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Approach Definitions
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Approach Definitions

Discriminant Ana

Assume we consider the following model for classification:

p(zly = ¢;0)p(y = c|6)

p(y = c|z;0) =
W= w0 = & el = 200l = /10)
where:
p(y = ¢|0) Prior probability over labels
p(xly = ¢; 0) Class conditional density

Using special options for class conditional density, we can show that:
p(ylz; 0) = w’ x + constant

The resulting model is known as linear discriminant analysis.
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Section 2

Gaussian Discriminant Analysis
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Gaussian Discriminant Analysis (GDA)

Class Conditional Density

For Gaussian discriminant analysis, the class conditional density is:
p(xly = ;0) = N(z|p,, Zc)
The above selection result in the following posterior over class labels:

p(y = C|:B,0) X WCN(:B“J’C? EC)

where
Te = p(y = c|0)
1 1 Ty—1
N(xlp,Be) = ——cexp [—5(y—p) B (¥ — 1)
273X, |2 2
v
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Decision Boundary

Quadratic Decision Boundary

Consider the log posterior probability as:
1
logp(y = c|x; 0) = logm, — §(w —p)tS (€ — p,) + const

This method is called Quadratic Discriminant Analysis (QDA) because the
decision boundary is a quadratic function.

Linear Decision Boundary

If we assume X = 3., then:

1 1
logp(y = c|x; 0) = log 7, — 5#?2_1% + 272, + const — ixTE_lm

=v+z'B, +k

This method is called Linear Discriminant Analysis (LDA) because the decision
boundary is a linear function.
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Quadratic vs Linear Discriminant Analysis
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Section 3

Connection Between LDA and MLR
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Connection Between LDA and MLR

As we can see, LDA can be formulated as:

X r X Trq.
p(y = C|:B,0) = © p(IBc x +70) — @ p(wc [].,:13])

@
YO exp(Bha 4+ ye) S, exp(wl[1;z])

Thus the posterior form is similar to MLR.

Difference

e In LDA, we first estimate prior probability over labels and class
conditional density, and derive {w.}¢_; from them.

o In MLR, we estimate {w.}¢ ; directly to maximize conditional likelihood
p(ylz,0)
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The likelihood function can be formulated as:

N
p(D16) = p ({(n, yn) }_110) & H (@0, yn|0)

N c
2 p—
@ | | (Yn|0)p(zn|yn, 0) = | [ Cat(yalm) [TV (@nlsse, £e)@n=2)
n=1 n=1 c=1

where we use independency of training samples and probability chain rule for
equality (1) and (2), respectively. Note that the parameter vector is:

0 = [m;py;...; pesvee(Tn); . . s vee(Ec)]
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MLE

MLE (Continue)

The likelihood function and its log version are:

p(018) = [] Cat(yam) Hanmc, =

n=1 .
2
e=l

N
Using differentiation, we can calculate the model parameters as:

©
= log p(D|6) = [Z Z ¢)log 7.

niYyp=c

= &|-z[2

Z log N (| p.., e

)
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1 Covariance Matrices

Tied Covariance Matrices

Tied covariance matrices is the situation where we force all covariance matrices
to be equal as:

.=3¢=1,...,C
MLE estimation for tied covariance matrix is:

C
S=2> Y @)@ - )"

c=1nwyn,=c

LDA and Tied Covariance Matrix
When the covariance matrix is tied, QDA simplifies to LDA.

Diagonal LDA

We can simplifies tied covariance matrix further by assumeing it to be diagonal,
so: X.=D, c=1,...,C
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Nearest Centroid Classifier

Nearest Centroid Classifier

Assume the prior probability over classes is uniform, so:

If the covariance matrices are tied, then:
j(x) = argmax log p(y = clz,0) = argmin (2 — )= (@ — )
Cc (6]

= argmin A% (x, p,)

Thus the class whose mean has minimum Mahalanobis distance to the query
point x is selected as the label.
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Naive Bayes Classifier
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Naive Bayes Classifier

Main Assumption

The input features are mutually independent given the class label. In other
words:

D

p(xly = c,0) = [ [ p(xaly = ¢, 0ac)
d=1

where 0;. is model parameter vector for conditional density for class ¢ and
feature d. The posterior over class label is:

ply = c|m) [T, p(zaly = c, 0ac)

p(y = clz,0) =
Yo p(y =) I, p(zaly = ¢, 04cr)

Pros and cons

@ The naive model may not hold in many real world application.

e Naive Bayes model is relatively immune to overfitting.
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mple Models

Binary Features

In this case x4 € {0,1} and thus the class conditional density is:

D

p(xly =c¢,0) = H Ber(z4|04c)
d=1

where 64, shows the probability that 4 = 1 in class ¢. This model is known as
multivariate Bernoulli naive Bayes.

Categorical Features

| A\

In this case x4 € {0,1,..., K} and thus the class conditional density is:

D
p(zly=¢,0) = H Cat(zq|04c)
d=1

where 04., shows the probability that 4 = & in class c.
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Real-values Features

In this case x4 € R and thus we can use univariate Gaussian for each dimension
in each class. Thus the class conditional density is:

D
plaly = ¢,0) = [ [ N(zalpac, o3.)
d=1

where pi4. and 02, shows the mean and variance of feature d in class c.
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Model Fitting

The likelihood for the dataset D is
N - N D
: H yn|0 H xnd|yn70d
n=1 d=1

H P(Yn|0)p(zn |y, 0)

p(D]0) =

3
i :j z
L
(<9
i
I
(o]
I
1L

where we use Naive Bayes assumption for equality (1)

Naive Bayes
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Model Fitting

N © D C
= Z ( [ I(yn = c)logmc| + Z Z I(y, =¢) logp(znd|0dc)‘| )
n=1 c=1 =i e=ll
N J\(ri D C
= [Z Z I(y, = c)logm.| + Z Z Z I(y, = ¢) logp(mndwdc)]
n=1c=1 n=1d=1c=1
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Model Fitting

Irrespective of class conditional density, the MLE for 7 is the vector of empirical
counts as T, =

Ne
-

MLE for 0,

o Binary features: 04. = JX;“

o Categorical features: é\dck =N Tk k=1,...,K

o Real-valued features (Univarlate Gau551an).

1 N
fde = — Z]I o = @)V

C n=1

C

1 N
Udc Z ]I wnd Ndc)2
n=1
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Generative vs. Discriminative
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Generative vs. Discriminative

MLR vs DA
In MLR, we have p(y|x; 8) = Cat(y|S(W”x + b)) and the likelihood is:

N
p(P10) = p({yn}n=i {@n}n1,0) = [ p(ynlzn,0)

In Discriminant analysis, we have p(y = c|z;0) = EC’: ﬁf@igiggg)?;l:?,la) and
the likelihood is:

N
n=1
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Generative vs. Discriminative

Discriminative
By training MLR:
@ You have access to p(y|x,d) which can be used to generate label for a
query input « (discriminate the label of ).

@ You can’t generate samples from specific class y = k.

v,

By training DA:

@ You have access to p(y|x,0) which can be used to generate label for a
query input z (discriminate the label of x).

@ You have access to p(x|y, @) that can be used to generate samples from
specific class y = k.
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