTE)(ETU)

1 o 1<
:NZU x;)? — :NZ’U, z;)? — (uTz)? = §*
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Intuition Behind Principle Component Analysis [1]

Finding the direction w which result in the high projection value spread mea-
sured by project value variance

v

Extreme Cases

@ Zero variance: The projection of all points onto w is equal (The points are
in the hyper-plane whose normal vector is u).

o Large variance: The points are spread along the w direction.

Objective

Fining the direction that maximize the projection variance (or equivalently pro-
jection spread)
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The problem for PCA can be formulated as:

max u’ Su
ucRP

The maximum value of objective function is infinity, thus we need to constrained
u as:

max u? Su subject to ||ulls =1
ueRP




Spectal Theorem

Eigenvalues and Eigenvectors of Symmetric Matrices

Based on Spectral Theorem, for symmetric matrix S we have:

o All eigenvalues are real
e Eigenvectors are orthonormal (U is orthogonal thus P~ = PT)

Then we have:

S=PAP" = |p, p, b,

n
= Z Aipip?
i=1

Covariance Matrices
Covariance matrices are positive semi-definite, equivalently, all their eigenvalues
are non-negative (u’ Xu > 0,Vu and u’ Su > 0, Vu).
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Characterizing S

Characterizing S

Using Spectral theorem, we can write S as:
| |
P=p p, Pp

_ T
S =PAP", Ay

Ap >0
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Characterizing S [1]

Transforming Using Eigenvectors

Assume we define y = PTx € R? and Z = 0, then:
y=PTa=P'z=0
Thus the sample covariance matrix for y is:
sv— L i(PTx‘)(PTa:')T =3 (i ﬁ::;:ﬂ) P=P'SP=D
& i=1 l l & i=1 o
Thus we take one step through whitening:

cov(Y*, V%) = {i 7y
i =]
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Finding Maximum Spread Direction [1]

Finding Maximum Spread Direction

Assume the maximum spread direction is u and consider the following definition:
b=Plu=u=Pb

Now we measure the spread as:

)12
I I
—_——  — D D
u”Su = (Pb)"(PDP")(Pu) =b" (PP")D (P"P)b=> \b3 <\ ) b3
j=1 j=1

On the other hand, for ||b]|?, e have:
6] = | PTu|? = (PTw)" (P"u) = u” (PP )u = |[u|* =1
Thus:

Vu e RP : uTSu < )
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Finding Maximum Spread Direction [1]

Finding Maximum Spread Direction

We see:
Vu e RP : uTSu < A1

Now check the variance for u = p;:

- pf - pip) 1
- pi - P3Py 0
b= ) P = . =|.
- pl - PHP1 0

Thus:

D
pl'Sp, = b" Db = Z Ajbj = Ap

=1

And u = p,is the direction of maximum spread.
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Fining Next Maximum Spread Directions [1]

Fining N fTaximu ad Directions
Assume p;,p,,...,Pp to be the eigenvectors of S matrix corresponding to
eigenvalues sorted in the descending order. Then, we have seen:

P, € argmax u?'Su
flul=1

We can show the following in an almost similar way:
T
py € argmax u Su
lull=1,uLp,

p3 € argmax u? Su
lull=1,ulp,,i=1,2

p; € argmax ul Su
llll=1,uLp, k=1,..,(j—1)
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Subsection 2

Interpretation Via Reconstruction
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PCA Interpretation Using Reconstruction

PCA Interpretation Using Reconstruction

Assume we have a high-dimensional data € R” and we want to project it to
a low dimensional subspace z € R” such that low dimensional representation is
a good representation. To approach a mathematical formulation, we need:

e A projection (encoding) operator: z = Encode(x; 6)
e An un-projection (decoding) operator: & = Decode(z; 0)

o A goodness measure: |z — Z|?
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Parameters

o Representation in the low dimensional space z € R
. B o ~ L
e Basis functions for reconstruction = ) ;" | z;w; such that:
1 i=j
wiw; =4
0 i#j
Or equivalently if W = ['wl wy ... 'wL] € RP*L then:
w’ wiw, wlfw, ... wlwp
T w? wiw, wlwy, ... wlwp
W-"W = . [wl w2 wL]: . . . . =1
T T T T
wy, wpw; WpLW2 ... WLWL

IML-S14 Principle Component A



Altogether

PCA Interpretation Using Reconstruction

You are given a dataset {x;}~; in RP. You should design W € RP*L and
{2}, using the following problem:

— x Wz
Jin an i3
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Basic Problem L =1

ifying the Loss

In this case, the loss function is:

2

L(wy, {z:}) = ZH%—Z wi|?= = Z i — ziw1)" (@ — zjwi)

N
1
T 1T el T
:NE x; x; — 2z;wi x; + (2;)° wy wy
i=1

1

= [

w;‘rwl - 2zi1w?:ci + (211)2]
i=1
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Basic Problem L =1

Derivative w.r.t. Representation

OL(w1, {z}

Dz} _N[ r

—2wiz, +2z)] =0= 2z}, =wiz,

Updating Loss Function

1 1
; x] @, — (2})%] = const — ¥ Z(z})2

Dropping the constant term, we have:

N

al 1
E =% E wi z;x] w; = —wi Sw;

i=1

L(w

= \

Note that in the above, we assumed the empirical mean vector to be zero (Z = 0)
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Basic Problem L =1

Solving for w;

We have the following optimization problem:

min w{ Sw; subject to w w; =1
w1

Thus we form the Lagrangian as:
L(wy) = wl Swy — M (wlwy — 1)

The partial derivative for the Lagrangian is:

i,E(’wl) =2Sw; — 2w =0 = Sw; = \jw,
awl

Thus (A1, w;) is a pair of (eigenvalue,eigenvector). But which of them?

wlTSwl = w{wl =\

Thus w; is the direction of eigenvector corresponding to largest eigenvalue.
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General Case

General Case

Assume we want to find W = [wy,...,wy] and z = [z!,..., 2F]. Then we have

the following problem:

LW, {zk}) = Zl\wz Zz w;|*

And the solution is:

where {p;} is the set of eigenvector for S matrix corresponding to eigenvalues
sorted in descending order.
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Encoding and Decoding

Encoding
wT wlz z!
; . w? wliz 22
R* > z=Encode(x, W)=W-z=| . |xz=| . [=].
wt wlx 2L

Decoding
ol
22 ,
RP 5 2 = Decode(z, W) = Wz = [wl wy ... wL] | = Zzlwi
z'L i

Principle Component Analysis
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Section 3

Clustering
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Clustering Problem

o Experience E: Set of N samples D = {z,}_,
o Task T": Partition the input into regions that contains similar points.

o Performance measure in Compression: Compression loss
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Section 4

Mixture Models
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One way to create more complex probability models is to take a convex combination of simple
distributions. This is called a mixture model. This has the form p(y|0) = Zle Tk (Y|Ok)
where:
@ pc(:|0k) is the k-th mixture component
o {wk}le are mixture weights with the following constraints:
o 0<m <1,k=1,....K
K
o> =1

Mixture Models - Generative Story

Suppose latent variable z to be a categorical RV and distributed as p(z|@) = Cat(z|w) and
conditional p(y|z = k, 0) = p.(y|0r). We can interpret mixture models as follows:

@ We sample a specific component.
@ We generate y using sampled value of z.
Using the above procedure, we have:

K

K
p(yl0) = > p(z = k|O)p(ylz = k,0) = > mp(y|Or)
k=1 k=1
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Gaussian Mixture Model

Gaussian Mixture Model
Gaussian Mixture Model (GMM) or Mixture of Gaussian (MoG) is defined as:

p(yl6) = ZMN (Ylpg, Zik)

k=1

e : R

Figure: Sample GMM distribution
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Maximum Likelihood Approach to Clustering

Problem Formulation

o Observed data samples {x;}7_;
o Unobserved mixture element corresponding to each data sample {z;}¥;

Using the above two formulation, the complete dataset likelihood is:

p(D|6) = p({z:}, {=:}|6)

The marginal likelihood of dataset is:

p({z:}10) = Y p({z:}. {z:}10)
{:}

and the maximum likelihood estimation for § = {61,...,0k,mw} can be calcu-
lated as:

0,n1e = argmax p({z;}|6)
2]
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Challenge

As the scale of the problem increases (dimension of  and number of dataset sample
N), it becomes computationally intractable to exactly evaluate (or even optimize) the

marginal likelihood.
-

One solution is to use expectation maximization algorithm as:
o Initialize 6 randomly (or by using problem-specific heuristics) as 0
@ Fort=1,2,...,T, repeat:
o E-step: Compute posterior distribution of {z;} given {@;} and 8¢~V as:

¢ ({z}) = p({=i}{=:},6°7")

o M-step: Find 0" as the maximizer of complete log-likelihood with
respect to ¢V ({z}) as:

0 = axgmax B, log p({:}, {z}16)) = argmax 3" " ({=:}) logp({wi}, (2H6)
{z:}
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General Mixture Model

General Mixture Model

For a general mixture model, the samples are generated using the following
distribution:

£L‘|0 Zﬂ—kpc $|9k

where we have:

T

TK

and z ~ Cat()
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General Mixture Model

Complete log-Likelihood Formulation

N N
logp({z:}, {zi}|6) = log ] [ p(@:, 2:16) = log _Hp(fvilzz» 6)p(z:0)

=1

On the other hand, we have:

p(ZL‘i|Z¢, 0) = pc(mi|02i)
p(2]0) = 72,

Thus we have:

N
log p({z;}, {z:}0) = Z (log s, + log pe(x;]0-,))

N K
=3 6k.., (logmy, + log pe(il6y))

i=1 k=1
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General Mixture Model

N

p({zi}l{z:},6) = [[ p(zil2:, 6)

=1
To compute p(z|xz;, 0), we use Bayes rule as:

_ p(xi|z =k, 0)p(z; = k|0) _ TDe(%:|Or)
E{il p(xilzi = 1,0)p(z; =1|0) Z{; Tipe(x4|607)

p(z; = k|z;,0)

Thus we have:

N
O [T =), ¢ (z1) = plzilws, 04D

i=1
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General Mixture Model

M-step

(t)

ir>

Il
i

K
Z Ok \Zi 10g T + 10gpc(£z|ek))>

i k=1

U
M=

-
Il
—
B
Il

Eq [0k,2; (log i + log pe(x:(0k))]
1

o
M=

o
Il
o
ol
Il

Eq(") [616,21} (log T + 10gpc(£i|0k))

qz(t)(k) (IOg Tk + logpc($z|9k))

I
=7
Mw

s
Il
-
x>
Il

1

Now we should maximize the above over all parameters 6.
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General Mixture Model

The optimization problem for different parameters is:

N
()
0, = argmaqugt)(k) log pe(x;|0k)

B =i
K
7 = argmaXZq(t) ) log 7, subject to Zﬂ'k =1,m <0
T =1 k=1

The second optimization problem result in the following answer:

) Z o (k)
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Multivariate Gaussian as p.

Algorithm

The algorithm is as follows:
© 220)}521 randomly and 7(0) = %1.

@ Initialize {1,
@ Fort=1,2,...,T, repeat:
o E-step:

(t l)pc(mz“lf(t 2 E(t 1)) k=1,...,K
N

(%) T
q (2 =k)= :
Znﬁ“mmeﬁ“U i=1,...,

o M-step:

1 N
= 5> a" (k)

i=1

1 N
W = 1 S

¢ ) u® )
= = (t)Zq ( )( “k)

Mixture Models
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