Lecture 08: Logistic Regression
 Introduction to Machine Learning [25737]

Sajjad Amini

Sharif University of Technology

Contents

(1) Approach Definitions
(2) Binary Logistic Regression
(3) Multinomial Logistic Regression

44 Bayesian Logistic Regression

References

Except explicitly cited, the reference for the material in slides is:

- Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.

Section 1

Approach Definitions

Approach Definitions

Logistic Regression

Logistic regression is discriminative classification model $p(y \mid \boldsymbol{x} ; \boldsymbol{\theta})$ (supervised learning) where:
$\boldsymbol{x} \in \mathbb{R}^{D} \quad$ Fixed dimension input vector
$y \in\{1, \ldots, C\}$
Class label
θ
Model parameters
Based on the value of C, we have:

$$
\begin{array}{ll}
C=2 & \text { Binary logistic regression (BLR) } \\
C>2 & \text { Milticlass logistic regression (MLR) }
\end{array}
$$

Section 2

Binary Logistic Regression

Binary Logistic Regression

Model

Model:

$$
p(y \mid \boldsymbol{x} ; \boldsymbol{\theta})=\operatorname{Ber}\left(y \mid \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}+b\right)\right)
$$

where:

$\sigma(\cdot)$	Sigmoid function
\boldsymbol{w}	Weight vector
b	Bias value
$\boldsymbol{\theta}=[b ; \boldsymbol{w}]$	Model parameters

Label Set

Define logit $a=\boldsymbol{w}^{T} \boldsymbol{x}+b$.

- If $y \in\{0,1\}$ then $\left\{\begin{array}{l}p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})=\sigma(a) \\ p(y=0 \mid \boldsymbol{x} ; \boldsymbol{\theta})=1-\sigma(a)=\sigma(-a)\end{array}\right.$
- If $\tilde{y} \in\{-1,1\}$ then $p(\tilde{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})=\sigma(\tilde{y} a)$

Decision Boundary

Decision Boundary for Binary Classification

Assume we decide based on l_{01} loss. Decision boundary corresponds to the point $\boldsymbol{x}^{\star} \in \mathbb{R}^{D}$ where $p\left(y=1 \mid \boldsymbol{x}=\boldsymbol{x}^{\star} ; \boldsymbol{\theta}\right)=0.5$.

Decision Boundary

We want to find function $g(\boldsymbol{x})$ that outputs 1 if $y=1$ is more probable and 0 otherwise. Thus:

$$
g(\boldsymbol{x})=\mathbb{I}(p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})>p(y=0 \mid \boldsymbol{x} ; \boldsymbol{\theta}))=\mathbb{I}\left(\log \frac{p(y=1 \mid \boldsymbol{x} ; \boldsymbol{\theta})}{p(y=0 \mid \boldsymbol{x} ; \boldsymbol{\theta})}>0\right)=\mathbb{I}(a>0)
$$

Thus decision boundary is:

$$
f(\boldsymbol{x} ; \boldsymbol{\theta})=b+\langle\boldsymbol{w}, \boldsymbol{x}\rangle=0
$$

Decision Boundary

Decision Boundary Characterization

We know point on the hyperplane must satisfy $\boldsymbol{w}^{T}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)=0$ where \boldsymbol{x}_{0} is a vector on the hyper plane and \boldsymbol{w} is normal vector. Thus:
Decision boundary is a hyperplane with normal vector \boldsymbol{w} and $b=-\left\langle\boldsymbol{w}, \boldsymbol{x}_{0}\right\rangle$

Linearly Separable

If we can perfectly separate the training samples of a binary classification problem using a hyperplane, then the problem is known as linearly separable.

Decision Boundary

(a) Decision boundary in 3D space

(b) Decision boundary for Iris-Virginica flower

Feature Transformation

Nonlinear Decision Boundary

Assume $\phi(\cdot): \mathbb{R}^{D} \rightarrow \mathbb{R}^{D^{\prime}}$ represents a feature transformer. As and example consider: $\boldsymbol{\phi}\left(x_{1}, x_{2}\right)=\left[1, x_{1}^{2}, x_{2}^{2}\right]$. Let $\boldsymbol{w}=\left[-R^{2}, 1,1\right]$. Then decision boundary is:

$$
\langle\boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x})\rangle=0
$$

which represents a circle (nonlinear decision boundary).

Figure: Nonlinear decision boundary for BLR

MLE

Reformulating logit

$$
a=\langle\boldsymbol{w}, \boldsymbol{x}\rangle+b=\langle[b, \boldsymbol{w}],[1, \boldsymbol{x}]\rangle,\left\{\begin{array}{l}
{[b ; \boldsymbol{w}]: \text { Augmented weight vector }} \\
{[1 ; \boldsymbol{x}]: \text { Augmented input feature }}
\end{array}\right.
$$

NLL

Assume $\mu_{n}=\sigma\left(a_{n}\right)$ and $y \in\{0,1\}$, then:

$$
\begin{aligned}
\mathrm{NLL}(\boldsymbol{w}) & =-\frac{1}{N} \log p(\mathcal{D} \mid \boldsymbol{w})=-\frac{1}{N} \log \prod_{n=1}^{N} \operatorname{Ber}\left(y_{n} \mid \mu_{n}\right) \\
& =-\frac{1}{N} \sum_{n=1}^{N}\left[y_{n} \log \mu_{n}+\left(1-y_{n}\right) \log \left(1-\mu_{n}\right)\right]=\frac{1}{N} \sum_{n=1}^{N} \mathbb{H}\left(y_{n}, \mu_{n}\right)
\end{aligned}
$$

Derivatives

Gradient vector

$$
\boldsymbol{g}(\boldsymbol{w})=\nabla_{\boldsymbol{w}} \operatorname{NLL}(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N}\left(\mu_{n}-y_{n}\right) \boldsymbol{x}_{n}=\frac{1}{N}\left(\mathbf{1}_{N}^{T}(\operatorname{diag}(\boldsymbol{\mu}-\boldsymbol{y}) \boldsymbol{X})\right)^{T}
$$

where $\boldsymbol{X}=\left[\begin{array}{ccc}- & \boldsymbol{x}_{1}^{T} & - \\ \vdots & & \\ - & \boldsymbol{x}_{N}^{T} & -\end{array}\right], \boldsymbol{\mu}=\left[\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{N}\end{array}\right], \boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]$.

Hessian Matrix

$$
\boldsymbol{H}(\boldsymbol{w})=\nabla_{\boldsymbol{w}} \nabla_{\boldsymbol{w}}^{T} \mathrm{NLL}(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N}\left(\mu_{n}\left(1-\mu_{n}\right) \boldsymbol{x}_{n}\right) \boldsymbol{x}_{n}^{T}=\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{S} \boldsymbol{X}
$$

where $\boldsymbol{S}=\operatorname{diag}\left(\mu_{1}\left(1-\mu_{1}\right), \ldots, \mu_{N}\left(1-\mu_{N}\right)\right)$.

Characterization of NLL (\boldsymbol{w})

$\boldsymbol{H}(\boldsymbol{w})$ is PD

$\forall \boldsymbol{v}: \boldsymbol{v}^{T} \boldsymbol{H}(\boldsymbol{w}) \boldsymbol{v}=\frac{1}{N} \boldsymbol{v}^{T} \boldsymbol{X}^{T} \boldsymbol{S} \boldsymbol{X} \boldsymbol{v}=\frac{1}{N}\left(\boldsymbol{S}^{\frac{1}{2}} \boldsymbol{X} \boldsymbol{v}\right)^{T}\left(\boldsymbol{S}^{\frac{1}{2}} \boldsymbol{X} \boldsymbol{v}\right)=\frac{1}{N}\left\|\boldsymbol{S}^{\frac{1}{2}} \boldsymbol{X} \boldsymbol{v}\right\|_{2}^{2}>0$
provided $N\left(\boldsymbol{S}^{\frac{1}{2}} \boldsymbol{X}\right)=\{\mathbf{0}\}$

Global minimizer

Thus $\operatorname{NLL}(\boldsymbol{w})$ is twice differentiable and its hessian matrix is PSD. Thus $\operatorname{NLL}(\boldsymbol{w})$ is convex and stationary point $\boldsymbol{w}^{\star}\left(\boldsymbol{g}\left(\boldsymbol{w}^{\star}\right)\right)$ is the global minimizer.

Overfitting Problem

Figure: Overfitting of BLR model when increasing the transformation complexity

MAP Estimation

Weights Amplitude vs Model Complexity

$$
\begin{aligned}
& K=1 \Rightarrow \widehat{\boldsymbol{w}}_{m l e}=(0.513,0.119) \\
& K=2 \Rightarrow \widehat{\boldsymbol{w}}_{m l e}=(2.275,0.060,11.842,15.403,2.512) \\
& K=4 \Rightarrow \widehat{\boldsymbol{w}}_{m l e}=(-3.078, \ldots,-9.032,51.771,10.250)
\end{aligned}
$$

Overfitting is accompanied by increasing the amplitude of weights. Solution: One solution is to add a zero-mean Gaussian prior as $p(\boldsymbol{w})=$ $\mathcal{N}(\boldsymbol{w} \mid \mathbf{0}, C \boldsymbol{I})$

MAP Estimation

Objective Function

Using MAP estimation we have the following objective function:

$$
\operatorname{PNLL}(\boldsymbol{w})=\operatorname{NLL}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}
$$

- The above formulation is called ℓ_{2} regularization or Weight Decay.

Hyper-parameter Effect

Based on lambda:

- $\lambda \uparrow \Rightarrow$ more penalization \Rightarrow less flexible model
- $\lambda \downarrow \Rightarrow$ less penalization \Rightarrow more flexible model

Derivatives

Derivatives

In this case, the derivatives are calculated as:

$$
\begin{aligned}
\operatorname{PNLL}(\boldsymbol{w}) & =\operatorname{NLL}(\boldsymbol{w})+\lambda \boldsymbol{w}^{T} \boldsymbol{w} \\
\nabla_{\boldsymbol{w}} \operatorname{PNLL}(\boldsymbol{w}) & =\boldsymbol{g}(\boldsymbol{w})+2 \lambda \boldsymbol{w} \\
\nabla_{\boldsymbol{w}}^{2} \operatorname{PNLL}(\boldsymbol{w}) & =\boldsymbol{H}(\boldsymbol{w})+2 \lambda \boldsymbol{I}
\end{aligned}
$$

Positive Definiteness of Hessian Matrix

Assume $\lambda>0$, then:

$$
\begin{aligned}
\forall \boldsymbol{v}: \boldsymbol{v}^{T} \nabla_{\boldsymbol{w}}^{2} \operatorname{PNLL}(\boldsymbol{w}) \boldsymbol{v} & =\boldsymbol{v}^{T} \boldsymbol{H}(\boldsymbol{w}) \boldsymbol{v}+2 \lambda \boldsymbol{v}^{T} \boldsymbol{I} \boldsymbol{v}=\frac{1}{N} \boldsymbol{v}^{T} \boldsymbol{X}^{T} \boldsymbol{S} \boldsymbol{X} \boldsymbol{v}+2 \lambda\|\boldsymbol{v}\|_{2}^{2} \\
& =\frac{1}{N}\left\|\boldsymbol{S}^{\frac{1}{2}} \boldsymbol{X} \boldsymbol{v}\right\|_{2}^{2}+2 \lambda\|\boldsymbol{v}\|_{2}^{2}>0
\end{aligned}
$$

$\nabla_{\boldsymbol{w}}^{2} \operatorname{PNLL}(\boldsymbol{w})$ is always PD.

Weight Decay Result

Figure: The effect of weight decay in BLR model performance

Standardization

Reason for Standardization

For MAP estimation, we use $\mathcal{N}\left(\boldsymbol{w} \mid \mathbf{0}, \lambda^{-1} \boldsymbol{I}\right)$ prior for weights. This prior implicitly assumes the input features to be similar in magnitude. To assure this, we can use the following methods:

- Individual normalization:
- Min-max scaling:

$$
\widehat{x}_{n d}=\frac{x_{n d}-m_{d}}{M_{d}-m_{d}},\left\{\begin{array}{l}
m_{d}=\min _{n} x_{n d} \\
M_{d}=\max _{n} x_{n d}
\end{array} \quad, d=1, \ldots, D\right.
$$

- Data whitening using eigenvectors

Section 3

Multinomial Logistic Regression

Multinomial Logistic Regression

Model

Model:

$$
p(y \mid \boldsymbol{x} ; \boldsymbol{\theta})=\operatorname{Cat}(y \mid \mathcal{S}(\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}))
$$

where:

$$
\begin{aligned}
& \mathcal{S}(\cdot) \\
& \boldsymbol{W} \in \mathbb{R}^{C \times D} \\
& \boldsymbol{b} \in \mathbb{R}^{C} \\
& \boldsymbol{\theta}(\boldsymbol{W}, \boldsymbol{b}) \\
& \boldsymbol{a}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}
\end{aligned}
$$

Softmax function
Weight matrix
Bias vector
Model parameters
logits vector

Augmented Formulation

$$
\boldsymbol{a}=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}=[\boldsymbol{b}, \boldsymbol{W}] \times[1 ; \boldsymbol{x}]\left\{\begin{array}{l}
{[\boldsymbol{b}, \boldsymbol{W}]: \text { Augmented weight vector }} \\
{[1 ; \boldsymbol{x}]: \text { Augmented input feature }}
\end{array}\right.
$$

Feature Transformation

(a) Original features

(b) Transformed features

Figure: Using feature transformation $\boldsymbol{\phi}(\boldsymbol{x})=\left[1 ; x_{1} ; x_{2} ; x_{1}^{2} ; x_{2}^{2} ; x_{1} x_{2}\right]$ for reaching nonlinear decision boundary

MLE

NLL

$$
\begin{aligned}
\operatorname{NLL}(\boldsymbol{W}) & =-\frac{1}{N} \log p(\mathcal{D} \mid \boldsymbol{W})=-\frac{1}{N} \log \prod_{n=1}^{N} \prod_{c=1}^{C} \mu_{n c}^{y_{n c}}=-\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} y_{n c} \log \mu_{n c} \\
& =\frac{1}{N} \sum_{n=1}^{N} \mathbb{H}\left(\boldsymbol{y}_{n}, \boldsymbol{\mu}_{n}\right)
\end{aligned}
$$

where:

$$
\mu_{n c}=p\left(y_{n c}=1 \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)=\mathcal{S}\left(f\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)\right)_{c}
$$

and \boldsymbol{y}_{n} is one-hot encoding of the label.

Derivatives

Gradient vector

Assume arbitrary input sample \boldsymbol{x}_{n} and row \boldsymbol{w}_{j} in \boldsymbol{W} matrix, then:

$$
\begin{aligned}
&\left\{\begin{array}{l}
\nabla_{\boldsymbol{w}_{j}} N L L_{n}=-\sum_{c} \frac{\partial}{\partial_{n c}}\left[y_{n c} \log \mu_{n c}\right]=-\sum_{c} \frac{y_{n c}}{\mu_{n c}} \frac{\partial \mu_{n c}}{\partial a_{n j}} \frac{\partial a_{n j}}{\partial \boldsymbol{w}_{j}} \\
\frac{\partial n_{j}}{\partial n_{j}}=\mu_{n c}\left(\delta_{j c}-\mu_{n j}\right) \\
\frac{\partial n_{n j}}{\partial \boldsymbol{w}_{j}}=\boldsymbol{x}_{j}
\end{array}\right. \\
& \Rightarrow \nabla_{\boldsymbol{w}_{j}} N_{n}{ }_{n}=\left(\mu_{n j}-y_{n j}\right) \boldsymbol{x}_{n} \\
& \Rightarrow \boldsymbol{g}(\boldsymbol{W})=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}\left(\boldsymbol{\mu}_{n}-\boldsymbol{y}_{n}\right)^{T}
\end{aligned}
$$

Derivatives

Hessian Matrix

$$
\boldsymbol{H}(\boldsymbol{w})=\frac{1}{N} \sum_{n=1}^{N}\left(\operatorname{diag}\left(\boldsymbol{\mu}_{n}\right)-\boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{T}\right) \otimes\left(\boldsymbol{x}_{n} \boldsymbol{x}_{n}^{T}\right)
$$

where

$$
\left\{\boldsymbol{A}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \vdots & a_{m, n}
\end{array}\right] \in \mathbb{R}^{m \times n} \quad \Rightarrow \boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{ccc}
a_{11} \boldsymbol{B} & \ldots & a_{1 n} \boldsymbol{B} \\
\vdots & \ddots & \vdots \\
a_{m 1} \boldsymbol{B} & \ldots & a_{m n} \boldsymbol{B}
\end{array}\right] \in \mathbb{R}^{p m \times q n}\right.
$$

and Hessian matrix is PD. Thus for 3 features and 2 classes problem, we have:

$$
\boldsymbol{H}(\boldsymbol{w})=\frac{1}{N} \sum_{n}\left[\begin{array}{cc}
\mu_{n 1}-\mu_{n 1}^{2} & -\mu_{n 1} \mu_{n 2} \\
-\mu_{n 1} \mu_{n 2} & \mu_{n 2}-\mu_{n 2}^{2}
\end{array}\right] \otimes\left[\begin{array}{lll}
x_{n 1} x_{n 1} & x_{n 1} x_{n 2} & x_{n 1} x_{n 3} \\
x_{n 2} x_{n 1} & x_{n 2} x_{n 2} & x_{n 2} x_{n 3} \\
x_{n 3} x_{n 1} & x_{n 3} x_{n 2} & x_{n 3} x_{n 3}
\end{array}\right]
$$

MAP Estimation

Objective Function

Using MAP estimation we have the following objective function:

$$
\operatorname{PNLL}(\boldsymbol{w})=\sum_{n=1}^{N} \mathbb{H}\left(\boldsymbol{y}_{n}, \boldsymbol{\mu}_{n}\right)+\lambda \sum_{c=1}^{C}\left\|\boldsymbol{w}_{c}\right\|_{2}^{2}
$$

Zero Sum Property

At the stationary point for the above regularized formulation, we have:

$$
-\sum_{n=1}^{N} \boldsymbol{x}_{n}\left(\boldsymbol{\mu}_{n}-\boldsymbol{y}_{n}\right)^{T}+2 \lambda \boldsymbol{W}^{T}=\mathbf{0}
$$

For column $j \Rightarrow 2 \lambda \sum_{c} w_{c j}=\sum_{n} \sum_{c}\left(y_{n c}-\mu_{n c}\right) x_{n j}=\sum_{n}(1-1) x_{n j}=0$

$$
\Rightarrow \sum_{c} w_{c j}=0
$$

Un-identifiability

Un-identifiability

Assume we have a trained MLR model where the posterior probabilities can be computed as:

$$
p(y=c \mid \boldsymbol{x}, \boldsymbol{W})=\frac{\exp \left(\boldsymbol{w}_{c}^{T} \boldsymbol{x}\right)}{\sum_{k=1}^{C} \exp \left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}\right)}
$$

If we add a constant vector \boldsymbol{v} to all rows of \boldsymbol{W}, then we have:

$$
\begin{aligned}
p\left(y=c \mid \boldsymbol{x}, \boldsymbol{W}+\mathbf{1} \boldsymbol{v}^{T}\right) & =\frac{\exp \left(\left(\boldsymbol{w}_{c}+\boldsymbol{v}\right)^{T} \boldsymbol{x}\right)}{\sum_{k=1}^{C} \exp \left(\left(\boldsymbol{w}_{k}+\boldsymbol{v}\right)^{T} \boldsymbol{x}\right)}=\frac{\exp (\boldsymbol{v}) \exp \left(\boldsymbol{w}_{c}^{T} \boldsymbol{x}\right)}{\exp (\boldsymbol{v}) \sum_{k=1}^{C} \exp \left(\boldsymbol{w}_{k}^{T} \boldsymbol{x}\right)} \\
& =p(y=c \mid \boldsymbol{x}, \boldsymbol{W})
\end{aligned}
$$

Thus $\boldsymbol{W}+\mathbf{1} \boldsymbol{v}^{T}$ is also the maximum likelihood estimation and problem is known as un-indentifiability.

Identifiability and MAP

Identifiability and MAP

The MAP estimation can solve un-identifiability because:

- Assume weight matrix \boldsymbol{W}, then due to zero sum property we have:

$$
\sum_{c=1}^{C} w_{c j}=0, j=1,2, \ldots, D+1
$$

- Assume weight matrix $\boldsymbol{Z}=\boldsymbol{W}+\mathbf{1} \boldsymbol{v}^{T}$, then due to zero sum property we have:

$$
\sum_{c=1}^{C} z_{c j}=0, j=1,2, \ldots, D+1
$$

Thus:

$$
\sum_{c=1}^{C} z_{c j}=C v_{j}+\sum_{c=1}^{C} w_{c j}=0 \Rightarrow v_{j}=0, j=1, \ldots, D+1 \Rightarrow \boldsymbol{v}=\mathbf{0}
$$

Section 4

Bayesian Logistic Regression

Bayesian BLR

Laplace Approximation to Posterior

Assume we have a BLR model. Using laplace approximation to posterior, we have:

$$
p(\boldsymbol{w} \mid \mathcal{D}) \sim \mathcal{N}\left(\boldsymbol{w} \| \widehat{\boldsymbol{w}}, \boldsymbol{H}^{-1}\right)
$$

where:

- For MLE we have: $\left\{\widehat{\boldsymbol{w}}=\operatorname{argmin}_{\boldsymbol{w}} \operatorname{NLL}(\boldsymbol{w})\right.$

$$
\boldsymbol{H}=\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{S}(\widehat{\boldsymbol{w}}) \boldsymbol{X}
$$

- For MAP we have: $\left\{\begin{array}{l}\widehat{\boldsymbol{w}}=\operatorname{argmin}_{\boldsymbol{w}}\left[\mathrm{NLL}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}\right] \\ \boldsymbol{H}=\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{S}(\widehat{\boldsymbol{w}}) \boldsymbol{X}+2 \lambda \boldsymbol{I}\end{array}\right.$

Bayesian BLR

(a) Dataset with four model

(c) Posterior contour plot $(\mathcal{N}(\boldsymbol{w} \mid \mathbf{0}, 100 \boldsymbol{I}))$

(b) Log-likelihood contour plot

(d) Laplace approximation contour plot

Approximating the Posterior Predictive

Posterior Predictive Distribution (PPD)

Posterior predictive distribution is defined as:

$$
p(y \mid \boldsymbol{x}, \mathcal{D})=\int p(y \mid \boldsymbol{x}, \boldsymbol{w}) p(\boldsymbol{w} \mid \mathcal{D}) d \boldsymbol{w}
$$

Point approximate to PPD

In this approach, we ignore the uncertainty in parameters by assuming:

$$
p(\boldsymbol{w} \mid \mathcal{D})=\delta(\boldsymbol{w}-\widehat{\boldsymbol{w}}),\left\{\begin{array}{l}
\widehat{\boldsymbol{w}}=\widehat{\boldsymbol{w}}_{m l e} \\
\widehat{\boldsymbol{w}}=\widehat{\boldsymbol{w}}_{m a p}
\end{array}\right.
$$

And then approximate PPD as:

$$
p(y \mid \boldsymbol{x}, \mathcal{D}) \simeq \int p(y \mid \boldsymbol{x}, \boldsymbol{w}) \delta(\boldsymbol{w}-\widehat{\boldsymbol{w}}) d \boldsymbol{w}=p(y \mid \boldsymbol{x}, \widehat{\boldsymbol{w}})
$$

Challenge: Ignoring uncertainty

Approximating the Posterior Predictive

Monte Carlo approximate to PPD

In this approach, we draw S sample from the posterior as $\boldsymbol{w}_{s} \sim p(\boldsymbol{w} \mid \mathcal{D})$, and then approximate it as:

$$
p(\boldsymbol{w} \mid \mathcal{D}) \simeq \frac{1}{S} \sum_{s=1}^{S} \delta\left(\boldsymbol{w}-\boldsymbol{w}_{s}\right)
$$

Then PPD can be approximated as:

$$
p(y \mid \boldsymbol{x}, \mathcal{D}) \simeq \frac{1}{S} \sum_{s=1}^{S} \int p(y \mid \boldsymbol{x}, \boldsymbol{w}) \delta\left(\boldsymbol{w}-\boldsymbol{w}_{s}\right) d \boldsymbol{w}=\frac{1}{S} \sum_{s=1}^{S} p\left(y \mid \boldsymbol{x}, \boldsymbol{w}_{s}\right)
$$

Challenge: Sampling the posterior at the text time

Approximating the Posterior Predictive

Probit Approximation

Assume $\Phi(a)$ to be normal Gaussian CDF. Then this method uses two following relations:

- $\sigma(a) \simeq \Phi(\lambda a), \lambda^{2}=\frac{\pi}{8}$
- $\int \Phi(\lambda a) \mathcal{N}(a \mid m, \nu) d a=\Phi\left(\frac{\lambda m}{\left(1+\lambda^{2} \nu\right)^{\frac{1}{2}}}\right) \simeq \sigma(\kappa(\nu) m), \kappa(\nu) \triangleq(1+\pi \nu / 8)^{-\frac{1}{2}}$

Thus if we define $a=\boldsymbol{x}^{T} \boldsymbol{w}$, then we can rewrite PPD as:

$$
p(y \mid \boldsymbol{x}, \boldsymbol{w})=\int p(y \mid a) p(a \mid \mathcal{D}) d a
$$

then:

$$
\begin{aligned}
p(y=1 \mid \boldsymbol{x}, \mathcal{D}) & \simeq \sigma(\kappa(\nu) m) \\
m & =\mathbb{E}[a]=\boldsymbol{x}^{T} \boldsymbol{\mu} \\
\nu & =\mathbb{V}[a]=\mathbb{V}\left[\boldsymbol{x}^{T} \boldsymbol{w}\right]=\boldsymbol{x}^{T} \boldsymbol{\Sigma} \boldsymbol{x}
\end{aligned}
$$

Intuition

Intuition

According to probit approximation, the PPD is:

$$
p(y=1 \mid \boldsymbol{x}, \mathcal{D}) \simeq \sigma(\kappa(\nu) m)
$$

We can conclude two important points:

- Because $0<\kappa(\nu)<1$, then $\sigma(\kappa(\nu) m)$ is close to 0.5 .
- Bayesian setting does not change the decision boundary because:

$$
p(y=1 \mid \boldsymbol{x}, \mathcal{D})=0.5 \Rightarrow \kappa(\nu) m=0 \Rightarrow m=0 \Rightarrow \mathbb{E}[\boldsymbol{w}]^{T} \boldsymbol{x}=0
$$

Bayesian BLR

(a) Plug-in approximation $p(y=1 \mid \boldsymbol{x}, \widehat{\boldsymbol{w}})$

(c) MC approximation to $p(y=1 \mid \boldsymbol{x})$

(b) Samples drawn from $p(\boldsymbol{w} \mid \mathcal{D})$

(d) Probit approximation to $p(y=1 \mid \boldsymbol{x})$

