
Lecture 12: Convolutional Neural Networks
Introduction to Machine Learning [25737]

Sajjad Amini

Sharif University of Technology

Sajjad Amini IML-S12 1 / 30

Contents

1 Approach Definition

2 Common Layers

3 All Together

Sajjad Amini IML-S12 2 / 30

References

Except explicitly cited, the reference for the material in slides is:
Murphy, K. P. (2022). Probabilistic machine learning: an introduction.
MIT press.

Sajjad Amini IML-S12 3 / 30

Section 1

Approach Definition

Sajjad Amini IML-S12 Approach Definition 4 / 30

Approach Definition

MLPs
Assume transformation z = φ(Wx). Then j-th element in z can be represented
as:

zj = φ(wT
j x)

We can interpret this equation as computing the similarity between x and wj .
When working with 2D images, this structure can lead to sever problems.

Sajjad Amini IML-S12 Approach Definition 5 / 30

Approach Definition

vec

x wj

,

V
al
id vec

,

0 1

X x wjX

In
va
li
d

0 1

Figure: Not applicable when image size is changed

Sajjad Amini IML-S12 Approach Definition 6 / 30

Approach Definition

..

.

wj in R121x0 1

...

Figure: Highly redundant

Sajjad Amini IML-S12 Approach Definition 7 / 30

Approach Definition

vec

x wj

, =3 vec

0 1

X x wjX

=0

0 1

,

Figure: Not exhibiting translation invariance

Sajjad Amini IML-S12 Approach Definition 8 / 30

Approach Definition

Convolutional Neural Networks (CNN)
To solve the challenges mentioned above, CNNs are introduced where matrix
multiplication is replaced with convolution operator.

We can compute the convolution of different size images with the same
filter.
The size of convolution filter is smaller than the size of input features.
Convolution is a template matching operator and can present translation
invariance.

Sajjad Amini IML-S12 Approach Definition 9 / 30

Section 2

Common Layers

Sajjad Amini IML-S12 Common Layers 10 / 30

1D Convolution Layer

1D convolution (valid)

{
x ∈ Rlx

w ∈ Rlw
⇒ zp = φ

b+

K−1∑
j=0

wjxp+j

 , 0 ≤ p ≤ lx − lw

x

l x

w
l w

z

l z
 =

 l
x-

l w
+

1b

b

ϕ

ϕ

Sajjad Amini IML-S12 Common Layers 11 / 30

1D Convolution Layer

1D convolution (same)
If we pad each side of input feature vector x ∈ Rlx with p elements and
w ∈ Rlw , then the output size will be lx + 2p− lw + 1.
If we select p = lw−1

2 , then input and output sizes are the same.

x

l x
+

2l
p

w
l w

z

l z
 =

 l
x

b

ϕ

ϕ

0
0

0
0

b

0
0

0
0

Sajjad Amini IML-S12 Common Layers 12 / 30

1D Convolution Layer

Convolution to Matrix Multiplication
Assume we have the following convolution operator:

z = φ (x⊛w + b) ,


x ∈ Rlx

w ∈ R3

z ∈ Rlx−2

then we can write above mapping in matrix multiplication as:
z0
z1
...

zlx−4

zlx−3

 = φ




w0 w1 w2 0 . . . 0 0 0 0
0 w0 w1 w2 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . w0 w1 w2 0
0 0 0 0 . . . 0 w0 w1 w2




x0

x1

...
xlx−2

xlx−1

+


b
b
...
b
b





Sajjad Amini IML-S12 Common Layers 13 / 30

2D Convolution Layer

2D convolution (valid)

{
X ∈ Rhx×wx

W ∈ Rhw×ww
⇒ zpq = φ

(
b+

hw−1∑
i=0

ww−1∑
j=0

wijx(p+i)(q+j)

)
,

{
0 ≤ p ≤ hx − hw

0 ≤ q ≤ wx − ww

wx

hx

wz = wx-ww+1

h
z =

 h
x -h

w +
1

Sajjad Amini IML-S12 Common Layers 14 / 30

2D Convolution Layer

2D convolution (same)
If we pad each side of input feature matrix X ∈ Rhx×wx with hp and wp

elements and w ∈ Rhw×ww , then the output size will be
(hx + 2hp − hw + 1)× (wx + 2wp − ww + 1).
If we select hp = hw−1

2 and wp = ww−1
2 , then input and output sizes are

the same.

wx+2wp

h
x+

2h
p

wz = wx

h
z =

 h
x

0 0 0 0 0 0 00 0 0 0

0 0 0 0 0 0 00 0 0 0

0
0
0

0
0
0
0

0
0
0
0

0

0

0
0
0

0
0
0
0

0
0
0
0

0

0
Sajjad Amini IML-S12 Common Layers 15 / 30

2D Convolution Layer

Convolution to Matrix Multiplication
Assume we have the following convolution operator:

Z = φ (X ⊛W + b) ,

X ∈ R3×3

W ∈ R2×2

Z ∈ R2×2

Assume column-wise vectorizing. Then we can write above mapping in matrix multiplication
as:

z00z10
z01
z11

 = φ


w00 w10 0 w01 w11 0 0 0 0

0 w00 w10 0 w01 w11 0 0 0
0 0 0 w00 w10 0 w01 w11 0
0 0 0 0 w00 w10 0 w01 w11




x00
x10
x20
x01
x11
x21
x02
x12
x22


+

bbb
b




Receptive Field
For each element in the output features, its receptive field are the elements in the input
features that form the it. In the above example, {x00, x10, x01, x11} are receptive field of z00.

Sajjad Amini IML-S12 Common Layers 16 / 30

Strided Convolution

Redundancy in the Output Features
As the receptive field for neighboring features in the output of convolution layer
are highly overlapped, there exist redundancy in the output features. Strided
convolution is designed to eliminate this redundancy.

Strided Convolution
Strided Convolution is ordinary convolution while we skip every sh and sw in
vertical and horizontal shitf.

Sajjad Amini IML-S12 Common Layers 17 / 30

Strided Convolution

Output Dimensions



X ∈ Rhx×wx

W ∈ Rhw×ww

Heigth Padding : hp

Width Padding : wp

Heigth Stride : hs

Width Stride : ws

⇒ dim(Z) :

⌊
hx + 2hp − hw + hs

hs

⌋
×
⌊
wx + 2wp − ww + ws

ws

⌋

Sajjad Amini IML-S12 Common Layers 18 / 30

Strided Convolution

wx+2wp

h
x+

2h
p

Wz=floor((wx+2wp-ww+ws)/ws)

0 0 0 0 0 0 00 0 0

0 0 0 0 0 0 00 0 0 0

0
0
0

0
0
0
0

0
0
0
0

0

0

0
0
0

0
0
0

0
0
0
0

0

0

0
0

h
z =

floor((h
x +

2h
p -h

w +
h

s)/h
s)

Figure: 2D convolution (same)

Sajjad Amini IML-S12 Common Layers 19 / 30

Extension 1: Multiple Input Channel

Convolution with multi-channel input

{
X ∈ Rhx×wx×C

W ∈ Rhw×ww×C ⇒ zpq = φ

b +

C−1∑
k=0

hw−1∑
i=0

ww−1∑
j=0

wijkx(p+i)(q+j)k

 ,

{
0 ≤ p ≤ hx − hw

0 ≤ q ≤ wx − ww

⇒ Z ∈ R(hx−hw+1)×(wx−ww+1)

wx

hx

wz = wx-ww+1

h
z =

 h
x -h

w +
1

*
hw

ww

b+ ϕ

Sajjad Amini IML-S12 Common Layers 20 / 30

Extension 2: Multiple Output Channel

Convolution with multi-channel output


X ∈ Rhx×wx×C

{(W d, bd)}D−1
d=0

W d ∈ Rhw×ww×C

bd ∈ R

⇒


zpq0 = φ

(
b0 +

∑C−1
k=0

∑hw−1
i=0

∑ww−1
j=0 wijk0x(p+i)(q+j)k

)
...
zpq(D−1) = φ

(
bD−1 +

∑C−1
k=0

∑hw−1
i=0

∑ww−1
j=0 wijk(D−1)x(p+i)(q+j)k

)
{
0 ≤ p ≤ hx − hw

0 ≤ q ≤ wx − ww

We can concatenate matrices {Z0, . . . ,ZD−1} which results in Z ∈ R(hx−hw+1)×(wx−ww+1)D

Sajjad Amini IML-S12 Common Layers 21 / 30

Convolution with multi-channel output

*

*

.

.

.

b1+
ϕ

W1

WD

bD+
ϕ

Sajjad Amini IML-S12 Common Layers 22 / 30

Convolutional Layer

All Together
Assume:
X ∈ Rhx×wx×C

W ∈ Rhw×ww×C×D

b ∈ RD

hp, wp

hs, ws

Input feature tensor
Weight tensor
Bias vector
height and width of padding, respectively
height and width of stride, respectively

Then the output Z = W ⊛X + b is of the following dimensions:⌊
hx + 2hp − hw + hs

hs

⌋
︸ ︷︷ ︸

hz

×
⌊
wx + 2wp − ww + ws

ws

⌋
︸ ︷︷ ︸

wz

×D

and

zpqd = φ

bc +

C−1∑
c=0

hw−1∑
i=0

ww−1∑
j=0

wijkcx̂(hs×p+i)(ws×q+j)c

 ,


0 ≤ p ≤ hz − 1

0 ≤ q ≤ wz − 1

0 ≤ d ≤ D − 1
Sajjad Amini IML-S12 Common Layers 23 / 30

Pooling Layers

*

*

=

=

X W Z

Figure: Output tensor carry information about the location

Sajjad Amini IML-S12 Common Layers 24 / 30

Pooling Layers

Pooling Layers
Assume:
X ∈ Rhx×wx×C

hf , wf

hs, ws

p(·)

Input feature tensor
height and width of pooling, respectively
height and width of stride, respectively
Pooling operator

Then the output of pooling layer is:

zpqc = p(x(hs×p:hs×p+hf)(ws×q:ws×q+wf)(c))

Sajjad Amini IML-S12 Common Layers 25 / 30

Pooling Layers

*

*

=

=

X W Z
poolingmax

poolingavg

poolingmax

poolingavg

Figure: Pooling layer provide local invariance

Sajjad Amini IML-S12 Common Layers 26 / 30

Flattening Layer

Frame Title
Flattening layers are used to reshape the input feature tensor X ∈ Rhx×wx×C

into output feature vector z ∈ R(hx×wx×C) using vectorizing operator.

w

h

..

.

..

.

.

..

.

.

.

flattening hwd

Figure: Flattening Layer

Sajjad Amini IML-S12 Common Layers 27 / 30

Section 3

All Together

Sajjad Amini IML-S12 All Together 28 / 30

LeNet5
474 Chapter 14. Neural Networks for Images

Figure 14.15: LeNet5, a convolutional neural net for classifying handwritten digits. From Figure 6.6.1 of
[Zha+20]. Used with kind permission of Aston Zhang.

Dense (120)

Dense (84)

Dense (10)

2x2 AvgPool, stride 2

5x5 Conv (16)

2x2 AvgPool, stride 2

5x5 Conv (6), pad 2

Image (28x28)

(a)

Dense (4096)

Dense (4096)

Dense (1000)

3x3 MaxPool, stride 2

3x3 Conv (384), pad 1

3x3 Conv (384), pad 1

5x5 Conv (256), pad 2

3x3 Conv (384), pad 1

3x3 MaxPool, stride 2

11x11 Conv (96), stride 4

Image (3x224x224)

3x3 MaxPool, stride 2

(b)

Figure 14.16: (a) LeNet5. We assume the input has size 1× 28× 28, as is the case for MNIST. From Figure
6.6.2 of [Zha+20]. Used with kind permission of Aston Zhang. (b) AlexNet. We assume the input has size
3×224×224, as is the case for (cropped and rescaled) images from ImageNet. From Figure 7.1.2 of [Zha+20].
Used with kind permission of Aston Zhang.

Draft of “Probabilistic Machine Learning: An Introduction”. February 8, 2022

Figure: LeNet5 for MNIST classification (Test accuracy: 98.8% after 1 epoch)

Sajjad Amini IML-S12 All Together 29 / 30

LeNet5
14.3. Common architectures for image classification 475

(a) (b)

Figure 14.17: Results of applying a CNN to some MNIST images (cherry picked to include some errors).
Red is incorrect, blue is correct. (a) After 1 epoch of training. (b) After 2 epochs. Generated by code at
figures.probml.ai/book1/14.17.

where performance is indistinguishable from label noise. (See code.probml.ai/book1/lenet_torch for
some sample code.)
Of course, classifying isolated digits is of limited applicability: in the real world, people usually

write strings of digits or other letters. This requires both segmentation and classification. LeCun
and colleagues devised a way to combine convolutional neural networks with a model similar to a
conditional random field to solve this problem. The system was deployed by the US postal service.
See [LeC+98] for a more detailed account of the system.

14.3.2 AlexNet

Although CNNs have been around for many years, it was not until the paper of [KSH12] in 2012
that mainstream computer vision researchers paid attention to them. In that paper, the authors
showed how to reduce the (top 5) error rate on the ImageNet challenge (Section 1.5.1.2) from the
previous best of 26% to 15%, which was a dramatic improvement. This model became known as
AlexNet model, named after its creator, Alex Krizhevsky.

Figure 14.16b(b) shows the architecture. It is very similar to LeNet, shown in Figure 14.16a, with
the following differences: it is deeper (8 layers of adjustable parameters (i.e., excluding the pooling
layers) instead of 5); it uses ReLU nonlinearities instead of tanh (see Section 13.2.3 for why this is
important); it uses dropout (Section 13.5.4) for regularization instead of weight decay; and it stacks
several convolutional layers on top of each other, rather than strictly alternating between convolution
and pooling. Stacking multiple convolutional layers together has the advantage that the receptive
fields become larger as the output of one layer is fed into another (for example, three 3× 3 filters in
a row will have a receptive field size of 7× 7). This is better than using a single layer with a larger
receptive field, since the multiple layers also have nonlinearities in between. Also, three 3× 3 filters
have fewer parameters than one 7× 7.

Note that AlexNet has 60M free parameters (which is much more than the 1M labeled examples),
mostly due to the three fully connected layers at the output. Fitting this model relied on using two
GPUs (due to limited memory of GPUs at that time), and is widely considered an engineering tour

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Figure: Result of LeNet5 for MNIST classification

Sajjad Amini IML-S12 All Together 30 / 30

	Approach Definition
	Common Layers
	All Together

