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Approach Definition

Linear Models

o Multinomial logistic regression assume the following model:
p(yle, w) = Cat(y|S(Wx))
o Linear regression assume the following model:
plylz, w,0%) = N(ylw'z,0%)

One shared feature among both model is linearity.

Increasing Flexibility

To increase fexibility, we can replace input features & with transformed version
¢(x) known as basis function expansion. Then we have the following model:

fl@; W) = Weo(x)

The above model is linear in weight matrix W which makes the estimation easy.
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Approach Definition

Toward Automating Transformation (Deep Learning)

o Parameterizing Transformation: ¢(x) = ¢(x,0)
L4 ¢([$1, mQ]T; [91702]T = [(01 = -'-El)2 T (92 ar «1'2)2, sin(6’1x1 =+ 923}2)]
e Applying the transformations in a hierarchical manner:

z1 = ¢(20,01),20 =
22 = Py(21,02)

zp = ¢p(zL-1,01)
Altogether we have zy, = ¢(x,0) = ¢ (dr_1(-.-20...,01-1),01) where:

9:(017027"'30[/)

and ¢, (-, 0;) is transformation at layer .
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Perceptron Algorithm
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Perceptron Algorithm

Binary Logistic Regression

In binary logistic regression, the posterior distribution over labels is modeled
as:

p(ylz, w) = Ber(ylo(w”x))

Perceptron

| \

Perceptron is deterministic version of logistic regression (Why??) where the
posterior is modeled as:

p(y|@, w) = Ber(y|H (w" x))

where H(wTx) = I(w”z > 0) is heaviside step function.
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Perceptron Algorithm

Learning Algorithm

The update rule proposed by Rosenblatt for Perceptron is:

Wiy = Wt — nt(@\n - yn)wn

We have seen before the update rule for BLR as:

Wiyl = Wy — nt(ﬂn - yn)mn

Perceptron Vs BLR

@ Perceptron:

| A

o No need to compute the probability
o Convergent when the problem is linearly separable
e BLR

e p is needed for update
o Always convergent to minimizer of MLE
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ron Algorithm

Consider Perceptron learning algorithm as:

Wi = Wt — nt(@\n - yn)wn
Four different cases can occure (assume 7, = 1):
Yo =1,Yn = 0= w1 = wy +
Yn =0, =1 = w1 = wy — Ty
Yn =0, = 0= w1 = wy

Yo =1LYn =1= wip1 = wy
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Multi-layer Perceptron
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Perceptron Learning Limitation

Assume XOR function defined as:

if:lZl:O,SL‘Q:O
ifﬂ)lzl,l’gzl

= 75 @1‘ =
J ! 2 ifxlz].,l'z:o

=0 O

if.’Elzo,IQ:l

—0.2
—0.2 0.0 0.2 0.4 0.6

Figure: XOR problem

0.8 1.0 12
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Quest for Linearly Separable Features

Assume the following transformations:

w; = [17 ]-]T

hi =21 Axo = wla + by,
1 T To 1 1 {b1 - _15
{w2 = [171]T

ho = 21 V o = wla + by,
2 1V T2 2 2 by = —0.5

Then we can show that

w3 = [_17 1]T

y=hi Ahy = (1 Aza) A (21 V 22) :wgw—i—bg,
bs = —0.5

The resulting model is called Multi-Layer Perceptron (MLP).
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XOR Function

The final model consist of three Perceptrons, denoted hy, ho and y.

e Hidden unit: hy and hs are hidden units (Perceptrons) since they are not
observed in the training data.

e Output unit: y is output unit (Perceptron).

Figure: MLP model for XOR problem
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Differentiable MLPs
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Differentiable MLPs

Problem with MLPs

Training MLP as a stack of Perceptrons is difficult due to non-differentiable
Heaviside function.

v

Differentiable MLPs

Differentiable MLPs are classical MLPs while Heaviside function is replaced
with a differentiable function ¢ : R — R known as Activation Function.

v
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Differentiable MLPs

Assume the following definitions:

l Layer number

z; Hidden units at layer [

oi(+) Activation function at layer [
K; Feature dimension at at layer [

Then the mapping in layer [ is:

zi = ¢(z1-1,0)) = o1 (b + Wiz;_q)

Note that the quantity passed to activation function is called pre-activations
defined as:

a;=b +W;z_,

A,

The term MLP refer to the differentiable MLP rather than non-differentiable
version based on Heaviside step function.
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Activation Functions
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Activation Functions

ation Functions

Assume we select ¢;(a) = ¢;a. Then the whole MLP becomes:

zZ1 = (pl(WliB -+ bl) = c1W1a: -+ Clbl
zo = p2(Waz1 + ba) = coWaz1 + caba = c1coW oW1 @ + c1caWiaby + cabs

W12 b12

zr =pr(Wrzp_1+br) =Wy rx+bi. 1

Thus linear activation function reduces to regular linear model. Thus it is
important to use nonlinear activation functions.
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Sample Activation Functions

Sample Activation Functions

e Sigmoid:
(@) = oa) = 7
=0 = —
L4 1+e @
e Hyperbolic tangent:
et — e~
=tanh(a) = ———
pla) = tanh(a) = S——

o Rectified linear unit:

¢(a) = ReLU(a) = max(a,0) = aH/(a)
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2.0
151
— 1.0
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S 054
0.0
~0.51
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—— Sigmoid
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—— ReLU
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Binary Classification

Consider a binary classification problem with y € {0,1} and € R?. Assume
MLP model with the following features:

e Two hidden layers as:

x € R?
zZ1 = tanh(chc I bl), W, e R4x2
b,z € R4

W2 c R3><4

Z9 = tanh(W2z1 + bg), {b 2, € R3
2y ~2

e Output layer as:

w3€R3

T
a3 = ws 29 + b3,
3 EA 3{b3,a36R

p(y|z,0) = Ber(ylo(as))
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Sample MLP

5 Epoch Learning rate Activation Regularization Regularization rate Problem type
»
000,100 003 ~  Tamn ~  Nene - 0 ~  Classfication
O FEATURES + — 2 HIDDEN LAYERS oUTPUT
Which dataset co Whih properties Testloss 0.010
you want to use? 00 you want o Training loss 0.012
feedin? A= L=

3 neurons

X‘

Ratio of training to
test data: 50%

Noise: 0

Batoh size: 10

Golors shows

dala, neuronand ! !
i

2 weight values

Figure: MLP Visualization
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Sample MLP

Multi-class Classification

Consider classifying MNIST dataset [1] where y € {0,1,...,9} and X €

R28%28 (e use the vectorized version of images as = vec(X) € R™4).
Assume MLP model with the following features:

e Two hidden layers as:

x € R™84
z1 = tanh(Wiz + by), {Wl c R128x784
b17 zZ1 € RlQS
128x128
z9 = tanh(Waz; + ba), {X;/?zf §R128

e Output layer as:

10x128
a3 = W3zo + bs, {Zg?’af ERIO

p(y|z, 0) = Cat(y|S(a3))

IML-S05




Sample MLP

Model: "sequential"

Layer (type) Output Shape Param #
flatten (Flatten) (None, 784) 0
dense (Dense) (None, 128) 100480
dense_1 (Dense) (None, 128) 16512
dense_2 (Dense) (None, 10) 1290

Total params: 118,282
Trainable params: 118,282
Non-trainable params: O

Figure: MLP structure for MNIST classification
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ruth=7, pred=7, score=100

—

uth=2, pred=2, score=100 truth=1, pred=1, score=09

o
~—

T T T
ey Ry ey

AAJl; . L, . h
o . e =

A0,

=81 truth=6, pred=0, score=83

truth=0, pred=S, score=37

Figure: MLP results for MNIST classification after 1 epoch
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Sample MLP

Z

—

core=100 truth=2, pred=2, score=100 truth=1, pred=1, score=100
ruth=0, pred=0, seore=100 truth=1, pred=1, score=100 truth=1, pred=1, score=100

41 a |s

I
Ny — Sy — ——
1] n ] IIJ
L. | | i

Figure: MLP results for MNIST classification after 2 epoch
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Backpropagation
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How train MLPs

NLL for Multi-class Classification

For classification problem using MLP, we assume the following model:
ar
plyla; @) = Cat(y| SWLzr_1 +br))

1229

Thus the NLL can be formulated as:

N C
NLL(0) = —logp(D|0) = —log H H P = =" Yne10g fine
n=1c=1

n=1c=1

N
= H(y,, 1)

where y,, is one-hot encoding of the label.

Sajjad Amini IML-S05 Backpropagation



How train MLPs

NLL for Regression

For regression problem using MLP, we assume the following model:

arL=y

—_——
p(ylz,0) = N(y|wlz,—1 +br,0?)
Thus the NLL can be formulated as:

N
NLL(6) = —log p(D|6) = —log [ [ p(yn|2n, 0)

i=1
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Challenge

Challenge

To minimize NLL(), you need to evaluate the gradient with respect to all pa-
rameters. Calculating the gradient when the MLLP mapping is complex becomes
challenging.

v

MLP Structure

The structure of MLP is hierarchical. Thus we can reformulate NLL(@) in a
hierarchical form. Assume a multi-class classification MLP with 2 hidden layers.
Then NLL(0) can be formulated as:

firx—=2z
foi2z1— 20
fsiza—=np
fa : p— NLL(0)

f=fiofs0f30f;
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Backpropagation

Backpropagation

Backpropagation is an algorithm to compute the gradient of a loss func-
tion applied to the output of the network with respect to the parameters
in each layer.

Forward vs Reverse Mode Differentiation

Consider mapping o = f(x) where x € R" and o € R™ is defined as:

fliﬁfn%R]g; x2 = f1(x)

. 1 2 =

F=Ffs0f30f30f1 §§;Rm2—>Rm3 iizbigg
FiiR™ S R™ o= f,(m4)

Using the chain rule, we have:
@ . do 8374 81;3 8$2
Ox  Oxy Oxs Oz Ox
= Jf4(w4)Jf3(£U3)Jf2(x2)Jfl(:E) = Jf(w) € R™MX™

IML-S05




J () matrix can be written in term of columns and row vectors as:

of1 9f1

Az T Owg - Vfl(m)T - | |
5 . . 9 9
J¢(z) = : : = : = Tgcfl % c RMXn
Afm Olfiny) _ T
S Y V fm()

@ Reverse Mode Differentiation: Assume e; € R™ to be the unit basis vector. Then the
i-th row from J g(2) can be extracted by using vector Jacobian product as:

Vfi(cc)T = eZTJf (x) = eiTJf4 (xa)T g, (23)T 5, (22) T 5, (z)

@ Forward Mode Differentiation: Assume e; € R™ to be the unit basis vector. Then the
Jj-th row from J¢(x) can be extracted by using vector Jacobian product as:

of _

Do, Jr(z)e; = Tg,(a)J g, (x3)T 5, (22)J 5, (T)e;
J

d Amini IML-S05 Backpropagation



vard Mode Differentiation

Forward Mode Differentiation (FMD)

In forward mode differentiation, we are interested in computing each column of
J ¢(x) at query point x,.
@ When n < m, then it is efficient to use FMD.

Algorithm 1: Forward Mode Differentiation
Initialization: x; = =z,
vi=e; €R" j=1,...,n

begin
for k=1:K do
T = fr(Tr)
for j=1:ndo
| v =Jg, (@h)v;
end
end
end
Output to0=xkg41,Jf(xg) = [v1,...,0,]
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Forward Mode Differentiation

Forward Mode Differentiation

Consider the following functions:

1‘137%

Fri B = [ %,] £ (8] = |of £ 03

x2
Assume f(z) = f, 0 f,. Compute J ¢(z,) for z, = [1,1]T.

Solution: In this example, m = 3 and n = 2. Thus J¢(x,) € R3*? and we have
the following initializations:

i~ [f] == [§] == ]

We also have:

. S - x% 2T172
I (@) =T T)7n (@)= 22
T2 Ty
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Forward Mode Differentiation

o k=1:
wa= ey =12 ([ ) = o] 9 (1)) =i 3
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Forward Mode Differentiation

Forward Mode Differentiation

o k=2:

1 4 1 4 4
wr=fate) = £ (J3] ) = 3 | 9 ([ ) = |2 4
0.5 0.5 —-0.25

b
e (@[ L]H-[3
05 —0.25] 0.25

1 4 4 1 8
(@l 40|

Thus we have:

8 8
Jg(xg) =[v1,...,0,]=| 6 6
0.25 0.25
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se Mode Differentiation

Reverse Mode Differentiation (RMD)

In reverse mode differentiation, we are interested in computing each row of Jz(x) at
query point xq.
@ When m < n, then it is efficient to use RMD.

Algorithm 2: Reverse Mode Differentiation

Initialization: 1 = x,
u;=e; €R™ j=1,...,m
begin
for k=1: K do
| xer1 = fr(zw)

end
for k=K :1do

fori=1:m do

‘ ul’_T,new _ u’zr,oldek (Cck)

end
end
end
uf
Output t0=xrg+1,Jf(xq) =
ol
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Reverse Mode Differentiation

Forward Mode Differentiation

Consider our previous functions as:

:z:lx%

x% + CE%
1

Z2

fr: (8] = [o710%,) £2 0 (8]

Again f(z) = f,o0 f,. Compute J ¢(z,) for z, = [1,1]%.

Solution: In this example, m = 3 and n = 2. Thus J¢(x,) € R¥*? and we have
the following initializations:

1 1 0 ro
981:[1]7“1:61: 8 ,Ug = €3 = (1) ,u3 = €3 = (1)

We also have:

1 @)= [7 4] n @ - [
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Forward Mode Differentiation

Forward Mode Differentiation

e Forward loop:

er= e =11 ([{]) =[] = raenr = 12 () - [ 1]

o k=2:

Ty (@) =Ty, ([3]) = [045 —(?25]

o=t a, (W) =i 0 o ] =
e =ofas ()= 1 af ] 4
S R e Fl e
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Forward Mode Differentiation

Forward Mode Differentiation

e k=1:
1 1 1
e ([ 1
new O 1 1 1
’u,f’ = { g 1 =[4 4] [1 1] =[8 8

1 1
1 1

|
)
-t af §-t o
)

=[05 —0.25] [ } =[0.25 0.25]

Thus we have:

uf 8 8

Jf(a:q) = = 6 6
= 0.25 0.25
um
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Backpropagation

RMD for MLP

To estimate parameters @ in MLPs, we have the following optimization problem
(for both classification and regression):

o~

0,1 = argmin NLL(0)
0

where NLL(6) is a hierarchical mapping. Thus m = 1 and n > 1 and RMD is
more efficient than FMD.

v
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Backpropagation

Hierarchical Structure of MLPs

Assume an MLP with one hidden layer for multi-class classification. Then we
can write NLL(6) as:

L=f,0f30f30f;
where:

o= fi(x,W1,b)) =Wiz+ b x3 = fo(x2) = @(x2)
x4 = f3(x3,03) = Waoxs L= fy(xs,y) =H(zs,y)

Thus we can compute the gradient with respect MLP parameters using RMD
as:

oL AL dxy L  OL Ozo
oWy Oxy OW, oW,  Oxzy OW,
L  OL dx»
by~ 9z, Oby
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Backpropagation Algorithm

Algorithm 3: Backpropagation for an MLP with K layers

Initialization: ;1 = x

begin

for k=1: K do

| Thr1 = fr(Tr, Or)

end

UK+1 = 1

for k=K :1do
fori=1:m do

_ T Of i (zk,0k)
9 = U1 e,

uj = uj, af’“éﬁi’g’“)
end
end
end
Output tL=xg 1
VL = uq
{Vo,L=g;, : k=1:K}
Sajjad Amini IML-S05
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BP for Common Layers

Cross Entropy Layer

o If we define p = S(x) then the Mapping is:

z=f(z) = Z yelog(S Z Yelog pe

where m =1, n = C and J¢(z) € R*C.

o Assume the target label is ¢, then:

z = f(x) = —log(p) = —log (%) = log Zemﬂ' — T
J

J

8z 8 .0 e ,
o = om B " T T 1029
j J

=Jp(x)=(p-y)"
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BP for Common Lay

Elementwise Nonlinearity

e The Mapping is:

z=f(x) =p(x) =2 =

where m =p, n = p and J¢(x) € RP*P,

e The (,7) element of Jacobian matrix is:

9z {@’(xi) if i =j

O 0 otherwise

o), i=1,...,p

= J¢(z) = diag(¢'(x))
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BP for Common Lay

Linear layer

e The Mapping is:
z=f(x, W,b)=Wx+b

where € R", z € R™ and Js(x) = 22 € R™*".

o We know that z; = Zk 1 Wik, thus (4, j) element of Jacobian matrix is:

0z;
a;]—axJ;Wzkxk_ZWzk ﬂﬁk—;WmH =J) =Wy

:Jf(ac) =W
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BP for Common Laj

Linear layer (Continue)

g oL — oz
@ Calculating Fvec ) = U Bvec(W)
First, we calculate an arbitrary column in av%fvv) vector:

2=y Wia + by =3 L Z Wkl
=1 =1
0z
ém =Tj ><(3,':(0,...7

0)T eR™

Ljyeees

Thus the corresponding column in %ﬁm is:

If we use inverse vectorizing operator, we have:

oL _ uz? € RMX"
oW

m oz
where u € R™ and Tvec(W)

) c Rmx(mxn)

dwli=kj=1)
=1
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Common L

Linear layer (Continue)

@ Calculating 4 BE = uT Bz where u € R™ and Bz € Rmxm

‘We know:
0zg o] oz
= %% b= 2k = Ly 1= k) = & = [ eRXT
2, = ZZI k11 + by, b, ~ o, (4 =k) %
Thus we have:
oL [6)
ul = Z_ =uTr =47
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