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Section 1

Approach Definition
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Approach Definition

Linear Models
Multinomial logistic regression assume the following model:

p(y|x,w) = Cat(y|S(Wx))

Linear regression assume the following model:

p(y|x,w, σ2) = N (y|wTx, σ2)

One shared feature among both model is linearity.

Increasing Flexibility
To increase fexibility, we can replace input features x with transformed version
ϕ(x) known as basis function expansion. Then we have the following model:

f(x;W ) =Wϕ(x)

The above model is linear in weight matrixW which makes the estimation easy.
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Approach Definition

Toward Automating Transformation (Deep Learning)
Parameterizing Transformation: ϕ(x)⇒ ϕ(x,θ)

ϕ([x1, x2]
T ; [θ1, θ2]

T = [(θ1 + x1)
2 + (θ2 + x2)

2, sin(θ1x1 + θ2x2)]

Applying the transformations in a hierarchical manner:

z1 = ϕ1(z0,θ1), z0 = x

z2 = ϕ2(z1,θ2)

...
zL = ϕL(zL−1,θL)

Altogether we have zL = ϕ(x,θ) = ϕL(ϕL−1(. . . z0 . . . ,θL−1),θL) where:

θ = (θ1,θ2, . . . ,θL)

and ϕl(·,θl) is transformation at layer l.
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Section 2

Perceptron Algorithm
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Perceptron Algorithm

Binary Logistic Regression
In binary logistic regression, the posterior distribution over labels is modeled
as:

p(y|x,w) = Ber(y|σ(wTx))

Perceptron
Perceptron is deterministic version of logistic regression (Why??) where the
posterior is modeled as:

p(y|x,w) = Ber(y|H(wTx))

where H(wTx) = I(wTx ≥ 0) is heaviside step function.
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Perceptron Algorithm

Learning Algorithm
The update rule proposed by Rosenblatt for Perceptron is:

wt+1 = wt − ηt(ŷn − yn)xn

We have seen before the update rule for BLR as:

wt+1 = wt − ηt(µn − yn)xn

Perceptron Vs BLR
Perceptron:

No need to compute the probability
Convergent when the problem is linearly separable

BLR
µ is needed for update
Always convergent to minimizer of MLE
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Perceptron Algorithm

Intuition
Consider Perceptron learning algorithm as:

wt+1 = wt − ηt(ŷn − yn)xn

Four different cases can occure (assume ηt = 1):

yn = 1, ŷn = 0⇒ wt+1 = wt + xn

yn = 0, ŷn = 1⇒ wt+1 = wt − xn

yn = 0, ŷn = 0⇒ wt+1 = wt

yn = 1, ŷn = 1⇒ wt+1 = wt
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Section 3

Multi-layer Perceptron
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Perceptron Learning Limitation

XOR Function
Assume XOR function defined as:

y = x1 ⊕ x2 =


0 if x1 = 0, x2 = 0

0 if x1 = 1, x2 = 1

1 if x1 = 1, x2 = 0

1 if x1 = 0, x2 = 1

13.2. Multilayer perceptrons (MLPs) 421
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Figure 13.1: (a) Illustration of the fact that the XOR function is not linearly separable, but can be separated
by the two layer model using Heaviside activation functions. Adapted from Figure 10.6 of [Gér19]. Generated
by code at figures.probml.ai/book1/13.1. (b) A neural net with one hidden layer, whose weights have been
manually constructed to implement the XOR function. h1 is the AND function and h2 is the OR function.
The bias terms are implemented using weights from constant nodes with the value 1.

13.2.1 The XOR problem

One of the most famous examples from the Perceptrons book is the XOR problem. Here the goal
is to learn a function that computes the exclusive OR of its two binary inputs. The truth table for
this function is given in Table 13.1. We visualize this function in Figure 13.1a. It is clear that the
data is not linearly separable, so a perceptron cannot represent this mapping.
However, we can overcome this problem by stacking multiple perceptrons on top of each other.

This is called a multilayer perceptron (MLP). For example, to solve the XOR problem, we can
use the MLP shown in Figure 13.1b. This consists of 3 perceptrons, denoted h1, h2 and y. The nodes
marked x are inputs, and the nodes marked 1 are constant terms. The nodes h1 and h2 are called
hidden units, since their values are not observed in the training data.
The first hidden unit computes h1 = x1 ∧ x2 by using appropriately set weights. (Here ∧ is the

AND operation.) In particular, it has inputs from x1 and x2, both weighted by 1.0, but has a bias
term of -1.5 (this is implemented by a “wire” with weight -1.5 coming from a dummy node whose
value is fixed to 1). Thus h1 will fire iff x1 and x2 are both on, since then

wT
1x− b1 = [1.0, 1.0]T[1, 1]− 1.5 = 0.5 > 0 (13.5)

1. The term “unstructured data” is a bit misleading, since images and text do have structure. For example, neighboring
pixels in an image are highly correlated, as are neighboring words in a sentence. Indeed, it is precisely this structure
that is exploited (assumed) by CNNs and RNNs. By contrast, MLPs make no assumptions about their inputs. This is
useful for applications such as tabular data, where the structure (dependencies between the columns) is usually not
obvious, and thus needs to be learned. We can also apply MLPs to images and text, as we will see, but performance
will usually be worse compared to specialized models, such as as CNNs and RNNs. (There are some exceptions, such
as the MLP-mixer model of [Tol+21], which is an unstructured model that can learn to perform well on image and
text data, but such models need massive datasets to overcome their lack of inductive bias.)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Figure: XOR problem
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Quest for Linearly Separable Features

XOR Function
Assume the following transformations:

h1 = x1 ∧ x2 = wT
1 x+ b1,

{
w1 = [1, 1]T

b1 = −1.5

h2 = x1 ∨ x2 = wT
2 x+ b2,

{
w2 = [1, 1]T

b2 = −0.5

Then we can show that

y = h1 ∧ h2 = (x1 ∧ x2) ∧ (x1 ∨ x2) = wT
2 x+ b2,

{
w3 = [−1, 1]T
b3 = −0.5

The resulting model is called Multi-Layer Perceptron (MLP).
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MLP

XOR Function
The final model consist of three Perceptrons, denoted h1, h2 and y.

Hidden unit: h1 and h2 are hidden units (Perceptrons) since they are not
observed in the training data.
Output unit: y is output unit (Perceptron).13.2. Multilayer perceptrons (MLPs) 421
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Figure 13.1: (a) Illustration of the fact that the XOR function is not linearly separable, but can be separated
by the two layer model using Heaviside activation functions. Adapted from Figure 10.6 of [Gér19]. Generated
by code at figures.probml.ai/book1/13.1. (b) A neural net with one hidden layer, whose weights have been
manually constructed to implement the XOR function. h1 is the AND function and h2 is the OR function.
The bias terms are implemented using weights from constant nodes with the value 1.

13.2.1 The XOR problem

One of the most famous examples from the Perceptrons book is the XOR problem. Here the goal
is to learn a function that computes the exclusive OR of its two binary inputs. The truth table for
this function is given in Table 13.1. We visualize this function in Figure 13.1a. It is clear that the
data is not linearly separable, so a perceptron cannot represent this mapping.
However, we can overcome this problem by stacking multiple perceptrons on top of each other.

This is called a multilayer perceptron (MLP). For example, to solve the XOR problem, we can
use the MLP shown in Figure 13.1b. This consists of 3 perceptrons, denoted h1, h2 and y. The nodes
marked x are inputs, and the nodes marked 1 are constant terms. The nodes h1 and h2 are called
hidden units, since their values are not observed in the training data.
The first hidden unit computes h1 = x1 ∧ x2 by using appropriately set weights. (Here ∧ is the

AND operation.) In particular, it has inputs from x1 and x2, both weighted by 1.0, but has a bias
term of -1.5 (this is implemented by a “wire” with weight -1.5 coming from a dummy node whose
value is fixed to 1). Thus h1 will fire iff x1 and x2 are both on, since then

wT
1x− b1 = [1.0, 1.0]T[1, 1]− 1.5 = 0.5 > 0 (13.5)

1. The term “unstructured data” is a bit misleading, since images and text do have structure. For example, neighboring
pixels in an image are highly correlated, as are neighboring words in a sentence. Indeed, it is precisely this structure
that is exploited (assumed) by CNNs and RNNs. By contrast, MLPs make no assumptions about their inputs. This is
useful for applications such as tabular data, where the structure (dependencies between the columns) is usually not
obvious, and thus needs to be learned. We can also apply MLPs to images and text, as we will see, but performance
will usually be worse compared to specialized models, such as as CNNs and RNNs. (There are some exceptions, such
as the MLP-mixer model of [Tol+21], which is an unstructured model that can learn to perform well on image and
text data, but such models need massive datasets to overcome their lack of inductive bias.)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Figure: MLP model for XOR problem

Sajjad Amini IML-S05 Multi-layer Perceptron 14 / 50



Section 4

Differentiable MLPs

Sajjad Amini IML-S05 Differentiable MLPs 15 / 50



Differentiable MLPs

Problem with MLPs
Training MLP as a stack of Perceptrons is difficult due to non-differentiable
Heaviside function.

Differentiable MLPs
Differentiable MLPs are classical MLPs while Heaviside function is replaced
with a differentiable function φ : R→ R known as Activation Function.
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Differentiable MLPs

Model
Assume the following definitions:

l
zl
φl(·)
Kl

Layer number
Hidden units at layer l
Activation function at layer l
Feature dimension at at layer l

Then the mapping in layer l is:

zl = ϕl(zl−1,θl) = φl(bl +W lzl−1)

Note that the quantity passed to activation function is called pre-activations
defined as:

al = bl +W lzl−1

MLP
The term MLP refer to the differentiable MLP rather than non-differentiable
version based on Heaviside step function.

Sajjad Amini IML-S05 Differentiable MLPs 17 / 50



Section 5

Activation Functions
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Activation Functions

Linear Activation Functions
Assume we select φl(a) = cla. Then the whole MLP becomes:

z1 = φ1(W 1x+ b1) = c1W 1x+ c1b1

z2 = φ2(W 2z1 + b2) = c2W 2z1 + c2b2 = c1c2W 2W 1︸ ︷︷ ︸
W 12

x+ c1c2W 2b1 + c2b2︸ ︷︷ ︸
b12

. . .

zL = φL(WLzL−1 + bL) =W 1...Lx+ b1...L

Thus linear activation function reduces to regular linear model. Thus it is
important to use nonlinear activation functions.
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Sample Activation Functions

Sample Activation Functions
Sigmoid:

φ(a) = σ(a) =
1

1 + e−a

Hyperbolic tangent:

φ(a) = tanh(a) =
ea − e−a

ea + e−a

Rectified linear unit:

φ(a) = ReLU(a) = max(a, 0) = aH(a)
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Sample Activation Functions
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Figure: Sample Activation Functions
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Sample MLP

Binary Classification
Consider a binary classification problem with y ∈ {0, 1} and x ∈ R2. Assume
MLP model with the following features:

Two hidden layers as:

z1 = tanh(W 1x+ b1),


x ∈ R2

W 1 ∈ R4×2

b1, z1 ∈ R4

z2 = tanh(W 2z1 + b2),

{
W 2 ∈ R3×4

b2, z2 ∈ R3

Output layer as:

a3 = wT
3 z2 + b3,

{
w3 ∈ R3

b3, a3 ∈ R

p(y|x,θ) = Ber(y|σ(a3))
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Sample MLP

Figure: MLP Visualization
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Sample MLP

Multi-class Classification
Consider classifying MNIST dataset [1] where y ∈ {0, 1, . . . , 9} and X ∈
R28×28 ( we use the vectorized version of images as x = vec(X) ∈ R784).
Assume MLP model with the following features:

Two hidden layers as:

z1 = tanh(W 1x+ b1),

{
x ∈ R784

W 1 ∈ R128×784

b1, z1 ∈ R128

z2 = tanh(W 2z1 + b2),

{
W 2 ∈ R128×128

b2, z2 ∈ R128

Output layer as:

a3 =W 3z2 + b3,

{
W 3 ∈ R10×128

b3,a3 ∈ R10

p(y|x,θ) = Cat(y|S(a3))
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Sample MLP
13.2. Multilayer perceptrons (MLPs) 425

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten (Flatten) (None, 784) 0
_________________________________________________________________
dense (Dense) (None, 128) 100480
_________________________________________________________________
dense_1 (Dense) (None, 128) 16512
_________________________________________________________________
dense_2 (Dense) (None, 10) 1290
=================================================================
Total params: 118,282
Trainable params: 118,282
Non-trainable params: 0

Table 13.2: Structure of the MLP used for MNIST classification. Note that 100, 480 = (784 + 1)× 128, and
16, 512 = (128 + 1)× 128. Generated by mlp_mnist_tf.ipynb.

13.2.4.2 MLP for image classification

To apply an MLP to image classification, we need to “flatten” the 2d input into 1d vector. We can
then use a feedforward architecture similar to the one described in Section 13.2.4.1. For example,
consider building an MLP to classifiy MNIST digits (Section 3.5.2). These are 28 × 28 = 784-
dimensional. If we use 2 hidden layers with 128 units each, followed by a final 10 way softmax layer,
we get the model shown in Table 13.2.

We show some predictions from this model in Figure 13.4. We train it for just two “epochs” (passes
over the dataset), but already the model is doing quite well, with a test set accuracy of 97.1%.
Furthermore, the errors seem sensible, e.g., 9 is mistaken as a 3. Training for more epochs can further
improve test accuracy.
In Chapter 14 we discuss a different kind of model, called a convolutional neural network, which

is better suited to images. This gets even better performance and uses fewer parameters, by
exploiting prior knowledge about the spatial structure of images. By contrast, with an MLP, we
can randomly shuffle (permute) the pixels without affecting the output (assuming we use the same
random permutation for all inputs).

13.2.4.3 MLP for text classification

To apply MLPs to text classification, we need to convert the variable-length sequence of words
v1, . . . ,vT (where each vt is a one-hot vector of length V , where V is the vocabulary size) into a
fixed dimensional vector x. The easiest way to do this is as follows. First we treat the input as an
unordered bag of words (Section 1.5.4.1), {vt}. The first layer of the model is a E × V embedding
matrix W1, which converts each sparse V -dimensional vector to a dense E-dimensional embedding,
et = W1vt (see Section 20.5 for more details on word embeddings). Next we convert this set of T

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Figure: MLP structure for MNIST classification
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Sample MLP

truth=7, pred=7, score=100 truth=2, pred=2, score=100 truth=1, pred=1, score=99

truth=0, pred=0, score=100 truth=4, pred=4, score=98 truth=1, pred=1, score=100

truth=4, pred=4, score=99 truth=9, pred=9, score=95 truth=5, pred=6, score=68

truth=5, pred=6, score=68 truth=9, pred=8, score=66 truth=9, pred=8, score=58

truth=4, pred=2, score=84 truth=6, pred=0, score=83 truth=9, pred=8, score=37

Figure: MLP results for MNIST classification after 1 epoch
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Sample MLP

truth=7, pred=7, score=100 truth=2, pred=2, score=100 truth=1, pred=1, score=100

truth=0, pred=0, score=100 truth=4, pred=4, score=100 truth=1, pred=1, score=100

truth=4, pred=4, score=100 truth=9, pred=9, score=100 truth=5, pred=5, score=87

truth=5, pred=5, score=87 truth=9, pred=8, score=92 truth=9, pred=8, score=64

truth=4, pred=6, score=71 truth=6, pred=0, score=72 truth=9, pred=9, score=67

Figure: MLP results for MNIST classification after 2 epoch
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Section 6

Backpropagation
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How train MLPs

NLL for Multi-class Classification
For classification problem using MLP, we assume the following model:

p(y|x;θ) = Cat(y| S(
aL︷ ︸︸ ︷

W T
LzL−1 + bL)︸ ︷︷ ︸

µn

)

Thus the NLL can be formulated as:

NLL(θ) = − log p(D|θ) = − log

N∏
n=1

C∏
c=1

µync
nc = −

N∑
n=1

C∑
c=1

ync logµnc

=

N∑
n=1

H(yn,µn)

where yn is one-hot encoding of the label.

Sajjad Amini IML-S05 Backpropagation 29 / 50



How train MLPs

NLL for Regression
For regression problem using MLP, we assume the following model:

p(y|x,θ) = N (y|
aL=ŷ︷ ︸︸ ︷

wT
LzL−1 + bL, σ

2)

Thus the NLL can be formulated as:

NLL(θ) = − log p(D|θ) = − log

N∏
i=1

p(yn|xn,θ)

= − log

N∏
n=1

1√
2πσ2

exp

(
− 1

2σ2
(yn − ŷ)2

)

=
1

2σ2

N∑
n=1

(yn − ŷn)2 +
N

2
log(2πσ2)
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Challenge

Challenge
To minimize NLL(θ), you need to evaluate the gradient with respect to all pa-
rameters. Calculating the gradient when the MLP mapping is complex becomes
challenging.

MLP Structure
The structure of MLP is hierarchical. Thus we can reformulate NLL(θ) in a
hierarchical form. Assume a multi-class classification MLP with 2 hidden layers.
Then NLL(θ) can be formulated as:

f = f4 ◦ f3 ◦ f2 ◦ f1


f1 : x→ z1

f2 : z1 → z2

f3 : z2 → µ

f4 : µ→ NLL(θ)
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Backpropagation

Backpropagation
Backpropagation is an algorithm to compute the gradient of a loss func-
tion applied to the output of the network with respect to the parameters
in each layer.

Forward vs Reverse Mode Differentiation
Consider mapping o = f(x) where x ∈ Rn and o ∈ Rm is defined as:

f = f4 ◦ f3 ◦ f2 ◦ f1,


f1 : Rn → Rm1 x2 = f1(x)
f2 : Rm1 → Rm2 x3 = f2(x2)
f3 : Rm2 → Rm3 x4 = f3(x3)
f4 : Rm3 → Rm o = f4(x4)

Using the chain rule, we have:

∂o

∂x
=

∂o

∂x4

∂x4

∂x3

∂x3

∂x2

∂x2

∂x

= Jf4
(x4)Jf3

(x3)Jf2
(x2)Jf1

(x) = Jf (x) ∈ Rm×n
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Backpropagation

Forward vs Reverse Mode Differentiation
Jf (x) matrix can be written in term of columns and row vectors as:

Jf (x) =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 =

− ∇f1(x)T −
...

− ∇fm(x)T −

 =

 | |
∂f
∂x1

. . . ∂f
∂xn

| |

 ∈ Rm×n

Reverse Mode Differentiation: Assume ei ∈ Rm to be the unit basis vector. Then the
i-th row from Jf (x) can be extracted by using vector Jacobian product as:

∇fi(x)
T = eTi Jf (x) = eTi Jf4

(x4)Jf3
(x3)Jf2

(x2)Jf1
(x)

Forward Mode Differentiation: Assume ej ∈ Rn to be the unit basis vector. Then the
j-th row from Jf (x) can be extracted by using vector Jacobian product as:

∂f

∂xj
= Jf (x)ej = Jf4

(x4)Jf3
(x3)Jf2

(x2)Jf1
(x)ej
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Forward Mode Differentiation

Forward Mode Differentiation (FMD)
In forward mode differentiation, we are interested in computing each column of
Jf (x) at query point xq.

When n < m, then it is efficient to use FMD.

Algorithm 1: Forward Mode Differentiation
Initialization: x1 = xq

vj = ej ∈ Rn, j = 1, . . . , n
begin

for k = 1 : K do
xk+1 = fk(xk)
for j = 1 : n do

vj = Jfk
(xk)vj

end
end

end
Output : o = xK+1,Jf (xq) = [v1, . . . ,vn]
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Forward Mode Differentiation

Forward Mode Differentiation
Consider the following functions:

f1 :
[x1x2]→ [

x1x2
x1 + x2

]
,f2 :

[x1x2]→
[
x1x

2
2

x21 + x22x1

x2

]

Assume f(x) = f2 ◦ f1. Compute Jf (xq) for xq = [1, 1]T .

Solution: In this example, m = 3 and n = 2. Thus Jf (xq) ∈ R3×2 and we have
the following initializations:

x1 =
[
1
1

]
,v1 = e1 =

[
1
0

]
,v2 = e2 =

[
0
1

]
We also have:

Jf1

([x1x2]) = [x2 x1
1 1

]
,Jf2

([x1x2]) =
[
x22 2x1x2
2x1 2x2
1
x2

−x1

x2
2

]
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Forward Mode Differentiation

Forward Mode Differentiation
k = 1:

x2 = f1(x1) = f1

([
1
1

])
=

[
1
2

]
, Jf1

([
1
1

])
=

[
1 1
1 1

]
vnew1 = Jf1

([
1
1

])
vold1 =

[
1 1
1 1

] [
1
0

]
=

[
1
1

]
vnew2 = Jf1

([
1
1

])
vold2 =

[
1 1
1 1

] [
0
1

]
=

[
1
1

]
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Forward Mode Differentiation

Forward Mode Differentiation
k = 2:

x3 = f2(x2) = f2

([
1
2

])
=

 4
5
0.5

 , Jf2

([
1
2

])
=

 4 4
2 4
0.5 −0.25


vnew1 = Jf2

([
1
2

])
vold1 =

 4 4
2 4
0.5 −0.25

[1
1

]
=

 8
6

0.25


vnew2 = Jf2

([
1
2

])
vold2 =

 4 4
2 4
0.5 −0.25

[1
1

]
=

 8
6

0.25


Thus we have:

Jf (xq) = [v1, . . . ,vn] =

 8 8
6 6

0.25 0.25
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Reverse Mode Differentiation

Reverse Mode Differentiation (RMD)
In reverse mode differentiation, we are interested in computing each row of Jf (x) at
query point xq.

When m < n, then it is efficient to use RMD.

Algorithm 2: Reverse Mode Differentiation
Initialization: x1 = xq

ui = ei ∈ Rm, j = 1, . . . ,m
begin

for k = 1 : K do
xk+1 = fk(xk)

end
for k = K : 1 do

for i = 1 : m do
uT,new

i = uT,old
i Jfk

(xk)
end

end
end

Output : o = xK+1,Jf (xq) =

uT
1
...

uT
m
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Reverse Mode Differentiation

Forward Mode Differentiation
Consider our previous functions as:

f1 :
[x1x2]→ [

x1x2
x1 + x2

]
,f2 :

[x1x2]→
[
x1x

2
2

x21 + x22x1

x2

]

Again f(x) = f2 ◦ f1. Compute Jf (xq) for xq = [1, 1]T .

Solution: In this example, m = 3 and n = 2. Thus Jf (xq) ∈ R3×2 and we have
the following initializations:

x1 =
[
1
1

]
,u1 = e1 =

[
1
0
0

]
,u2 = e2 =

[
0
1
0

]
,u3 = e3 =

[
0
0
1

]
We also have:

Jf1

([x1x2]) = [x2 x1
1 1

]
,Jf2

([x1x2]) =
[
x22 2x1x2
2x1 2x2
1
x2

−x1

x2
2

]
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Forward Mode Differentiation

Forward Mode Differentiation
Forward loop:

x2 = f1(x1) = f1

([
1
1

])
=
[
1
2

]
, x3 = f2(x2) = f2

([
1
2

])
=

[
4
5
0.5

]
k = 2:

Jf2
(x2) = Jf2

([
1
2

])
=

[
4 4
2 4
0.5 −0.25

]
uT,new
1 = uT,old

1 Jf2

([
1
2

])
= [1 0 0]

[
4 4
2 4
0.5 −0.25

]
= [4 4]

uT,new
2 = uT,old

2 Jf2

([
1
2

])
= [0 1 0]

[
4 4
2 4
0.5 −0.25

]
= [2 4]

uT,new
3 = uT,old

3 Jf2

([
1
2

])
= [0 0 1]

[
4 4
2 4
0.5 −0.25

]
= [0.5 −0.25]
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Forward Mode Differentiation

Forward Mode Differentiation
k = 1:

Jf1
(x1) = Jf1

([
1
1

])
=

[
1 1
1 1

]
uT,new
1 = uT,old

1 Jf1

([
1
1

])
=
[
4 4

] [1 1
1 1

]
=
[
8 8

]
uT,new
2 = uT,old

2 Jf1

([
1
1

])
=
[
2 4

] [1 1
1 1

]
=
[
6 6

]
uT,new
3 = uT,old

3 Jf1

([
1
1

])
=
[
0.5 −0.25

] [1 1
1 1

]
=
[
0.25 0.25

]
Thus we have:

Jf (xq) =

u
T
1
...
uT
m

 =

 8 8
6 6

0.25 0.25
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Backpropagation

RMD for MLP
To estimate parameters θ in MLPs, we have the following optimization problem
(for both classification and regression):

θ̂mle = argmin
θ

NLL(θ)

where NLL(θ) is a hierarchical mapping. Thus m = 1 and n > 1 and RMD is
more efficient than FMD.
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Backpropagation

Hierarchical Structure of MLPs
Assume an MLP with one hidden layer for multi-class classification. Then we
can write NLL(θ) as:

L = f4 ◦ f3 ◦ f2 ◦ f1

where:

x2 = f1(x,W 1, b1) =W 1x+ b1 x3 = f2(x2) = φ(x2)

x4 = f3(x3,θ3) =W 2x3 L = f4(x4,y) = H(x4,y)

Thus we can compute the gradient with respect MLP parameters using RMD
as:

∂L
∂W 2

=
∂L
∂x4

∂x4

∂W 2

∂L
∂W 1

=
∂L
∂x2

∂x2

∂W 1

∂L
∂b1

=
∂L
∂x2

∂x2

∂b1
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Backpropagation Algorithm

Algorithm 3: Backpropagation for an MLP with K layers
Initialization: x1 = x
begin

for k = 1 : K do
xk+1 = fk(xk,θk)

end
uK+1 = 1
for k = K : 1 do

for i = 1 : m do
gk = uT

k+1
∂fk(xk,θk)

∂θk

uT
k = uT

k+1
∂fk(xk,θk)

∂xk

end
end

end
Output : L = xK+1

∇xL = u1

{∇θk
L = gk : k = 1 : K}
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BP for Common Layers

Cross Entropy Layer
If we define p = S(x) then the Mapping is:

z = f(x) = H(y,x) = −
∑
c

yc log(S(x)c) = −
∑
c

yc log pc

where m = 1, n = C and Jf (x) ∈ R1×C .
Assume the target label is c, then:

z = f(x) = − log(pc) = − log

(
exc∑
j e

xj

)
= log

∑
j

exj

− xc
∂z

∂xi
=

∂

∂xi
log
∑
j

exj − ∂

∂xi
xc =

exi∑
j e

xj
− I(i = c)

⇒Jf (x) = (p− y)T
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BP for Common Layers

Elementwise Nonlinearity
The Mapping is:

z = f(x) = φ(x)⇒ zi = φ(xi), i = 1, . . . , p

where m = p, n = p and Jf (x) ∈ Rp×p.
The (i, j) element of Jacobian matrix is:

∂zi
∂xj

=

{
φ′(xi) if i = j

0 otherwise
⇒ Jf (x) = diag(φ′(x))
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BP for Common Layers

Linear layer
The Mapping is:

z = f(x,W , b) =Wx+ b

where x ∈ Rn, z ∈ Rm and Jf (x) =
∂z
∂x ∈ Rm×n.

We know that zi =
∑n

k=1Wikxk, thus (i, j) element of Jacobian matrix is:

∂zi
∂xj

=
∂

∂xj

n∑
k=1

Wikxk =

n∑
k=1

Wik
∂

∂xj
xk =

n∑
k=1

WikI(k = j) =Wij

⇒Jf (x) =W
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BP for Common Layers

Linear layer (Continue)
Calculating ∂L

∂ vec(W )
= uT ∂z

∂ vec(W )
where u ∈ Rm and ∂z

∂ vec(W )
∈ Rm×(m×n)

First, we calculate an arbitrary column in ∂z
∂ vec(W )

vector:

zk =
m∑
l=1

Wklxl + bk ⇒
∂zk

∂Wij
=

m∑
l=1

xl
∂

∂Wij
Wkl =

m∑
l=1

xlI(i = k, j = l)

⇒
∂z

∂Wij
= xj × ei = (0, . . . , xj , . . . , 0)

T ∈ Rm

Thus the corresponding column in ∂L
∂ vec(W )

is:

uT ∂z

∂Wij
=

m∑
k=1

uk
∂zk

∂Wij
= uixj

If we use inverse vectorizing operator, we have:

∂L
∂W

= uxT ∈ Rm×n
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BP for Common Layers

Linear layer (Continue)
Calculating ∂L

∂b
= uT ∂z

∂b
where u ∈ Rm and ∂z

∂b
∈ Rm×m

We know:

zk =
m∑
l=1

Wklxl + bk ⇒
∂zk

∂bj
=

∂

∂bj
bk = I(j = k) ⇒

∂z

∂b
= I ∈ Rm×m

Thus we have:

∂L
∂b

= uT ∂z

∂b
= uT I = uT
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