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Section 1

Approach Definitions
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Approach Definitions

Logistic Regression
Logistic regression is discriminative classification model p(y|x;θ) (supervised
learning) where:

x ∈ RD

y ∈ {1, . . . , C}
θ

Fixed dimension input vector
Class label
Model parameters

Based on the value of C, we have:
C = 2
C > 2

Binary logistic regression (BLR)
Milticlass logistic regression (MLR)
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Section 2

Binary Logistic Regression
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Binary Logistic Regression

Model
Model:

p(y|x;θ) = Ber(y|σ(wTx+ b))

where:
σ(·)
w
b
θ = [b;w]

Sigmoid function
Weight vector
Bias value
Model parameters

Label Set
Define logit a = wTx+ b.

If y ∈ {0, 1} then

{
p(y = 1|x;θ) = σ(a)

p(y = 0|x;θ) = 1− σ(a) = σ(−a)
If ỹ ∈ {−1, 1} then p(ỹ|x;θ) = σ(ỹa)
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Decision Boundary

Decision Boundary for Binary Classification
Assume we decide based on l01 loss. Decision boundary corresponds to the point
x⋆ ∈ RD where p(y = 1|x = x⋆;θ) = 0.5.

Decision Boundary
We want to find function g(x) that outputs 1 if y = 1 is more probable and 0
otherwise. Thus:

g(x) = I(p(y = 1|x;θ) > p(y = 0|x;θ)) = I
(
log

p(y = 1|x;θ)
p(y = 0|x;θ) > 0

)
= I(a > 0)

Thus decision boundary is:

f(x;θ) = b+ ⟨w,x⟩ = 0
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Decision Boundary

Decision Boundary Characterization
We know point on the hyperplane must satisfy wT (x − x0) = 0 where x0 is a
vector on the hyper plane and w is normal vector. Thus:
Decision boundary is a hyperplane with normal vector w and b = −⟨w,x0⟩

Linearly Separable
If we can perfectly separate the training samples of a binary classification prob-
lem using a hyperplane, then the problem is known as linearly separable.
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Decision Boundary
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Figure 10.1: (a) Visualization of a 2d plane in a 3d space with surface normal w going through point
x0 = (x0, y0, z0). See text for details. (b) Visualization of optimal linear decision boundary induced by logistic
regression on a 2-class, 2-feature version of the iris dataset. Generated by code at figures.probml.ai/book1/10.1.
Adapted from Figure 4.24 of [Gér19].

where a = wTx+ b.
Thus we can write the prediction function as follows:

f(x;θ) = b+wTx = b+
D∑

d=1

wdxd (10.5)

where wTx = 〈w,x〉 is the inner product between the weight vector w and the feature vector x.
This function defines a linear hyperplane, with normal vector w ∈ RD and an offset b ∈ R from
the origin.
Equation (10.5) can be understood by looking at Figure 10.1a. Here we show a plane in a 3d

feature space going through the point x0 with surface normal w. Points on the surface satisfy
wT(x− x0) = 0. If we define b = −wTx0, we can rewrite this as wTx+ b = 0. This plane separates
3d space into two half spaces. This linear plane is known as a decision boundary. If we can
perfectly separate the training examples by such a linear boundary (without making any classification
errors on the training set), we say the data is linearly separable. From Figure 10.1b, we see that
the two-class, two-feature version of the iris dataset is not linearly separable.

In general, there will be uncertainty about the correct class label, so we need to predict a probability
distribution over labels, and not just decide which side of the decision boundary we are on. In
Figure 10.2, we plot p(y = 1|x1, x2;w) = σ(w1x1 + w2x2) for different weight vectors w. The vector

w defines the orientation of the decision boundary, and its magnitude, ||w|| =
√∑D

d=1 w
2
d, controls

the steepness of the sigmoid, and hence the confidence of the predictions.

10.2.2 Nonlinear classifiers

We can often make a problem linearly separable by preprocessing the inputs in a suitable way. In
particular, let φ(x) be a transformed version of the input feature vector. For example, suppose we
use φ(x1, x2) = [1, x2

1, x
2
2], and we let w = [−R2, 1, 1]. Then wTφ(x) = x2

1 + x2
2 −R2, so the decision

boundary (where f(x) = 0) defines a circle with radius R, as shown in Figure 10.3. The resulting
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(a) Decision boundary in 3D space
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Figure 10.1: (a) Visualization of a 2d plane in a 3d space with surface normal w going through point
x0 = (x0, y0, z0). See text for details. (b) Visualization of optimal linear decision boundary induced by logistic
regression on a 2-class, 2-feature version of the iris dataset. Generated by code at figures.probml.ai/book1/10.1.
Adapted from Figure 4.24 of [Gér19].

where a = wTx+ b.
Thus we can write the prediction function as follows:

f(x;θ) = b+wTx = b+
D∑

d=1

wdxd (10.5)

where wTx = 〈w,x〉 is the inner product between the weight vector w and the feature vector x.
This function defines a linear hyperplane, with normal vector w ∈ RD and an offset b ∈ R from
the origin.
Equation (10.5) can be understood by looking at Figure 10.1a. Here we show a plane in a 3d

feature space going through the point x0 with surface normal w. Points on the surface satisfy
wT(x− x0) = 0. If we define b = −wTx0, we can rewrite this as wTx+ b = 0. This plane separates
3d space into two half spaces. This linear plane is known as a decision boundary. If we can
perfectly separate the training examples by such a linear boundary (without making any classification
errors on the training set), we say the data is linearly separable. From Figure 10.1b, we see that
the two-class, two-feature version of the iris dataset is not linearly separable.

In general, there will be uncertainty about the correct class label, so we need to predict a probability
distribution over labels, and not just decide which side of the decision boundary we are on. In
Figure 10.2, we plot p(y = 1|x1, x2;w) = σ(w1x1 + w2x2) for different weight vectors w. The vector

w defines the orientation of the decision boundary, and its magnitude, ||w|| =
√∑D

d=1 w
2
d, controls

the steepness of the sigmoid, and hence the confidence of the predictions.

10.2.2 Nonlinear classifiers

We can often make a problem linearly separable by preprocessing the inputs in a suitable way. In
particular, let φ(x) be a transformed version of the input feature vector. For example, suppose we
use φ(x1, x2) = [1, x2

1, x
2
2], and we let w = [−R2, 1, 1]. Then wTφ(x) = x2

1 + x2
2 −R2, so the decision

boundary (where f(x) = 0) defines a circle with radius R, as shown in Figure 10.3. The resulting

Draft of “Probabilistic Machine Learning: An Introduction”. February 8, 2022

(b) Decision boundary for Iris-Virginica flower
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Feature Transformation

Nonlinear Decision Boundary
Assume ϕ(·) : RD → RD′

represents a feature transformer. As and example
consider: ϕ(x1, x2) = [1, x21, x

2
2]. Let w = [−R2, 1, 1]. Then decision boundary

is:

⟨w,ϕ(x)⟩ = 0

which represents a circle (nonlinear decision boundary).

10.2. Binary logistic regression 335
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Figure 10.2: Plots of σ(w1x1 + w2x2). Here w = (w1, w2) defines the normal to the decision boundary.
Points to the right of this have σ(wTx) > 0.5, and points to the left have σ(wTx) < 0.5. Adapted from Figure
39.3 of [Mac03]. Generated by code at figures.probml.ai/book1/10.2.

2R

x1

x2

x1

x2

2

Figure 10.3: Illustration of how we can transform a quadratic decision boundary into a linear one by
transforming the features from x = (x1, x2) to φ(x) = (x21, x

2
2). Used with kind permission of Jean-Philippe

Vert.

function f is still linear in the parameters w, which is important for simplifying the learning problem,
as we will see in Section 10.2.3. However, we can gain even more power by learning the parameters
of the feature extractor φ(x) in addition to linear weights w; we discuss how to do this in Part III.
In Figure 10.3, we used a quadratic expansion of the features. We can also use a higher order

polynomial, as in Section 1.2.2.2. In Figure 1.7, we show the effects of using polynomial expansion
up to degree K on a 2d logistic regression problem. As in Figure 1.7, we see that the model becomes
more complex as the number of parameters increases, and eventually results in overfitting. We discuss
ways to reduce overfitting in Section 10.2.7.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Figure: Nonlinear decision boundary for BLR
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MLE

Reformulating logit

a = ⟨w,x⟩+ b = ⟨[b,w], [1,x]⟩,
{
[b;w] : Augmented weight vector
[1;x] : Augmented input feature

NLL
Assume µn = σ(an) and y ∈ {0, 1}, then:

NLL(w) = − 1

N
log p(D|w) = − 1

N
log

N∏

n=1

Ber(yn|µn)

= − 1

N

N∑

n=1

[yn logµn + (1− yn) log(1− µn)] =
1

N

N∑

n=1

H(yn, µn)
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Derivatives

Gradient vector

g(w) = ∇w NLL(w) =
1

N

N∑

n=1

(µn − yn)xn =
1

N
(1T

N (diag(µ− y)X))T

where X =



− xT

1 −
...
− xT

N −


 , µ =



µ1

...
µN


 , y =



y1
...
yN


.

Hessian Matrix

H(w) = ∇w∇T
w NLL(w) =

1

N

N∑

n=1

(µn(1− µn)xn)x
T
n =

1

N
XTSX

where S = diag(µ1(1− µ1), . . . , µN (1− µN )).
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Characterization of NLL(w)

H(w) is PD

∀v : vTH(w)v =
1

N
vTXTSXv =

1

N
(S

1
2Xv)T (S

1
2Xv) =

1

N
∥S 1

2Xv∥22 > 0

provided N(S
1
2X) = {0}

Global minimizer
Thus NLL(w) is twice differentiable and its hessian matrix is PSD. Thus
NLL(w) is convex and stationary point w⋆ (g(w⋆)) is the global minimizer.
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Overfitting Problem
10.2. Binary logistic regression 337

(a) (b)

(c) (d)

Figure 10.4: Polynomial feature expansion applied to a two-class, two-dimensional logistic regression problem.
(a) Degree K = 1. (b) Degree K = 2. (c) Degree K = 4. (d) Train and test error vs degree. Generated by
code at figures.probml.ai/book1/10.4.

10.2.3.3 Deriving the gradient

Although we can use automatic differentiation methods (Section 13.3) to compute the gradient of
the NLL, it is also easy to do explicitly, as we show below. Fortunately the resulting equations will
turn out to have a simple and intuitive interpretation, which can be used to derive other methods, as
we will see.

To start, note that

dµn
dan

= σ(an)(1− σ(an)) (10.15)

where an = wTxn and µn = σ(an). Hence by the chain rule (and the rules of vector calculus,
discussed in Section 7.8) we have

∂

∂wd
µn =

∂

∂wd
σ(wTxn) =

∂

∂an
σ(an)

∂an
∂wd

= µn(1− µn)xnd (10.16)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

(a) K = 1
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Figure 10.4: Polynomial feature expansion applied to a two-class, two-dimensional logistic regression problem.
(a) Degree K = 1. (b) Degree K = 2. (c) Degree K = 4. (d) Train and test error vs degree. Generated by
code at figures.probml.ai/book1/10.4.

10.2.3.3 Deriving the gradient

Although we can use automatic differentiation methods (Section 13.3) to compute the gradient of
the NLL, it is also easy to do explicitly, as we show below. Fortunately the resulting equations will
turn out to have a simple and intuitive interpretation, which can be used to derive other methods, as
we will see.

To start, note that

dµn
dan

= σ(an)(1− σ(an)) (10.15)

where an = wTxn and µn = σ(an). Hence by the chain rule (and the rules of vector calculus,
discussed in Section 7.8) we have

∂

∂wd
µn =

∂

∂wd
σ(wTxn) =

∂

∂an
σ(an)

∂an
∂wd

= µn(1− µn)xnd (10.16)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

(b) K = 2
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Figure 10.4: Polynomial feature expansion applied to a two-class, two-dimensional logistic regression problem.
(a) Degree K = 1. (b) Degree K = 2. (c) Degree K = 4. (d) Train and test error vs degree. Generated by
code at figures.probml.ai/book1/10.4.

10.2.3.3 Deriving the gradient

Although we can use automatic differentiation methods (Section 13.3) to compute the gradient of
the NLL, it is also easy to do explicitly, as we show below. Fortunately the resulting equations will
turn out to have a simple and intuitive interpretation, which can be used to derive other methods, as
we will see.

To start, note that

dµn
dan

= σ(an)(1− σ(an)) (10.15)

where an = wTxn and µn = σ(an). Hence by the chain rule (and the rules of vector calculus,
discussed in Section 7.8) we have

∂

∂wd
µn =

∂

∂wd
σ(wTxn) =

∂

∂an
σ(an)

∂an
∂wd

= µn(1− µn)xnd (10.16)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

(c) K = 4
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(c) (d)

Figure 10.4: Polynomial feature expansion applied to a two-class, two-dimensional logistic regression problem.
(a) Degree K = 1. (b) Degree K = 2. (c) Degree K = 4. (d) Train and test error vs degree. Generated by
code at figures.probml.ai/book1/10.4.

10.2.3.3 Deriving the gradient

Although we can use automatic differentiation methods (Section 13.3) to compute the gradient of
the NLL, it is also easy to do explicitly, as we show below. Fortunately the resulting equations will
turn out to have a simple and intuitive interpretation, which can be used to derive other methods, as
we will see.

To start, note that

dµn
dan

= σ(an)(1− σ(an)) (10.15)

where an = wTxn and µn = σ(an). Hence by the chain rule (and the rules of vector calculus,
discussed in Section 7.8) we have

∂

∂wd
µn =

∂

∂wd
σ(wTxn) =

∂

∂an
σ(an)

∂an
∂wd

= µn(1− µn)xnd (10.16)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

(d) Error vs Complexity

Figure: Overfitting of BLR model when increasing the transformation complexity
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MAP Estimation

Weights Amplitude vs Model Complexity

K = 1⇒ ŵmle = (0.513, 0.119)

K = 2⇒ ŵmle = (2.275, 0.060, 11.842, 15.403, 2.512)

K = 4⇒ ŵmle = (−3.078, . . . ,−9.032, 51.771, 10.250)

Overfitting is accompanied by increasing the amplitude of weights.
Solution: One solution is to add a zero-mean Gaussian prior as p(w) =
N (w|0, CI)
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MAP Estimation

Objective Function
Using MAP estimation we have the following objective function:

PNLL(w) = NLL(w) + λ∥w∥22

The above formulation is called ℓ2 regularization or Weight Decay.

Hyper-parameter Effect
Based on lambda:

λ ↑⇒ more penalization⇒ less flexible model
λ ↓⇒ less penalization⇒ more flexible model
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Derivatives

Derivatives
In this case, the derivatives are calculated as:

PNLL(w) = NLL(w) + λwTw

∇wPNLL(w) = g(w) + 2λw

∇2
wPNLL(w) =H(w) + 2λI

Positive Definiteness of Hessian Matrix
Assume λ > 0, then:

∀v : vT∇2
wPNLL(w)v = vTH(w)v + 2λvT Iv =

1

N
vTXTSXv + 2λ∥v∥22

=
1

N
∥S 1

2Xv∥22 + 2λ∥v∥22 > 0

∇2
wPNLL(w) is always PD.
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Weight Decay Result
10.2. Binary logistic regression 343
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Figure 10.6: Weight decay with variance C applied to two-class, two-dimensional logistic regression problem
with a degree 4 polynomial. (a) C = 1. (b) C = 316. (c) C = 100, 000. (d) Train and test error vs C.
Generated by code at figures.probml.ai/book1/10.6.

following forms:

PNLL(w) = NLL(w) + λwTw (10.48)
∇wPNLL(w) = g(w) + 2λw (10.49)

∇2
wPNLL(w) = H(w) + 2λI (10.50)

where g(w) is the gradient and H(w) is the Hessian of the unpenalized NLL.
For an interesting exercise related to `2 regularized logistic regression, see Exercise 10.2.

10.2.8 Standardization

In Section 10.2.7, we use an isotropic prior N (w|0, λ−1I) to prevent overfitting. This implicitly
encodes the assumption that we expect all weights to be similar in magnitude, which in turn encodes
the assumption we expect all input features to be similar in magnitude. However, in many datasets,
input features are on different scales. In such cases, it is common to standardize the data, to ensure

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license
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following forms:

PNLL(w) = NLL(w) + λwTw (10.48)
∇wPNLL(w) = g(w) + 2λw (10.49)

∇2
wPNLL(w) = H(w) + 2λI (10.50)

where g(w) is the gradient and H(w) is the Hessian of the unpenalized NLL.
For an interesting exercise related to `2 regularized logistic regression, see Exercise 10.2.

10.2.8 Standardization

In Section 10.2.7, we use an isotropic prior N (w|0, λ−1I) to prevent overfitting. This implicitly
encodes the assumption that we expect all weights to be similar in magnitude, which in turn encodes
the assumption we expect all input features to be similar in magnitude. However, in many datasets,
input features are on different scales. In such cases, it is common to standardize the data, to ensure
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following forms:

PNLL(w) = NLL(w) + λwTw (10.48)
∇wPNLL(w) = g(w) + 2λw (10.49)

∇2
wPNLL(w) = H(w) + 2λI (10.50)

where g(w) is the gradient and H(w) is the Hessian of the unpenalized NLL.
For an interesting exercise related to `2 regularized logistic regression, see Exercise 10.2.

10.2.8 Standardization

In Section 10.2.7, we use an isotropic prior N (w|0, λ−1I) to prevent overfitting. This implicitly
encodes the assumption that we expect all weights to be similar in magnitude, which in turn encodes
the assumption we expect all input features to be similar in magnitude. However, in many datasets,
input features are on different scales. In such cases, it is common to standardize the data, to ensure
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(c) C = 100000
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Figure 10.6: Weight decay with variance C applied to two-class, two-dimensional logistic regression problem
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following forms:

PNLL(w) = NLL(w) + λwTw (10.48)
∇wPNLL(w) = g(w) + 2λw (10.49)

∇2
wPNLL(w) = H(w) + 2λI (10.50)

where g(w) is the gradient and H(w) is the Hessian of the unpenalized NLL.
For an interesting exercise related to `2 regularized logistic regression, see Exercise 10.2.

10.2.8 Standardization

In Section 10.2.7, we use an isotropic prior N (w|0, λ−1I) to prevent overfitting. This implicitly
encodes the assumption that we expect all weights to be similar in magnitude, which in turn encodes
the assumption we expect all input features to be similar in magnitude. However, in many datasets,
input features are on different scales. In such cases, it is common to standardize the data, to ensure

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

(d) Error vs inverse regularization

Figure: The effect of weight decay in BLR model performance
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Standardization

Reason for Standardization
For MAP estimation, we use N (w|0, λ−1I) prior for weights. This prior im-
plicitly assumes the input features to be similar in magnitude. To assure this,
we can use the following methods:

Individual normalization:

x̂nd = xnd−µ̂d

σ̂d
,

{
µ̂d = 1

N

∑N
n=1 xnd

σ̂2
d = 1

N

∑N
n=1(xnd − µ̂d)

2
, d = 1, . . . , D

Min-max scaling:

x̂nd = xnd−md

Md−md
,

{
md = minn xnd

Md = maxn xnd
, d = 1, . . . , D

Data whitening using eigenvectors
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Section 3

Multinomial Logistic Regression
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Multinomial Logistic Regression

Model
Model:

p(y|x;θ) = Cat(y|S(Wx+ b))

where:

S(·)
W ∈ RC×D

b ∈ RC

θ(W , b)
a =Wx+ b

Softmax function
Weight matrix
Bias vector
Model parameters
logits vector

Augmented Formulation

a =Wx+ b = [b,W ]× [1;x]

{
[b,W ] : Augmented weight vector
[1;x] : Augmented input feature
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Feature Transformation
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Linear Logistic Regression

(a) Original features
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(b) Transformed features

Figure: Using feature transformation ϕ(x) = [1;x1;x2;x
2
1;x

2
2;x1x2] for reaching

nonlinear decision boundary
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MLE

NLL

NLL(W ) = − 1

N
log p(D|W ) = − 1

N
log

N∏

n=1

C∏

c=1

µync
nc = − 1

N

N∑

n=1

C∑

c=1

ync logµnc

=
1

N

N∑

n=1

H(yn,µn)

where:

µnc = p(ync = 1|xn,θ) = S(f(xn;θ))c

and yn is one-hot encoding of the label.
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Derivatives

Gradient vector
Assume arbitrary input sample xn and row wj in W matrix, then:





∇wj
NLLn = −∑c

∂
∂µnc

[ync logµnc] = −
∑

c
ync

µnc

∂µnc

∂anj

∂anj

∂wj

∂µnc

∂anj
= µnc(δjc − µnj)

∂anj

∂wj
= xj

⇒∇wj
NLL

n
= (µnj − ynj)xn

⇒g(W ) =
1

N

N∑

n=1

xn(µn − yn)
T
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Derivatives

Hessian Matrix

H(w) =
1

N

N∑
n=1

(diag(µn)− µnµ
T
n )⊗ (xnx

T
n )

where
A =


a11 . . . a1n

...
. . .

...

am1

... am,n

 ∈ Rm×n

B ∈ Rp×q

⇒ A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ Rpm×qn

and Hessian matrix is PD. Thus for 3 features and 2 classes problem, we have:

H(w) =
1

N

∑
n

[
µn1 − µ2

n1 −µn1µn2

−µn1µn2 µn2 − µ2
n2

]
⊗

xn1xn1 xn1xn2 xn1xn3

xn2xn1 xn2xn2 xn2xn3

xn3xn1 xn3xn2 xn3xn3


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MAP Estimation

Objective Function
Using MAP estimation we have the following objective function:

PNLL(w) =

N∑

n=1

H(yn,µn) + λ

C∑

c=1

∥wc∥22

Zero Sum Property
At the stationary point for the above regularized formulation, we have:

−
N∑

n=1

xn(µn − yn)
T + 2λW T = 0

For column j ⇒2λ
∑

c

wcj =
∑

n

∑

c

(ync − µnc)xnj =
∑

n

(1− 1)xnj = 0

⇒
∑

c

wcj = 0
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Un-identifiability

Un-identifiability
Assume we have a trained MLR model where the posterior probabilities can be
computed as:

p(y = c|x,W ) =
exp(wT

c x)∑C
k=1 exp(w

T
k x)

If we add a constant vector v to all rows of W , then we have:

p(y = c|x,W + 1vT ) =
exp((wc + v)

Tx)
∑C

k=1 exp((wk + v)Tx)
=

exp(v) exp(wT
c x)

exp(v)
∑C

k=1 exp(w
T
k x)

= p(y = c|x,W )

ThusW+1vT is also the maximum likelihood estimation and problem is known
as un-indentifiability.
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Identifiability and MAP

Identifiability and MAP
The MAP estimation can solve un-identifiability because:

Assume weight matrix W , then due to zero sum property we have:

C∑

c=1

wcj = 0, j = 1, 2, . . . , D + 1

Assume weight matrix Z =W + 1vT , then due to zero sum property we
have:

C∑

c=1

zcj = 0, j = 1, 2, . . . , D + 1

Thus:

C∑

c=1

zcj = Cvj +

C∑

c=1

wcj = 0⇒ vj = 0, j = 1, . . . , D + 1⇒ v = 0
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Section 4

Bayesian Logistic Regression
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Bayesian BLR

Laplace Approximation to Posterior
Assume we have a BLR model. Using laplace approximation to posterior, we
have:

p(w|D) ∼ N (w∥ŵ,H−1)

where:

For MLE we have:

{
ŵ = argminw NLL(w)

H = 1
NX

TS(ŵ)X

For MAP we have:

{
ŵ = argminw

[
NLL(w) + λ∥w∥22

]

H = 1
NX

TS(ŵ)X + 2λI
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Bayesian BLR
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(b) Log-likelihood contour plot
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(c) Posterior contour plot (N (w|0, 100I))
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(d) Laplace approximation contour plot
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Approximating the Posterior Predictive

Posterior Predictive Distribution (PPD)
Posterior predictive distribution is defined as:

p(y|x,D) =
∫
p(y|x,w)p(w|D)dw

Point approximate to PPD
In this approach, we ignore the uncertainty in parameters by assuming:

p(w|D) = δ(w − ŵ),

{
ŵ = ŵmle

ŵ = ŵmap

And then approximate PPD as:

p(y|x,D) ≃
∫
p(y|x,w)δ(w − ŵ)dw = p(y|x, ŵ)

Challenge: Ignoring uncertainty
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Approximating the Posterior Predictive

Monte Carlo approximate to PPD
In this approach, we draw S sample from the posterior as ws ∼ p(w|D), and
then approximate it as:

p(w|D) ≃ 1

S

S∑

s=1

δ(w −ws)

Then PPD can be approximated as:

p(y|x,D) ≃ 1

S

S∑

s=1

∫
p(y|x,w)δ(w −ws)dw =

1

S

S∑

s=1

p(y|x,ws)

Challenge: Sampling the posterior at the text time
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Approximating the Posterior Predictive

Probit Approximation
Assume Φ(a) to be normal Gaussian CDF. Then this method uses two following
relations:

σ(a) ≃ Φ(λa), λ2 = π
8

∫
Φ(λa)N (a|m, ν)da = Φ

(
λm

(1+λ2ν)
1
2

)
≃ σ(κ(ν)m), κ(ν) ≜ (1 + πν/8)−

1
2

Thus if we define a = xTw, then we can rewrite PPD as:

p(y|x,w) =

∫
p(y|a)p(a|D)da

then:

p(y = 1|x,D) ≃ σ(κ(ν)m)

m = E[a] = xTµ

ν = V[a] = V[xTw] = xTΣx
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Intuition

Intuition
According to probit approximation, the PPD is:

p(y = 1|x,D) ≃ σ(κ(ν)m)

We can conclude two important points:
Because 0 < κ(ν) < 1, then σ(κ(ν)m) is close to 0.5.
Bayesian setting does not change the decision boundary because:

p(y = 1|x,D) = 0.5⇒ κ(ν)m = 0⇒ m = 0⇒ E[w]Tx = 0
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Bayesian BLR
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(a) Plug-in approximation p(y = 1|x, ŵ)
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(c) MC approximation to p(y = 1|x)
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(d) Probit approximation to p(y = 1|x)
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