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Section 1

Approach Definition
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Unsupervised Learning

Principle Component Analysis
Experience E: Set of N samples D = {xn}Nn=1

Task T : Projecting data into low dimensional subspace which captures its
main aspects
Performance measure: Preserving data variations

Clustering
Experience E: Set of N samples D = {xn}Nn=1

Task T : Partition the input into regions that contains similar points.
Performance measure in Compression: Compression loss
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Section 2

Principle Component Analysis
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Subsection 1

Interpretation Via Maximum Projection Spread
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Frame Title

Data Matrix
Assume x ∈ RD is a random variable and you have observed N copies of
it as {xi}Ni=1 (Equivalently the dataset).
As before, we stack these copies into a Matrix X as:

X =


xT
1

xT
2

. . .
xT
N

 =


x1
1 . . . xD

1

x1
2 . . . xD

2

. . .
x1
N . . . xD

N

 ∈ RN×D

Each column is a feature (covariate or predictor)
Each row is an observation
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Characterizing Dataset [1]

Characterizing Dataset
The dataset point create a point cloud in RD space.

The expectation of this point cloud, calculated below, determines the
center of point cloud.

E[x] =

E[x
1]

...
E[xD]


The covariance matrix of this point cloud, calculated below, determines
the spread of point cloud.

Cov[x] ≜ E
[
(x− E[x])(x− E[x])T

]
= E[xxT ]− E[x]E[x]T = Σ

=


Cov[X1, X1] Cov[X1, X2] · · · Cov[X1, XD]
Cov[X2, X1] Cov[X2, X2] · · · Cov[X2, XD]

...
...

. . .
...

Cov[XD, X1] Cov[XD, X2] · · · Cov[XD, XD]


Sajjad Amini IML-S14 Principle Component Analysis 9 / 45



Characterizing Dataset [1]

Utilizing Empirical Distribution
The empirical distribution for dataset {xi}Ni=1 is defined as:

pD(x) =
1

N

N∑
n=1

δ(x− xn)

We can use it to compute the empirical (sample) mean and empirical (sample)
covariance matrix as:

ED[x] =
1

N

N∑
i=1

xi = x̄

Cov
D

[x] =
1

N

N∑
i=1

xix
T
i − x̄x̄T = S
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Characterizing Dataset [1]

Eliminating Summation Using Linear Algebra
For sample mean, we have:

x̄ =
1

N

N∑
i=1

xi =
1

N

 | | |
x1 . . . xN

| | |


D×N

1...
1


N×1

=
1

N
XT1

For sample covariance matrix, we use forth method for matrix multiplication
as:

S =
1

N

N∑
i=1

xix
T
i − x̄x̄T =

1

N

 | | |
x1 . . . xN

| | |


− xT

1 −
...

− xT
N −

− x̄x̄T

=
1

N
XTX − 1

N2
XT11TX =

1

N
XT (I − 1

N
11T )︸ ︷︷ ︸

H

X
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Characterizing Dataset [1]

Idempotent Matrix
Matrix P is said to be idempotent matrix if P 2 = P

Projection Matrix
Matrix Z is said to be projection matrix if it is symmetric and idempotent.

Working on H Matrix
Matrix H is a projection matrix because:

HT = (I − 1
N 11T )T = I − 1

N 11T

Idempotent property:

H2 =HH = (I − 1

N
11T )(I − 1

N
11T ) = I − 2

N
11T +

1

N2
1

N︷︸︸︷
1T1 1T

=I − 2

N
11T +

1

N
11T = H
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Characterizing Dataset [1]

Characterizing the Projection H

Assume v ∈ RN , then:

Hv = v − 1

N
11Tv = v − 1Tv

N
1 = v − v̄

Thus H removes the mean of the vector from each coordinate. Equivalently
Hv = 0
Thus H is the projection onto the subspace of vectors with zero mean (Projec-
tion onto hyperplane which is orthogonal to 1 vector).

Re-writing S

Based on the projection matrix H, we have:

S =
1

N
XTHX =

1

N
XTH2X =

1

N
XTHTHX =

1

N
(HX)T (HX)

where HX result in centered features.
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Linear Combination of Features [1]

Original Formulation
Assume an arbitrary direction of u ∈ RD, then consider the following value:

uTΣu =uT
[
E[xxT ]− E[x]E[xT ]

]
u

(a)
= E[(uTx)(uTx)T ]− E[uTx]E[(uTx)T ]

=E[(uTx)2]− E[uTx]2 = var(uTx)

Switching to Empirical Distribution
Using empirical distribution, we have the empirical variance for {uTxi}Ni=1:

uTSu =uT

[
1

N

N∑
i=1

xT
i xi − xxT

]
u =

1

N

N∑
i=1

(uTxi)(x
T
i u)− (uTx)(xTu)

=
1

N

N∑
i=1

(uTxi)
2 − (uTx)2 =

1

N

N∑
i=1

(uTxi)
2 − (uTx)2 = s2
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Intuition Behind Principle Component Analysis [1]

Intuition
Finding the direction u which result in the high projection value spread mea-
sured by project value variance

Extreme Cases
Zero variance: The projection of all points onto u is equal (The points are
in the hyper-plane whose normal vector is u).
Large variance: The points are spread along the u direction.

Objective
Fining the direction that maximize the projection variance (or equivalently pro-
jection spread)
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PCA

Formulation
The problem for PCA can be formulated as:

max
u∈RD

uTSu

The maximum value of objective function is infinity, thus we need to constrained
u as:

max
u∈RD

uTSu subject to ∥u∥2 = 1
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Spectal Theorem

Eigenvalues and Eigenvectors of Symmetric Matrices
Based on Spectral Theorem, for symmetric matrix S we have:

All eigenvalues are real
Eigenvectors are orthonormal (U is orthogonal thus P−1 = P T )

Then we have:

S =PΛP T =

 | | |
p1 p2 pn

| | |



λ1

λ2

. . .
λn



− pT

1 −
− pT

2 −
...

− pT
m −


=

n∑
i=1

λipip
T
i

Covariance Matrices
Covariance matrices are positive semi-definite, equivalently, all their eigenvalues
are non-negative (uTΣu ≥ 0,∀u and uTSu ≥ 0,∀u).
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Characterizing S

Characterizing S

Using Spectral theorem, we can write S as:

S = PΛP T ,



P =

 | | |
p1 p2 pD

| | |



Λ =


λ1

λ2

. . .
λD ≥ 0

 , λ1 ≥ λ2 . . . λD

P TP = I
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Characterizing S [1]

Transforming Using Eigenvectors
Assume we define y = P Tx ∈ RD and x = 0, then:

y = P Tx = P Tx = 0

Thus the sample covariance matrix for y is:

Sy =
1

N

N∑
i=1

(P Txi)(P
Txi)

T = P T

(
1

N

N∑
i=1

xix
T
i

)
P = P TSP = D

Thus we take one step through whitening:

cov(Y i, Y j) =

{
0 i ̸= j

λi i = j
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Finding Maximum Spread Direction [1]

Finding Maximum Spread Direction
Assume the maximum spread direction is u and consider the following definition:

b = P Tu ⇒ u = Pb

Now we measure the spread as:

uTSu = (Pb)T (PDP T )(Pu) = bT

I︷ ︸︸ ︷
(PP T )D

I︷ ︸︸ ︷
(P TP ) b =

D∑
j=1

λjb
2
j ≤ λ1

∥b∥2︷ ︸︸ ︷
D∑

j=1

b2j

On the other hand, for ∥b∥2, e have:

∥b∥2 = ∥P Tu∥2 = (P Tu)T (P Tu) = uT (PP T )u = ∥u∥2 = 1

Thus:

∀u ∈ RD : uTSu ≤ λ1
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Finding Maximum Spread Direction [1]

Finding Maximum Spread Direction
We see:

∀u ∈ RD : uTSu ≤ λ1

Now check the variance for u = p1:

b =


− pT

1 −
− pT

2 −
...

− pT
m −

p1 =


pT
1 p1

pT
2 p1
...

pT
Dp1

 =


1
0
...
0


Thus:

pT
1 Sp1 = bTDb =

D∑
j=1

λjbj = λ1

And u = p1is the direction of maximum spread.
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Fining Next Maximum Spread Directions [1]

Fining Next Maximum Spread Directions
Assume p1,p2, . . . ,pD to be the eigenvectors of S matrix corresponding to
eigenvalues sorted in the descending order. Then, we have seen:

p1 ∈ argmax
∥u∥=1

uTSu

We can show the following in an almost similar way:

p2 ∈ argmax
∥u∥=1,u⊥p1

uTSu

p3 ∈ argmax
∥u∥=1,u⊥pi,i=1,2

uTSu

...

pj ∈ argmax
∥u∥=1,u⊥pk,k=1,...,(j−1)

uTSu
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Subsection 2

Interpretation Via Reconstruction
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PCA Interpretation Using Reconstruction

PCA Interpretation Using Reconstruction
Assume we have a high-dimensional data x ∈ RD and we want to project it to
a low dimensional subspace z ∈ RL such that low dimensional representation is
a good representation. To approach a mathematical formulation, we need:

A projection (encoding) operator: z = Encode(x;θ)

An un-projection (decoding) operator: x̂ = Decode(z;θ)

A goodness measure: ∥x− x̂∥2

Sajjad Amini IML-S14 Principle Component Analysis 24 / 45



Parameters

Parameters
Representation in the low dimensional space z ∈ RL

Basis functions for reconstruction x̂ =
∑L

i=1 ziwi such that:

wT
i wj =

{
1 i = j

0 i ̸= j

Or equivalently if W =
[
w1 w2 . . . wL

]
∈ RD×L then:

W TW =


wT

1

wT
2
...

wT
L

 [w1 w2 . . . wL

]
=


wT

1 w1 wT
1 w2 . . . wT

1 wL

wT
2 w1 wT

2 w2 . . . wT
2 wL

...
...

. . .
...

wT
Lw1 wT

Lw2 . . . wT
LwL

 = I

Sajjad Amini IML-S14 Principle Component Analysis 25 / 45



Altogether

PCA Interpretation Using Reconstruction
You are given a dataset {xi}Ni=1 in RD. You should design W ∈ RD×L and
{zi}Ni=1 using the following problem:

min
W ,{zk}

1

N

N∑
i=1

∥xi −Wzi∥22
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Basic Problem L = 1

Simplifying the Loss
In this case, the loss function is:

L(w1, {z1k}) =
1

N

N∑
i=1

∥xi − z1iw1∥2 =
1

N

N∑
i=1

(xi − z1iw1)
T (xi − z1iw1)

=
1

N

N∑
i=1

xT
i xi − 2z1iw

T
1 xi + (z1i )

2

=1︷ ︸︸ ︷
wT

1 w1


=

1

N

N∑
i=1

[
xT
i xi − 2z1iw

T
1 xi + (z1i )

2
]
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Basic Problem L = 1

Derivative w.r.t. Representation

∂L(w1, {z1k}
∂z1n

=
1

N

[
−2wT

1 xn + 2z1n
]
= 0 ⇒ z1n = wT

1 xn

Updating Loss Function

L(w1) =
1

N

N∑
i=1

[
xT
nxn − (z1i )

2
]
= const− 1

N

N∑
i=1

(z1i )
2

Dropping the constant term, we have:

L(w1) = − 1

N

N∑
i=1

(z1i )
2 = − 1

N

N∑
i=1

wT
1 xix

T
i w1 = −wT

1 Sw1

Note that in the above, we assumed the empirical mean vector to be zero (x = 0)
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Basic Problem L = 1

Solving for w1

We have the following optimization problem:

min
w1

wT
1 Sw1 subject to wT

1 w1 = 1

Thus we form the Lagrangian as:

L̃(w1) = wT
1 Sw1 − λ1(w

T
1 w1 − 1)

The partial derivative for the Lagrangian is:

∂

∂w1
L̃(w1) = 2Sw1 − 2λ1w1 = 0 ⇒ Sw1 = λ1w1

Thus (λ1,w1) is a pair of (eigenvalue,eigenvector). But which of them?

wT
1 Sw1 = wT

1 w1 = λ1

Thus w1 is the direction of eigenvector corresponding to largest eigenvalue.
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General Case

General Case
Assume we want to find W = [w1, . . . ,wL] and z = [z1, . . . , zL]. Then we have
the following problem:

L(W , {zk}) =
1

N

N∑
i=1

∥xi −
L∑

j=1

zjiwj∥2

And the solution is:

wi = pi, i = 1, . . . , L

zji = pT
j xi,

{
i = 1, . . . , N

j = 1, . . . , L

where {pi} is the set of eigenvector for S matrix corresponding to eigenvalues
sorted in descending order.
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Encoding and Decoding

Encoding

RL ∋ z = Encode(x,W ) = W Tx =


wT

1

wT
2
...

wT
L

x =


wT

1 x
wT

2 x
...

wT
Lx

 =


z1

z2

...
zL


Decoding

RD ∋ x̂ = Decode(x,W ) = Wz =
[
w1 w2 . . . wL

]

z1

z2

...
zL

 =
∑
i

ziwi
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Section 3

Clustering
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Clustering Problem

Clustering
Experience E: Set of N samples D = {xn}Nn=1

Task T : Partition the input into regions that contains similar points.
Performance measure in Compression: Compression loss

Figure: Sample GMM distribution
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Section 4

Mixture Models
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Mixture Models

Mixture Models
One way to create more complex probability models is to take a convex combination of simple
distributions. This is called a mixture model. This has the form p(y|θ) =

∑K
k=1 πkpc(y|θk)

where:
pc(·|θk) is the k-th mixture component

{πk}Kk=1 are mixture weights with the following constraints:

0 ≤ πk ≤ 1, k = 1, . . . ,K∑K
k=1 πk = 1

Mixture Models - Generative Story
Suppose latent variable z to be a categorical RV and distributed as p(z|θ) = Cat(z|π) and
conditional p(y|z = k,θ) = pc(y|θk). We can interpret mixture models as follows:

We sample a specific component.
We generate y using sampled value of z.

Using the above procedure, we have:

p(y|θ) =
K∑

k=1

p(z = k|θ)p(y|z = k,θ) =

K∑
k=1

πkp(y|θk)
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Gaussian Mixture Model

Gaussian Mixture Model
Gaussian Mixture Model (GMM) or Mixture of Gaussian (MoG) is defined as:

p(y|θ) =
K∑

k=1

πkN (y|µk,Σk)

Figure: Sample GMM distribution
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Maximum Likelihood Approach to Clustering

Problem Formulation
Observed data samples {xi}ni=1

Unobserved mixture element corresponding to each data sample {zi}Ni=1

Using the above two formulation, the complete dataset likelihood is:

p(D|θ) = p({xi}, {zi}|θ)

The marginal likelihood of dataset is:

p({xi}|θ) =
∑
{zi}

p({xi}, {zi}|θ)

and the maximum likelihood estimation for θ = {θ1, . . . , θK ,π} can be calcu-
lated as:

θ̂mle = argmax
θ

p({xi}|θ)
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Challenge and Solution

Challenge
As the scale of the problem increases (dimension of x and number of dataset sample
N), it becomes computationally intractable to exactly evaluate (or even optimize) the
marginal likelihood.

Solution
One solution is to use expectation maximization algorithm as:

Initialize θ randomly (or by using problem-specific heuristics) as θ(0)

For t = 1, 2, . . . , T , repeat:
E-step: Compute posterior distribution of {zi} given {xi} and θ(t−1) as:

q(t)({zi}) = p({zi}|{xi},θ(t−1))

M-step: Find θ(t) as the maximizer of complete log-likelihood with
respect to q(t)({zi}) as:

θ(t) = argmax
θ

Eq(t) [log p({xi}, {zi}|θ)] = argmax
θ

∑
{zi}

q(t)({zi}) log p({xi}, {zi}|θ)
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General Mixture Model

General Mixture Model
For a general mixture model, the samples are generated using the following
distribution:

p(x|θ) =
K∑

k=1

πkpc(x|θk)

where we have:

θ =

π =

π1

...
πK

 ,θ1, . . . ,θK


and z ∼ Cat(π)
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General Mixture Model

Complete log-Likelihood Formulation

log p({xi}, {zi}|θ) = log

N∏
i=1

p(xi, zi|θ) = log

N∏
i=1

p(xi|zi,θ)p(zi|θ)

On the other hand, we have:

p(xi|zi,θ) = pc(xi|θzi)

p(zi|θ) = πzi

Thus we have:

log p({xi}, {zi}|θ) =
N∑
i=1

(log πzi + log pc(xi|θzi))

=

N∑
i=1

K∑
k=1

δk,zi (log πk + log pc(xi|θk))
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General Mixture Model

E-step

p({zi}|{xi},θ) =
N∏
i=1

p(zi|xi,θ)

To compute p(zi|xi,θ), we use Bayes rule as:

p(zi = k|xi,θ) =
p(xi|zi = k,θ)p(zi = k|θ)∑K
l=1 p(xi|zi = l,θ)p(zi = l|θ)

=
πkpc(xi|θk)∑K
l=1 πlpc(xi|θl)

Thus we have:

q(t)({zi})
N∏
i=1

q
(t)
i (zi), q

(t)
i (zi) = p(zi|xi,θ

(t−1))
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General Mixture Model

M-step

Eq(t)

(
N∑
i=1

K∑
k=1

δk,zi (log πk + log pc(xi|θk))

)

=

N∑
i=1

K∑
k=1

Eq(t) [δk,zi (log πk + log pc(xi|θk))]

=

N∑
i=1

K∑
k=1

Eq(t) [δk,zi ] (log πk + log pc(xi|θk))

=

N∑
i=1

K∑
k=1

q
(t)
i (k) (log πk + log pc(xi|θk))

Now we should maximize the above over all parameters θ.
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General Mixture Model

M-step
The optimization problem for different parameters is:

θ̂
(t)

k = argmax
θk

N∑
i=1

q
(t)
i (k) log pc(xi|θk)

π̂(t) = argmax
π

N∑
i=1

q
(t)
i (k) log πk, subject to

K∑
k=1

πk = 1, πk ≤ 0

The second optimization problem result in the following answer:

π̂
(t)
k =

1

N

N∑
i=1

q
(t)
i (k)

Sajjad Amini IML-S14 Mixture Models 43 / 45



Multivariate Gaussian as pc

Algorithm
The algorithm is as follows:

Initialize {µ(0)
k ,Σ

(0)
k }Kk=1 randomly and π(0) = 1

K
1.

For t = 1, 2, . . . , T , repeat:

E-step:

q
(t)
i (zi = k) =

π
(t−1)
k pc(xi|µ(t−1)

k ,Σ
(t−1)
k )∑K

l=1 π
(t−1)
l pc(xi|µ(t−1)

l ,Σ
(t−1)
l )

,

{
k = 1, . . . ,K

i = 1, . . . , N

M-step:

π
(t)
k =

1

N

N∑
i=1

q
(t)
i (k)

µ
(t)
k =

1

Nπ
(t)
k

N∑
i=1

q
(t)
i (k)xi

Σ
(t)
k =

1

Nπ
(t)
k

N∑
i=1

q
(t)
i

(
xi − µ

(t)
k

)(
xi − µ

(t)
k

)T
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