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Section 1

Approach Definitions
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Approach Definitions

Discriminant Analysis
Assume we consider the following model for classification:

p(y = c|x;θ) = p(x|y = c;θ)p(y = c|θ)∑
c′ p(x|y = c′;θ)p(y = c′|θ)

where:
p(y = c|θ)
p(x|y = c;θ)

Prior probability over labels
Class conditional density

Using special options for class conditional density, we can show that:

p(y|x;θ) = wTx+ constant

The resulting model is known as linear discriminant analysis.
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Section 2

Gaussian Discriminant Analysis
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Gaussian Discriminant Analysis (GDA)

Class Conditional Density
For Gaussian discriminant analysis, the class conditional density is:

p(x|y = c;θ) = N (x|µc,Σc)

The above selection result in the following posterior over class labels:

p(y = c|x,θ) ∝ πcN (x|µc,Σc)

where

πc = p(y = c|θ)

N (x|µc,Σc) =
1

|2πΣc| 12
exp

[
−1

2
(y − µc)

TΣ−1c (y − µc)

]
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Decision Boundary

Quadratic Decision Boundary
Consider the log posterior probability as:

log p(y = c|x;θ) = log πc −
1

2
(x− µc)

TΣ−1c (x− µc) + const

This method is called Quadratic Discriminant Analysis (QDA) because the
decision boundary is a quadratic function.

Linear Decision Boundary
If we assume Σ = Σc, then:

log p(y = c|x;θ) = log πc −
1

2
µT

c Σ
−1µc + x

TΣ−1µc + const− 1

2
xTΣ−1x

= γc + x
Tβc + κ

This method is called Linear Discriminant Analysis (LDA) because the decision
boundary is a linear function.
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Quadratic vs Linear Discriminant Analysis
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Figure 9.1: (a) Some 2d data from 3 different classes. (b) Fitting 2d Gaussians to each class. Generated by
code at figures.probml.ai/book1/9.1.
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Figure 9.2: Gaussian discriminant analysis fit to data in Figure 9.1. (a) Unconstrained covariances induce
quadratic decision boundaries. (b) Tied covariances induce linear decision boundaries. Generated by code at
figures.probml.ai/book1/9.2.

9.2.1 Quadratic decision boundaries

From Equation (9.3), we see that the log posterior over class labels is given by

log p(y = c|x,θ) = log πc −
1

2
log |2πΣc| −

1

2
(x− µc)TΣ−1

c (x− µc) + const (9.4)

This is called the discriminant function. We see that the decision boundary between any two classes,
say c and c′, will be a quadratic function of x. Hence this is known as quadratic discriminant
analysis (QDA).
For example, consider the 2d data from 3 different classes in Figure 9.1a. We fit full covariance

Gaussian class-conditionals (using the method explained in Section 9.2.4), and plot the results in
Figure 9.1b. We see that the features for the blue class are somewhat correlated, whereas the features
for the green class are independent, and the features for the red class are independent and isotropic
(spherical covariance). In Figure 9.2a, we see that the resulting decision boundaries are quadratic
functions of x.
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(b) LDA

Figure: Decision boundary comparison
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Section 3

Connection Between LDA and MLR
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Connection Between LDA and MLR

Similarity
As we can see, LDA can be formulated as:

p(y = c|x,θ) = exp(βT
c x+ γc)∑C

c′=1 exp(β
T
c′x+ γc′)

=
exp(wT

c [1;x])∑C
c′=1 exp(w

T
c′ [1;x])

Thus the posterior form is similar to MLR.

Difference
In LDA, we first estimate prior probability over labels and class
conditional density, and derive {wc}Cc=1 from them.
In MLR, we estimate {wc}Cc=1 directly to maximize conditional likelihood
p(y|x,θ)

Sajjad Amini IML-S05 Connection Between LDA and MLR 11 / 25



MLE

MLE
The likelihood function can be formulated as:

p(D|θ) = p
(
{(xn, yn)}Nn=1|θ

) (1)
=

N∏
n=1

p(xn, yn|θ)

(2)
=

N∏
n=1

p(yn|θ)p(xn|yn,θ) =
N∏

n=1

Cat(yn|π)
C∏

c=1

N (xn|µc,Σc)
I(yn=c)

where we use independency of training samples and probability chain rule for
equality (1) and (2), respectively. Note that the parameter vector is:

θ = [π;µ1; . . . ;µC ; vec(Σ1); . . . ; vec(ΣC)]
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MLE

MLE (Continue)
The likelihood function and its log version are:

p(D|θ) =
N∏

n=1

Cat(yn|π)
C∏

c=1

N (xn|µc,Σc)
I(yn=c)

⇒ log p(D|θ) =
[

N∑
n=1

C∑
c=1

I(yn = c) log πc

]
+

C∑
c=1

[ ∑
n:yn=c

logN (xn|µc,Σc)

]

Using differentiation, we can calculate the model parameters as:

π̂c =
Nc

N

µ̂c =
1

Nc

∑
n:yn=c

xn

Σ̂c =
1

Nc

∑
n:yn=c

(xn − µ̂c)(xn − µ̂c)
T
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Tied Covariance Matrices

Tied Covariance Matrices
Tied covariance matrices is the situation where we force all covariance matrices
to be equal as:

Σc = Σ, c = 1, . . . , C

MLE estimation for tied covariance matrix is:

Σ̂ =
1

N

C∑
c=1

∑
n:yn=c

(xn − µ̂c)(xn − µ̂c)
T

LDA and Tied Covariance Matrix
When the covariance matrix is tied, QDA simplifies to LDA.

Diagonal LDA
We can simplifies tied covariance matrix further by assumeing it to be diagonal,
so: Σc =D, c = 1, . . . , C
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Nearest Centroid Classifier

Nearest Centroid Classifier
Assume the prior probability over classes is uniform, so:

πc =
1

C
, c = 1, . . . , C

If the covariance matrices are tied, then:

ŷ(x) = argmax
c

log p(y = c|x,θ) = argmin
c

(x− µc)
TΣ−1(x− µc)

= argmin
c

∆2
Σ(x,µc)

Thus the class whose mean has minimum Mahalanobis distance to the query
point x is selected as the label.

Sajjad Amini IML-S05 Connection Between LDA and MLR 15 / 25



Section 4

Naive Bayes Classifier
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Naive Bayes Classifier

Main Assumption
The input features are mutually independent given the class label. In other
words:

p(x|y = c,θ) =

D∏
d=1

p(xd|y = c,θdc)

where θdc is model parameter vector for conditional density for class c and
feature d. The posterior over class label is:

p(y = c|x,θ) = p(y = c|π)∏D
d=1 p(xd|y = c,θdc)∑

c′ p(y = c′|π)∏D
d=1 p(xd|y = c′,θdc′)

Pros and cons
The naive model may not hold in many real world application.
Naive Bayes model is relatively immune to overfitting.
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Example Models

Binary Features
In this case xd ∈ {0, 1} and thus the class conditional density is:

p(x|y = c,θ) =

D∏
d=1

Ber(xd|θdc)

where θdc shows the probability that xd = 1 in class c. This model is known as
multivariate Bernoulli naive Bayes.

Categorical Features
In this case xd ∈ {0, 1, . . . ,K} and thus the class conditional density is:

p(x|y = c,θ) =

D∏
d=1

Cat(xd|θdc)

where θdck shows the probability that xd = k in class c.
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Example Models

Real-values Features
In this case xd ∈ R and thus we can use univariate Gaussian for each dimension
in each class. Thus the class conditional density is:

p(x|y = c,θ) =

D∏
d=1

N (xd|µdc, σ
2
dc)

where µdc and σ2
dc shows the mean and variance of feature d in class c.
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Model Fitting

MLE
The likelihood for the dataset D is:

p(D|θ) =
N∏

n=1

p(yn|θ)p(xn|yn,θ)
(1)
=

N∏
n=1

p(yn|θ)
D∏

d=1

p(xnd|yn,θd)

=

N∏
n=1

Cat(yn|π)
D∏

d=1

C∏
c=1

p(xnd|θdc)I(yn=c)

where we use Naive Bayes assumption for equality (1).
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Model Fitting

MLE (Continue)

log p(D|θ) = log

N∏
n=1

([
C∏

c=1

πI(yn=c)
c

][
D∏

d=1

C∏
c=1

p(xnd|θdc)I(yn=c)

])

=

N∑
n=1

(
log

[
C∏

c=1

πI(yn=c)
c

]
+ log

[
D∏

d=1

C∏
c=1

p(xnd|θdc)I(yn=c)

])

=

N∑
n=1

([
C∑

c=1

I(yn = c) log πc

]
+

[
D∑

d=1

C∑
c=1

I(yn = c) log p(xnd|θdc)
])

=

[
N∑

n=1

C∑
c=1

I(yn = c) log πc

]
+

[
N∑

n=1

D∑
d=1

C∑
c=1

I(yn = c) log p(xnd|θdc)
]
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Model Fitting

MLE for π
Irrespective of class conditional density, the MLE for π is the vector of empirical
counts as π̂c = Nc

N .

MLE for θdc
Binary features: θ̂dc = Ndc

Nc

Categorical features: θ̂dck = Ndck

Nc
, k = 1, . . . ,K

Real-valued features (Univariate Gaussian):

µ̂dc =
1

Nc

N∑
n=1

I(yn = c)xnd

σ̂2
dc =

1

Nc

N∑
n=1

I(yn = c)(xnd − µ̂dc)
2
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Section 5

Generative vs. Discriminative
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Generative vs. Discriminative

MLR vs DA
In MLR, we have p(y|x;θ) = Cat(y|S(W Tx+ b)) and the likelihood is:

p(D|θ) = p({yn}Nn=1|{xn}Nn=1,θ) =

N∏
n=1

p(yn|xn,θ)

In Discriminant analysis, we have p(y = c|x;θ) = p(x|y=c;θ)p(y=c|θ)∑
c′ p(x|y=c′;θ)p(y=c′|θ) and

the likelihood is:

p(D|θ) = p
(
{(xn, yn)}Nn=1|θ

)
=

N∏
n=1

p(xn, yn|θ) =
N∏

n=1

p(xn|yn,θ)p(yn|θ)
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Generative vs. Discriminative

Discriminative
By training MLR:

You have access to p(y|x,θ) which can be used to generate label for a
query input x (discriminate the label of x).
You can’t generate samples from specific class y = k.

Generative
By training DA:

You have access to p(y|x,θ) which can be used to generate label for a
query input x (discriminate the label of x).
You have access to p(x|y,θ) that can be used to generate samples from
specific class y = k.
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