Lecture 14: Unsupervised Learning
 Introduction to Machine Learning [25737]

Sajjad Amini

Sharif University of Technology

Contents

(1) Approach Definition
(2) Principle Component Analysis

- Interpretation Via Maximum Projection Spread
- Interpretation Via Reconstruction
(3) Clustering
(4) Mixture Models

References

The material in the slides except cited are inspired from the following reference:

- Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.

Section 1

Approach Definition

Unsupervised Learning

Principle Component Analysis

- Experience E : Set of N samples $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$
- Task T : Projecting data into low dimensional subspace which captures its main aspects
- Performance measure: Preserving data variations

Clustering

- Experience E : Set of N samples $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$
- Task T : Partition the input into regions that contains similar points.
- Performance measure in Compression: Compression loss

Section 2

Principle Component Analysis

Subsection 1

Interpretation Via Maximum Projection Spread

Frame Title

Data Matrix

- Assume $\boldsymbol{x} \in \mathbb{R}^{D}$ is a random variable and you have observed N copies of it as $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N}$ (Equivalently the dataset).
- As before, we stack these copies into a Matrix \boldsymbol{X} as:

$$
\boldsymbol{X}=\left[\begin{array}{c}
\boldsymbol{x}_{1}^{T} \\
\boldsymbol{x}_{2}^{T} \\
\ldots \\
\boldsymbol{x}_{N}^{T}
\end{array}\right]=\left[\begin{array}{ccc}
x_{1}^{1} & \ldots & x_{1}^{D} \\
x_{2}^{1} & \ldots & x_{2}^{D} \\
\ldots & & \\
x_{N}^{1} & \ldots & x_{N}^{D}
\end{array}\right] \in \mathbb{R}^{N \times D}
$$

- Each column is a feature (covariate or predictor)
- Each row is an observation

Characterizing Dataset [1]

Characterizing Dataset

The dataset point create a point cloud in \mathbb{R}^{D} space.

- The expectation of this point cloud, calculated below, determines the center of point cloud.

$$
\mathbb{E}[\boldsymbol{x}]=\left[\begin{array}{c}
\mathbb{E}\left[x^{1}\right] \\
\vdots \\
\mathbb{E}\left[x^{D}\right]
\end{array}\right]
$$

- The covariance matrix of this point cloud, calculated below, determines the spread of point cloud.

$$
\begin{aligned}
\operatorname{Cov}[\boldsymbol{x}] & \triangleq \mathbb{E}\left[(\boldsymbol{x}-\mathbb{E}[\boldsymbol{x}])(\boldsymbol{x}-\mathbb{E}[\boldsymbol{x}])^{T}\right]=\mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]-\mathbb{E}[\boldsymbol{x}] \mathbb{E}[\boldsymbol{x}]^{T}=\boldsymbol{\Sigma} \\
& =\left[\begin{array}{cccc}
\operatorname{Cov}\left[X_{1}, X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{D}\right] \\
\operatorname{Cov}\left[X_{2}, X_{1}\right] & \operatorname{Cov}\left[X_{2}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{2}, X_{D}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left[X_{D}, X_{1}\right] & \operatorname{Cov}\left[X_{D}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{D}, X_{D}\right]
\end{array}\right]
\end{aligned}
$$

Characterizing Dataset [1]

Utilizing Empirical Distribution

The empirical distribution for dataset $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N}$ is defined as:

$$
p_{D}(\boldsymbol{x})=\frac{1}{N} \sum_{n=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right)
$$

We can use it to compute the empirical (sample) mean and empirical (sample) covariance matrix as:

$$
\begin{aligned}
\mathbb{E}_{D}[\boldsymbol{x}] & =\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}=\overline{\boldsymbol{x}} \\
\operatorname{Cov}_{D}[\boldsymbol{x}] & =\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}-\overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}=\boldsymbol{S}
\end{aligned}
$$

Characterizing Dataset [1]

Eliminating Summation Using Linear Algebra

For sample mean, we have:

$$
\overline{\boldsymbol{x}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}=\frac{1}{N}\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{N} \\
\mid & \mid & \mid
\end{array}\right]_{D \times N}\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]_{N \times 1}=\frac{1}{N} \boldsymbol{X}^{T} \mathbf{1}
$$

For sample covariance matrix, we use forth method for matrix multiplication as:

$$
\begin{aligned}
\boldsymbol{S} & =\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}-\overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}=\frac{1}{N}\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{N} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & \boldsymbol{x}_{1}^{T} & - \\
& \vdots & \\
- & \boldsymbol{x}_{N}^{T} & -
\end{array}\right]-\overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T} \\
& =\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X}-\frac{1}{N^{2}} \boldsymbol{X}^{T} \mathbf{1 1}^{T} \boldsymbol{X}=\frac{1}{N} \boldsymbol{X}^{T} \underbrace{\left(\boldsymbol{I}-\frac{1}{N} \mathbf{1 1}^{T}\right)}_{\boldsymbol{H}} \boldsymbol{X}
\end{aligned}
$$

Characterizing Dataset [1]

Idempotent Matrix

Matrix \boldsymbol{P} is said to be idempotent matrix if $\boldsymbol{P}^{2}=\boldsymbol{P}$

Projection Matrix

Matrix \boldsymbol{Z} is said to be projection matrix if it is symmetric and idempotent.

Working on \boldsymbol{H} Matrix

Matrix \boldsymbol{H} is a projection matrix because:

- $\boldsymbol{H}^{T}=\left(\boldsymbol{I}-\frac{1}{N} \mathbf{1 1}^{T}\right)^{T}=\boldsymbol{I}-\frac{1}{N} \mathbf{1 1}^{T}$
- Idempotent property:

$$
\begin{aligned}
\boldsymbol{H}^{2} & =\boldsymbol{H} \boldsymbol{H}=\left(\boldsymbol{I}-\frac{1}{N} \mathbf{1 1}^{T}\right)\left(\boldsymbol{I}-\frac{1}{N} \mathbf{1 1}^{T}\right)=\boldsymbol{I}-\frac{2}{N} \mathbf{1} \mathbf{1}^{T}+\frac{1}{N^{2}} \mathbf{1} \overbrace{\mathbf{1}^{T} \mathbf{1}}^{N} \mathbf{1}^{T} \\
& =\boldsymbol{I}-\frac{2}{N} \mathbf{1 1}^{T}+\frac{1}{N} \mathbf{1 1}^{T}=\boldsymbol{H}
\end{aligned}
$$

Characterizing Dataset [1]

Characterizing the Projection \boldsymbol{H}

Assume $\boldsymbol{v} \in \mathbb{R}^{N}$, then:

$$
\boldsymbol{H} \boldsymbol{v}=\boldsymbol{v}-\frac{1}{N} \mathbf{1 1}^{T} \boldsymbol{v}=\boldsymbol{v}-\frac{\mathbf{1}^{T} \boldsymbol{v}}{N} \mathbf{1}=\boldsymbol{v}-\overline{\boldsymbol{v}}
$$

Thus \boldsymbol{H} removes the mean of the vector from each coordinate. Equivalently $\overline{\boldsymbol{H v}}=\mathbf{0}$
Thus \boldsymbol{H} is the projection onto the subspace of vectors with zero mean (Projection onto hyperplane which is orthogonal to $\mathbf{1}$ vector).

Re-writing S

Based on the projection matrix \boldsymbol{H}, we have:

$$
\boldsymbol{S}=\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{H} \boldsymbol{X}=\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{H}^{2} \boldsymbol{X}=\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{H}^{T} \boldsymbol{H} \boldsymbol{X}=\frac{1}{N}(\boldsymbol{H} \boldsymbol{X})^{T}(\boldsymbol{H} \boldsymbol{X})
$$

where $\boldsymbol{H} \boldsymbol{X}$ result in centered features.

Linear Combination of Features [1]

Original Formulation

Assume an arbitrary direction of $\boldsymbol{u} \in \mathbb{R}^{D}$, then consider the following value:

$$
\begin{aligned}
\boldsymbol{u}^{T} \boldsymbol{\Sigma} \boldsymbol{u} & =\boldsymbol{u}^{T}\left[\mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]-\mathbb{E}[\boldsymbol{x}] \mathbb{E}\left[\boldsymbol{x}^{T}\right]\right] \boldsymbol{u} \stackrel{(a)}{=} \mathbb{E}\left[\left(\boldsymbol{u}^{T} \boldsymbol{x}\right)\left(\boldsymbol{u}^{T} \boldsymbol{x}\right)^{T}\right]-\mathbb{E}\left[\boldsymbol{u}^{T} \boldsymbol{x}\right] \mathbb{E}\left[\left(\boldsymbol{u}^{T} \boldsymbol{x}\right)^{T}\right] \\
& =\mathbb{E}\left[\left(\boldsymbol{u}^{T} \boldsymbol{x}\right)^{2}\right]-\mathbb{E}\left[\boldsymbol{u}^{T} \boldsymbol{x}\right]^{2}=\operatorname{var}\left(\boldsymbol{u}^{T} \boldsymbol{x}\right)
\end{aligned}
$$

Switching to Empirical Distribution

Using empirical distribution, we have the empirical variance for $\left\{\boldsymbol{u}^{T} \boldsymbol{x}_{i}\right\}_{i=1}^{N}$:

$$
\begin{aligned}
\boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u} & =\boldsymbol{u}^{T}\left[\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i}-\overline{\boldsymbol{x}}^{T}\right] \boldsymbol{u}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{u}^{T} \boldsymbol{x}_{i}\right)\left(\boldsymbol{x}_{i}^{T} \boldsymbol{u}\right)-\left(\boldsymbol{u}^{T} \overline{\boldsymbol{x}}\right)\left(\overline{\boldsymbol{x}}^{T} \boldsymbol{u}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{u}^{T} \boldsymbol{x}_{i}\right)^{2}-\left(\boldsymbol{u}^{T} \overline{\boldsymbol{x}}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{u}^{T} \boldsymbol{x}_{i}\right)^{2}-\left(\overline{\boldsymbol{u}^{T} \boldsymbol{x}}\right)^{2}=s^{2}
\end{aligned}
$$

Intuition Behind Principle Component Analysis [1]

Intuition

Finding the direction \boldsymbol{u} which result in the high projection value spread measured by project value variance

Extreme Cases

- Zero variance: The projection of all points onto \boldsymbol{u} is equal (The points are in the hyper-plane whose normal vector is \boldsymbol{u}).
- Large variance: The points are spread along the \boldsymbol{u} direction.

Objective

Fining the direction that maximize the projection variance (or equivalently projection spread)

PCA

Formulation

The problem for PCA can be formulated as:

$$
\max _{\boldsymbol{u} \in \mathbb{R}^{D}} \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u}
$$

The maximum value of objective function is infinity, thus we need to constrained \boldsymbol{u} as:

$$
\max _{\boldsymbol{u} \in \mathbb{R}^{D}} \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u} \text { subject to }\|\boldsymbol{u}\|_{2}=1
$$

Spectal Theorem

Eigenvalues and Eigenvectors of Symmetric Matrices

Based on Spectral Theorem, for symmetric matrix \boldsymbol{S} we have:

- All eigenvalues are real
- Eigenvectors are orthonormal (\boldsymbol{U} is orthogonal thus $\left.\boldsymbol{P}^{-1}=\boldsymbol{P}^{T}\right)$

Then we have:

$$
\begin{aligned}
\boldsymbol{S} & =\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \boldsymbol{p}_{n} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{ccc}
- & \boldsymbol{p}_{1}^{T} & - \\
- & \boldsymbol{p}_{2}^{T} & - \\
& \vdots & \\
- & \boldsymbol{p}_{m}^{T} & -
\end{array}\right] \\
& =\sum_{i=1}^{n} \lambda_{i} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{T}
\end{aligned}
$$

Covariance Matrices

Covariance matrices are positive semi-definite, equivalently, all their eigenvalues are non-negative ($\boldsymbol{u}^{T} \boldsymbol{\Sigma} \boldsymbol{u} \geq 0, \forall \boldsymbol{u}$ and $\left.\boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u} \geq 0, \forall \boldsymbol{u}\right)$.

Characterizing S

Characterizing S

Using Spectral theorem, we can write \boldsymbol{S} as:

$$
\boldsymbol{S}=\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{T},\left\{\begin{array}{l}
\boldsymbol{P}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \boldsymbol{p}_{D} \\
\mid & \mid & \\
\mid
\end{array}\right] \\
\boldsymbol{\Lambda}=\left[\begin{array}{llll}
\lambda_{1} & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{D} \geq 0
\end{array}\right], \lambda_{1} \geq \lambda_{2} \ldots \lambda_{D} \\
\boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{I}
\end{array}\right.
$$

Characterizing S [1]

Transforming Using Eigenvectors

Assume we define $\boldsymbol{y}=\boldsymbol{P}^{T} \boldsymbol{x} \in \mathbb{R}^{D}$ and $\overline{\boldsymbol{x}}=0$, then:

$$
\overline{\boldsymbol{y}}=\overline{\boldsymbol{P}^{T} \boldsymbol{x}}=\boldsymbol{P}^{T} \overline{\boldsymbol{x}}=\mathbf{0}
$$

Thus the sample covariance matrix for \boldsymbol{y} is:

$$
\boldsymbol{S}^{y}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{P}^{T} \boldsymbol{x}_{i}\right)\left(\boldsymbol{P}^{T} \boldsymbol{x}_{i}\right)^{T}=\boldsymbol{P}^{T}\left(\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right) \boldsymbol{P}=\boldsymbol{P}^{T} \boldsymbol{S} \boldsymbol{P}=\boldsymbol{D}
$$

Thus we take one step through whitening:

$$
\operatorname{cov}\left(Y^{i}, Y^{j}\right)= \begin{cases}0 & i \neq j \\ \lambda_{i} & i=j\end{cases}
$$

Finding Maximum Spread Direction [1]

Finding Maximum Spread Direction

Assume the maximum spread direction is \boldsymbol{u} and consider the following definition:

$$
\boldsymbol{b}=\boldsymbol{P}^{T} \boldsymbol{u} \Rightarrow \boldsymbol{u}=\boldsymbol{P} \boldsymbol{b}
$$

Now we measure the spread as:
$\boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u}=(\boldsymbol{P} \boldsymbol{b})^{T}\left(\boldsymbol{P} \boldsymbol{D} \boldsymbol{P}^{T}\right)(\boldsymbol{P} \boldsymbol{u})=\boldsymbol{b}^{T} \overbrace{\left(\boldsymbol{P} \boldsymbol{P}^{T}\right)}^{\boldsymbol{I}} \boldsymbol{D} \overbrace{\left(\boldsymbol{P}^{T} \boldsymbol{P}\right)}^{\boldsymbol{I}} \boldsymbol{b}=\sum_{j=1}^{D} \lambda_{j} b_{j}^{2} \leq \lambda_{1} \overbrace{\sum_{j=1}^{D} b_{j}^{2}}^{\|\boldsymbol{b}\|^{2}}$
On the other hand, for $\|\boldsymbol{b}\|^{2}$, e have:

$$
\|\boldsymbol{b}\|^{2}=\left\|\boldsymbol{P}^{T} \boldsymbol{u}\right\|^{2}=\left(\boldsymbol{P}^{T} \boldsymbol{u}\right)^{T}\left(\boldsymbol{P}^{T} \boldsymbol{u}\right)=\boldsymbol{u}^{T}\left(\boldsymbol{P} \boldsymbol{P}^{T}\right) \boldsymbol{u}=\|\boldsymbol{u}\|^{2}=1
$$

Thus:

$$
\forall \boldsymbol{u} \in \mathbb{R}^{D}: \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u} \leq \lambda_{1}
$$

Finding Maximum Spread Direction [1]

Finding Maximum Spread Direction

We see:

$$
\forall \boldsymbol{u} \in \mathbb{R}^{D}: \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u} \leq \lambda_{1}
$$

Now check the variance for $\boldsymbol{u}=\boldsymbol{p}_{1}$:

$$
\boldsymbol{b}=\left[\begin{array}{ccc}
- & \boldsymbol{p}_{1}^{T} & - \\
- & \boldsymbol{p}_{2}^{T} & - \\
& \vdots & \\
- & \boldsymbol{p}_{m}^{T} & -
\end{array}\right] \boldsymbol{p}_{1}=\left[\begin{array}{c}
\boldsymbol{p}_{1}^{T} \boldsymbol{p}_{1} \\
\boldsymbol{p}_{2}^{T} \boldsymbol{p}_{1} \\
\vdots \\
\boldsymbol{p}_{D}^{T} \boldsymbol{p}_{1}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Thus:

$$
\boldsymbol{p}_{1}^{T} \boldsymbol{S} \boldsymbol{p}_{1}=\boldsymbol{b}^{T} \boldsymbol{D} \boldsymbol{b}=\sum_{j=1}^{D} \lambda_{j} b_{j}=\lambda_{1}
$$

And $\boldsymbol{u}=\boldsymbol{p}_{1}$ is the direction of maximum spread.

Fining Next Maximum Spread Directions [1]

Fining Next Maximum Spread Directions

Assume $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{D}$ to be the eigenvectors of \boldsymbol{S} matrix corresponding to eigenvalues sorted in the descending order. Then, we have seen:

$$
\boldsymbol{p}_{1} \in \underset{\|\boldsymbol{u}\|=1}{\operatorname{argmax}} \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u}
$$

We can show the following in an almost similar way:

$$
\begin{aligned}
& \boldsymbol{p}_{2} \in \underset{\|\boldsymbol{u}\|=1, \boldsymbol{u} \perp \boldsymbol{p}_{1}}{\operatorname{argmax}} \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u} \\
& \boldsymbol{p}_{3} \in \underset{\|\boldsymbol{u}\|=1, \boldsymbol{u} \perp \boldsymbol{p}_{i}, i=1,2}{\operatorname{argmax}} \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u} \\
& \vdots \\
& \boldsymbol{p}_{j} \in \underset{\|\boldsymbol{u}\|=1, \boldsymbol{u} \perp \boldsymbol{p}_{k}, k=1, \ldots,(j-1)}{\operatorname{argmax}} \boldsymbol{u}^{T} \boldsymbol{S} \boldsymbol{u}
\end{aligned}
$$

Subsection 2

Interpretation Via Reconstruction

PCA Interpretation Using Reconstruction

PCA Interpretation Using Reconstruction

Assume we have a high-dimensional data $\boldsymbol{x} \in \mathbb{R}^{D}$ and we want to project it to a low dimensional subspace $\boldsymbol{z} \in \mathbb{R}^{L}$ such that low dimensional representation is a good representation. To approach a mathematical formulation, we need:

- A projection (encoding) operator: $\boldsymbol{z}=\operatorname{Encode}(\boldsymbol{x} ; \boldsymbol{\theta})$
- An un-projection (decoding) operator: $\widehat{\boldsymbol{x}}=\operatorname{Decode}(\boldsymbol{z} ; \boldsymbol{\theta})$
- A goodness measure: $\|\boldsymbol{x}-\widehat{\boldsymbol{x}}\|^{2}$

Parameters

Parameters

- Representation in the low dimensional space $\boldsymbol{z} \in \mathbb{R}^{L}$
- Basis functions for reconstruction $\widehat{\boldsymbol{x}}=\sum_{i=1}^{L} z_{i} \boldsymbol{w}_{i}$ such that:

$$
\boldsymbol{w}_{i}^{T} \boldsymbol{w}_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Or equivalently if $\boldsymbol{W}=\left[\begin{array}{llll}\boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \ldots & \boldsymbol{w}_{L}\end{array}\right] \in \mathbb{R}^{D \times L}$ then:

$$
\boldsymbol{W}^{T} \boldsymbol{W}=\left[\begin{array}{c}
\boldsymbol{w}_{1}^{T} \\
\boldsymbol{w}_{2}^{T} \\
\vdots \\
\boldsymbol{w}_{L}^{T}
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \ldots & \boldsymbol{w}_{L}
\end{array}\right]=\left[\begin{array}{cccc}
\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1} & \boldsymbol{w}_{1}^{T} \boldsymbol{w}_{2} & \ldots & \boldsymbol{w}_{1}^{T} \boldsymbol{w}_{L} \\
\boldsymbol{w}_{2}^{T} \boldsymbol{w}_{1} & \boldsymbol{w}_{2}^{T} \boldsymbol{w}_{2} & \ldots & \boldsymbol{w}_{2}^{T} \boldsymbol{w}_{L} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{w}_{L}^{T} \boldsymbol{w}_{1} & \boldsymbol{w}_{L}^{T} \boldsymbol{w}_{2} & \ldots & \boldsymbol{w}_{L}^{T} \boldsymbol{w}_{L}
\end{array}\right]=\boldsymbol{I}
$$

Altogether

PCA Interpretation Using Reconstruction

You are given a dataset $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{N}$ in \mathbb{R}^{D}. You should design $\boldsymbol{W} \in \mathbb{R}^{D \times L}$ and $\left\{\boldsymbol{z}_{i}\right\}_{i=1}^{N}$ using the following problem:

$$
\min _{\boldsymbol{W},\left\{\boldsymbol{z}_{k}\right\}} \frac{1}{N} \sum_{i=1}^{N}\left\|\boldsymbol{x}_{i}-\boldsymbol{W} \boldsymbol{z}_{i}\right\|_{2}^{2}
$$

Basic Problem $L=1$

Simplifying the Loss

In this case, the loss function is:

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{w}_{1},\left\{z_{k}^{1}\right\}\right) & =\frac{1}{N} \sum_{i=1}^{N}\left\|\boldsymbol{x}_{i}-z_{i}^{1} \boldsymbol{w}_{1}\right\|^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-z_{i}^{1} \boldsymbol{w}_{1}\right)^{T}\left(\boldsymbol{x}_{i}-z_{i}^{1} \boldsymbol{w}_{1}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N}[\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i}-2 z_{i}^{1} \boldsymbol{w}_{1}^{T} \boldsymbol{x}_{i}+\left(z_{i}^{1}\right)^{2} \overbrace{\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}}^{=1}] \\
& =\frac{1}{N} \sum_{i=1}^{N}\left[\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i}-2 z_{i}^{1} \boldsymbol{w}_{1}^{T} \boldsymbol{x}_{i}+\left(z_{i}^{1}\right)^{2}\right]
\end{aligned}
$$

Basic Problem $L=1$

Derivative w.r.t. Representation

$$
\frac{\partial \mathcal{L}\left(\boldsymbol{w}_{1},\left\{z_{k}^{1}\right\}\right.}{\partial z_{n}^{1}}=\frac{1}{N}\left[-2 \boldsymbol{w}_{1}^{T} \boldsymbol{x}_{n}+2 z_{n}^{1}\right]=0 \Rightarrow z_{n}^{1}=\boldsymbol{w}_{1}^{T} \boldsymbol{x}_{n}
$$

Updating Loss Function

$$
\mathcal{L}\left(\boldsymbol{w}_{1}\right)=\frac{1}{N} \sum_{i=1}^{N}\left[\boldsymbol{x}_{n}^{T} \boldsymbol{x}_{n}-\left(z_{i}^{1}\right)^{2}\right]=\mathrm{const}-\frac{1}{N} \sum_{i=1}^{N}\left(z_{i}^{1}\right)^{2}
$$

Dropping the constant term, we have:

$$
\mathcal{L}\left(\boldsymbol{w}_{1}\right)=-\frac{1}{N} \sum_{i=1}^{N}\left(z_{i}^{1}\right)^{2}=-\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{w}_{1}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{w}_{1}=-\boldsymbol{w}_{1}^{T} \boldsymbol{S} \boldsymbol{w}_{1}
$$

Note that in the above, we assumed the empirical mean vector to be zero ($\overline{\boldsymbol{x}}=\mathbf{0}$)

Basic Problem $L=1$

Solving for \boldsymbol{w}_{1}

We have the following optimization problem:

$$
\min _{\boldsymbol{w}_{1}} \boldsymbol{w}_{1}^{T} \boldsymbol{S} \boldsymbol{w}_{1} \text { subject to } \boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}=1
$$

Thus we form the Lagrangian as:

$$
\widetilde{\mathcal{L}}\left(\boldsymbol{w}_{1}\right)=\boldsymbol{w}_{1}^{T} \boldsymbol{S} \boldsymbol{w}_{1}-\lambda_{1}\left(\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}-1\right)
$$

The partial derivative for the Lagrangian is:

$$
\frac{\partial}{\partial \boldsymbol{w}_{1}} \widetilde{\mathcal{L}}\left(\boldsymbol{w}_{1}\right)=2 \boldsymbol{S} \boldsymbol{w}_{1}-2 \lambda_{1} \boldsymbol{w}_{1}=0 \Rightarrow \boldsymbol{S} \boldsymbol{w}_{1}=\lambda_{1} \boldsymbol{w}_{1}
$$

Thus $\left(\lambda_{1}, \boldsymbol{w}_{1}\right)$ is a pair of (eigenvalue,eigenvector). But which of them?

$$
\boldsymbol{w}_{1}^{T} \boldsymbol{S} \boldsymbol{w}_{1}=\boldsymbol{w}_{1}^{T} \boldsymbol{w}_{1}=\lambda_{1}
$$

Thus \boldsymbol{w}_{1} is the direction of eigenvector corresponding to largest eigenvalue.

General Case

General Case

Assume we want to find $\boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{L}\right]$ and $\boldsymbol{z}=\left[z^{1}, \ldots, z^{L}\right]$. Then we have the following problem:

$$
\mathcal{L}\left(\boldsymbol{W},\left\{\boldsymbol{z}_{k}\right\}\right)=\frac{1}{N} \sum_{i=1}^{N}\left\|\boldsymbol{x}_{i}-\sum_{j=1}^{L} z_{i}^{j} \boldsymbol{w}_{j}\right\|^{2}
$$

And the solution is:

$$
\begin{aligned}
& \boldsymbol{w}_{i}=\boldsymbol{p}_{i}, i=1, \ldots, L \\
& z_{i}^{j}=\boldsymbol{p}_{j}^{T} \boldsymbol{x}_{i},\left\{\begin{array}{l}
i=1, \ldots, N \\
j=1, \ldots, L
\end{array}\right.
\end{aligned}
$$

where $\left\{\boldsymbol{p}_{i}\right\}$ is the set of eigenvector for \boldsymbol{S} matrix corresponding to eigenvalues sorted in descending order.

Encoding and Decoding

Encoding

$$
\mathbb{R}^{L} \ni \boldsymbol{z}=\operatorname{Encode}(\boldsymbol{x}, \boldsymbol{W})=\boldsymbol{W}^{T} \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{w}_{1}^{T} \\
\boldsymbol{w}_{2}^{T} \\
\vdots \\
\boldsymbol{w}_{L}^{T}
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{w}_{1}^{T} \boldsymbol{x} \\
\boldsymbol{w}_{2}^{T} \boldsymbol{x} \\
\vdots \\
\boldsymbol{w}_{L}^{T} \boldsymbol{x}
\end{array}\right]=\left[\begin{array}{c}
z^{1} \\
z^{2} \\
\vdots \\
z^{L}
\end{array}\right]
$$

Decoding

$\mathbb{R}^{D} \ni \widehat{\boldsymbol{x}}=\operatorname{Decode}(\boldsymbol{x}, \boldsymbol{W})=\boldsymbol{W} \boldsymbol{z}=\left[\begin{array}{llll}\boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \ldots & \boldsymbol{w}_{L}\end{array}\right]\left[\begin{array}{c}z^{1} \\ z^{2} \\ \vdots \\ z^{L}\end{array}\right]=\sum_{i} z^{i} \boldsymbol{w}_{i}$

Section 3

Clustering

Clustering Problem

Clustering

- Experience E : Set of N samples $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$
- Task T : Partition the input into regions that contains similar points.
- Performance measure in Compression: Compression loss

Figure: Sample GMM distribution

Section 4

Mixture Models

Mixture Models

Mixture Models

One way to create more complex probability models is to take a convex combination of simple distributions. This is called a mixture model. This has the form $p(\boldsymbol{y} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} \pi_{k} p_{c}\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{k}\right)$ where:

- $p_{c}\left(\cdot \mid \boldsymbol{\theta}_{k}\right)$ is the k-th mixture component
- $\left\{\pi_{k}\right\}_{k=1}^{K}$ are mixture weights with the following constraints:
- $0 \leq \pi_{k} \leq 1, k=1, \ldots, K$
- $\sum_{k=1}^{K} \pi_{k}=1$

Mixture Models - Generative Story

Suppose latent variable z to be a categorical RV and distributed as $p(z \mid \boldsymbol{\theta})=\operatorname{Cat}(z \mid \boldsymbol{\pi})$ and conditional $p(\boldsymbol{y} \mid z=k, \boldsymbol{\theta})=p_{c}\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{k}\right)$. We can interpret mixture models as follows:

- We sample a specific component.
- We generate \boldsymbol{y} using sampled value of z.

Using the above procedure, we have:

$$
p(\boldsymbol{y} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} p(z=k \mid \boldsymbol{\theta}) p(\boldsymbol{y} \mid z=k, \boldsymbol{\theta})=\sum_{k=1}^{K} \pi_{k} p\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{k}\right)
$$

Gaussian Mixture Model

Gaussian Mixture Model

Gaussian Mixture Model (GMM) or Mixture of Gaussian (MoG) is defined as:

$$
p(\boldsymbol{y} \mid \boldsymbol{\theta})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Figure: Sample GMM distribution

Maximum Likelihood Approach to Clustering

Problem Formulation

- Observed data samples $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$
- Unobserved mixture element corresponding to each data sample $\left\{z_{i}\right\}_{i=1}^{N}$ Using the above two formulation, the complete dataset likelihood is:

$$
p(\mathcal{D} \mid \boldsymbol{\theta})=p\left(\left\{\boldsymbol{x}_{i}\right\},\left\{z_{i}\right\} \mid \boldsymbol{\theta}\right)
$$

The marginal likelihood of dataset is:

$$
p\left(\left\{\boldsymbol{x}_{i}\right\} \mid \boldsymbol{\theta}\right)=\sum_{\left\{z_{i}\right\}} p\left(\left\{\boldsymbol{x}_{i}\right\},\left\{z_{i}\right\} \mid \boldsymbol{\theta}\right)
$$

and the maximum likelihood estimation for $\theta=\left\{\boldsymbol{\theta}_{1}, \ldots, \theta_{K}, \boldsymbol{\pi}\right\}$ can be calculated as:

$$
\widehat{\boldsymbol{\theta}}_{m l e}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p\left(\left\{\boldsymbol{x}_{i}\right\} \mid \boldsymbol{\theta}\right)
$$

Challenge and Solution

Challenge

As the scale of the problem increases (dimension of \boldsymbol{x} and number of dataset sample N), it becomes computationally intractable to exactly evaluate (or even optimize) the marginal likelihood.

Solution

One solution is to use expectation maximization algorithm as:

- Initialize $\boldsymbol{\theta}$ randomly (or by using problem-specific heuristics) as $\boldsymbol{\theta}^{(0)}$
- For $t=1,2, \ldots, T$, repeat:
- E-step: Compute posterior distribution of $\left\{z_{i}\right\}$ given $\left\{\boldsymbol{x}_{i}\right\}$ and $\boldsymbol{\theta}^{(t-1)}$ as:

$$
q^{(t)}\left(\left\{z_{i}\right\}\right)=p\left(\left\{z_{i}\right\} \mid\left\{\boldsymbol{x}_{i}\right\}, \boldsymbol{\theta}^{(t-1)}\right)
$$

- M-step: Find $\boldsymbol{\theta}^{(t)}$ as the maximizer of complete log-likelihood with respect to $q^{(t)}\left(\left\{z_{i}\right\}\right)$ as:
$\boldsymbol{\theta}^{(t)}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{\boldsymbol{q}^{(t)}}\left[\log p\left(\left\{\boldsymbol{x}_{i}\right\},\left\{z_{i}\right\} \mid \boldsymbol{\theta}\right)\right]=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{\left\{z_{i}\right\}} q^{(t)}\left(\left\{z_{i}\right\}\right) \log p\left(\left\{\boldsymbol{x}_{i}\right\},\left\{z_{i}\right\} \mid \boldsymbol{\theta}\right)$

General Mixture Model

General Mixture Model

For a general mixture model, the samples are generated using the following distribution:

$$
p(x \mid \boldsymbol{\theta})=\sum_{k=1}^{K} \pi_{k} p_{c}\left(x \mid \boldsymbol{\theta}_{k}\right)
$$

where we have:

$$
\boldsymbol{\theta}=\left\{\boldsymbol{\pi}=\left[\begin{array}{c}
\pi_{1} \\
\vdots \\
\pi_{K}
\end{array}\right], \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}\right\}
$$

and $z \sim \operatorname{Cat}(\boldsymbol{\pi})$

General Mixture Model

Complete log-Likelihood Formulation

$$
\log p\left(\left\{\boldsymbol{x}_{i}\right\},\left\{z_{i}\right\} \mid \boldsymbol{\theta}\right)=\log \prod_{i=1}^{N} p\left(\boldsymbol{x}_{i}, z_{i} \mid \boldsymbol{\theta}\right)=\log \prod_{i=1}^{N} p\left(\boldsymbol{x}_{i} \mid z_{i}, \boldsymbol{\theta}\right) p\left(z_{i} \mid \boldsymbol{\theta}\right)
$$

On the other hand, we have:

$$
\begin{aligned}
p\left(\boldsymbol{x}_{i} \mid z_{i}, \boldsymbol{\theta}\right) & =p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{z_{i}}\right) \\
p\left(z_{i} \mid \boldsymbol{\theta}\right) & =\pi_{z_{i}}
\end{aligned}
$$

Thus we have:

$$
\begin{aligned}
& \log p\left(\left\{\boldsymbol{x}_{i}\right\},\left\{z_{i}\right\} \mid \boldsymbol{\theta}\right)=\sum_{i=1}^{N}\left(\log \pi_{z_{i}}+\log p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{z_{i}}\right)\right) \\
= & \sum_{i=1}^{N} \sum_{k=1}^{K} \delta_{k, z_{i}}\left(\log \pi_{k}+\log p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}\right)\right)
\end{aligned}
$$

General Mixture Model

E-step

$$
p\left(\left\{z_{i}\right\} \mid\left\{\boldsymbol{x}_{i}\right\}, \boldsymbol{\theta}\right)=\prod_{i=1}^{N} p\left(z_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right)
$$

To compute $p\left(z_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$, we use Bayes rule as:

$$
p\left(z_{i}=k \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right)=\frac{p\left(\boldsymbol{x}_{i} \mid z_{i}=k, \boldsymbol{\theta}\right) p\left(z_{i}=k \mid \boldsymbol{\theta}\right)}{\sum_{l=1}^{K} p\left(\boldsymbol{x}_{i} \mid z_{i}=l, \boldsymbol{\theta}\right) p\left(z_{i}=l \mid \boldsymbol{\theta}\right)}=\frac{\pi_{k} p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}\right)}{\sum_{l=1}^{K} \pi_{l} p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{l}\right)}
$$

Thus we have:

$$
q^{(t)}\left(\left\{z_{i}\right\}\right) \prod_{i=1}^{N} q_{i}^{(t)}\left(z_{i}\right), \quad q_{i}^{(t)}\left(z_{i}\right)=p\left(z_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}^{(t-1)}\right)
$$

General Mixture Model

M-step

$$
\begin{aligned}
& \mathbb{E}_{q^{(t)}}\left(\sum_{i=1}^{N} \sum_{k=1}^{K} \delta_{k, z_{i}}\left(\log \pi_{k}+\log p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}\right)\right)\right) \\
= & \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbb{E}_{q^{(t)}}\left[\delta_{k, z_{i}}\left(\log \pi_{k}+\log p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}\right)\right)\right] \\
= & \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbb{E}_{q^{(t)}}\left[\delta_{k, z_{i}}\right]\left(\log \pi_{k}+\log p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}\right)\right) \\
= & \sum_{i=1}^{N} \sum_{k=1}^{K} q_{i}^{(t)}(k)\left(\log \pi_{k}+\log p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}\right)\right)
\end{aligned}
$$

Now we should maximize the above over all parameters $\boldsymbol{\theta}$.

General Mixture Model

M-step

The optimization problem for different parameters is:

$$
\begin{aligned}
& \widehat{\boldsymbol{\theta}}_{k}^{(t)}=\underset{\boldsymbol{\theta}_{k}}{\operatorname{argmax}} \sum_{i=1}^{N} q_{i}^{(t)}(k) \log p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}_{k}\right) \\
& \widehat{\boldsymbol{\pi}}^{(t)}=\underset{\boldsymbol{\pi}}{\operatorname{argmax}} \sum_{i=1}^{N} q_{i}^{(t)}(k) \log \pi_{k}, \text { subject to } \sum_{k=1}^{K} \pi_{k}=1, \pi_{k} \leq 0
\end{aligned}
$$

The second optimization problem result in the following answer:

$$
\widehat{\pi}_{k}^{(t)}=\frac{1}{N} \sum_{i=1}^{N} q_{i}^{(t)}(k)
$$

Multivariate Gaussian as p_{c}

Algorithm

The algorithm is as follows:

- Initialize $\left\{\boldsymbol{\mu}_{k}^{(0)}, \boldsymbol{\Sigma}_{k}^{(0)}\right\}_{k=1}^{K}$ randomly and $\boldsymbol{\pi}^{(0)}=\frac{1}{K} \mathbf{1}$.
- For $t=1,2, \ldots, T$, repeat:
- E-step:

$$
q_{i}^{(t)}\left(z_{i}=k\right)=\frac{\pi_{k}^{(t-1)} p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{k}^{(t-1)}, \boldsymbol{\Sigma}_{k}^{(t-1)}\right)}{\sum_{l=1}^{K} \pi_{l}^{(t-1)} p_{c}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{l}^{(t-1)}, \mathbf{\Sigma}_{l}^{(t-1)}\right)},\left\{\begin{array}{l}
k=1, \ldots, K \\
i=1, \ldots, N
\end{array}\right.
$$

- M-step:

$$
\begin{aligned}
\pi_{k}^{(t)} & =\frac{1}{N} \sum_{i=1}^{N} q_{i}^{(t)}(k) \\
\boldsymbol{\mu}_{k}^{(t)} & =\frac{1}{N \pi_{k}^{(t)}} \sum_{i=1}^{N} q_{i}^{(t)}(k) \boldsymbol{x}_{i} \\
\boldsymbol{\Sigma}_{k}^{(t)} & =\frac{1}{N \pi_{k}^{(t)}} \sum_{i=1}^{N} q_{i}^{(t)}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}^{(t)}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k}^{(t)}\right)^{T}
\end{aligned}
$$

References I

"Lecture 9: Principal component analysis (pca)," https://ocw.mit.edu/courses/ 18-650-statistics-for-applications-fall-2016/resources/mit18_650f16_pca/, Accessed: 2022-09-24.

