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Section 1

Basic Definitions
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Optimization Problem

Training as Optimization Problem
Assume function L : Θ→ R. An optimization problem is the process of finding
the value for vector θ ∈ Θ, denoted θ⋆ that minimizes L. We write this process
as:

θ⋆ ∈
Set︷ ︸︸ ︷

argmin
θ∈Θ

L(θ)

where:

L(θ)
R(θ) = −L(θ)
R(θ),L(θ)
Θ ⊆ RD

D

Loss function or cost function
Score function or reward function
Objective function
Parameter space
Number of Variables
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Global vs Local Optimization

Global Minimum
The set for global minimum is:

{θ⋆ : ∀θ ∈ Θ,L(θ⋆) ≤ L(θ)}

The set for strict global minimum is:

{θ⋆ : ∀θ ∈ Θ,L(θ⋆) < L(θ)}

Local Minimum
The set for local minimum is:

{θ⋆ : ∃δ > 0,∀θ ∈ Θ,θ ̸= θ⋆, if ∥θ − θ⋆∥ < δ then L(θ⋆) ≤ L(θ)}

The set for strict local minimum is:

{θ⋆ : ∃δ > 0,∀θ ∈ Θ,θ ̸= θ⋆, if ∥θ − θ⋆∥ < δ then L(θ⋆) < L(θ)}
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Illustration of Local and Global Minimum
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Optimality Conditions

Local Minimum
Assume L to be twice differentiable and Θ = RD. Consider a point θ⋆ ∈ RD

and let g⋆ = g(θ)
∣∣∣
θ⋆

and H⋆ = H(θ)
∣∣∣
θ⋆

to be gradient vector and Hessian

matrix at θ⋆. Then:
Necessary condition: If θ⋆ is a local minimum, then we must have g⋆ = 0
and H⋆ ⪰ 0.
Sufficient condition: If g⋆ = 0 and H⋆ ≻ 0, then θ⋆ is a local minimum.
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Constrained vs Unconstrained Optimization

Feasible Set
Feasible set is the subset of the parameter space that satisfies the constraints over the
parameter vector as:

C = {θ : gj(θ) ≤ 0, j ∈ I and hk(θ) = 0, k ∈ ϵ} ⊆ RD

where:

gj(θ)
hk(θ) = 0
I
ϵ

Inequality constraints
Equality constraints
Index set for Inequality constraints
Index set for Equality constraints

Constrained vs Unconstrained Optimization

θ⋆ ∈ argmin
θ∈C

L(θ)

The above optimization problem is unconstrained if C ∈ RD, otherwise it is con-
strained.
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Section 2

First Order Methods
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First Order Methods

General Properties
First order methods are methods that:

Leverage first order derivatives of the objective function
Ignore curvature (higher order derivatives)

Procedure
Specify starting point θ0
Perform update by:

θt+1 = θt + ηtdt

where:

ηt
dt

Step size or learning rate
Descent direction
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First Order Methods

Gradient Direction
Using Taylor expansion we have:

L(θ + ϵλ) ≃ L(θ) + ϵgT (θ)λ+O(ϵ2)

Thus if we assume λ = −g(θ), then for a small enough ϵ, we have:

L(θ + ϵλ)− L(θ) ≃ −ϵ∥g(θ)∥2 ≤ 0

So −g(θ) is a descent direction.
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First Order Methods

Gradient Descent
Gradient Descent (GD) method uses the following direction:

dt = −g(θ)
∣∣∣
θt

Momentum
Momentum method uses the following direction:

mt = βmt−1 + gt−1
θt = θt−1 − ηtmt

where mt is the momentum vector and β < 1

Momentum as Generalization of GD
For β = 1, momentum method degenerated to GD method.
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Learning Rate Schedule

Learning Rate Schedule
The sequence of step sizes {ηt} is called the learning rate schedule.

Sample Schedules
Constant: ηt = η

Too large values may fail convergence
Too small values lead to low convergence rate

Armijo-Goldstein: Assume m = ⟨g(θt),dt⟩ and select τ ∈ (0, 1), c ∈ (0, 1)
and η0, then:

γ = −cm and j = 0
Until L(θt)− L(θt + ηtjdt) ≥ ηt,jγ, increament j and set ηt,j = τηt,(j−1)

ηt,j is the learning rate at iteration t.
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Section 3

Second Order Methods
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Newton’s Method

Descent Direction

Assume Ht ≜ ∇2L(θ)
∣∣∣
θt

≻ 0. Then Second order approximation of L(·) in

θ = θt is:

L(θ) ≃ L(θt) + gTt (θ − θt) +
1

2
(θ − θt)THt(θ − θt)

The minimizer for the above approximation is: θt −H−1t gt. Thus:

⇒ dt = −H−1t gt
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Optimization Methods

Algorithm 0: Optimization based on descent direction
Input : tmax (Maximum iterations),

fd(·) (direction function),
fl(·) (learning rate function)

Initialization: t = 0, θ0, flagc = True
begin

while flagc do
dt = fd(θt)
ηt = fl(θt)
θt+1 = θt − ηtdt
t← t+ 1
if ∥gt+1∥ ≤ δ or t > tmax then

flagc ← False
end

end
end
Output : θt
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Section 4

Stochastic Gradient Descent
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Stochastic Gradient Descent

Loss Measurement Limitation
Previously we have seen that Gradient Descent (GD) method uses dt = − ∂L(θ)

∂θ

∣∣∣
θt

.

Now assume you only have access to a noisy version of loss function, denoted L(θ,zt),
where zt ∼ q and we have:

L(θ) = Eq(z)[L(θ,z)]

Stochastic gradient descent is a solution to the aforementioned problem.

Stochastic Gradient Descent
The update rule for stochastic gradient descent is:

θt+1 = θt − ηt∇L(θt,zt) = θt − ηtgt

The sequence {θt} is guaranteed to converge to a stationary point provided:
The step size ηt is decayed at a certain rate
z is independent of θ
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Section 5

Constrained Optimization
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Convex Set

Convex Set
Set S is convex if, for any x,x′ ∈ S, we have:

λx+ (1− λ)x′ ∈ S,∀λ ∈ [0, 1]

272 Chapter 8. Optimization

Figure 8.2: Illustration of constrained maximization of a nonconvex 1d function. The area between the dotted
vertical lines represents the feasible set. (a) There is a unique global maximum since the function is concave
within the support of the feasible set. (b) There are two global maxima, both occuring at the boundary of the
feasible set. (c) In the unconstrained case, this function has no global maximum, since it is unbounded.

Figure 8.3: Illustration of some convex and non-convex sets.

8.1.3.1 Convex sets

We say S is a convex set if, for any x,x′ ∈ S, we have

λx+ (1− λ)x′ ∈ S, ∀ λ ∈ [0, 1] (8.6)

That is, if we draw a line from x to x′, all points on the line lie inside the set. See Figure 8.3 for
some illustrations of convex and non-convex sets.

8.1.3.2 Convex functions

We say f is a convex function if its epigraph (the set of points above the function, illustrated in
Figure 8.4a) defines a convex set. Equivalently, a function f(x) is called convex if it is defined on a
convex set and if, for any x,y ∈ S, and for any 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (8.7)

See Figure 8.5(a) for a 1d example of a convex function. A function is called strictly convex if the
inequality is strict. A function f(x) is concave if −f(x) is convex, and strictly concave if −f(x)
is strictly convex. See Figure 8.5(b) for a 1d example of a function that is neither convex nor concave.
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(a) Convex sets

272 Chapter 8. Optimization

Figure 8.2: Illustration of constrained maximization of a nonconvex 1d function. The area between the dotted
vertical lines represents the feasible set. (a) There is a unique global maximum since the function is concave
within the support of the feasible set. (b) There are two global maxima, both occuring at the boundary of the
feasible set. (c) In the unconstrained case, this function has no global maximum, since it is unbounded.

Figure 8.3: Illustration of some convex and non-convex sets.

8.1.3.1 Convex sets

We say S is a convex set if, for any x,x′ ∈ S, we have

λx+ (1− λ)x′ ∈ S, ∀ λ ∈ [0, 1] (8.6)

That is, if we draw a line from x to x′, all points on the line lie inside the set. See Figure 8.3 for
some illustrations of convex and non-convex sets.

8.1.3.2 Convex functions

We say f is a convex function if its epigraph (the set of points above the function, illustrated in
Figure 8.4a) defines a convex set. Equivalently, a function f(x) is called convex if it is defined on a
convex set and if, for any x,y ∈ S, and for any 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (8.7)

See Figure 8.5(a) for a 1d example of a convex function. A function is called strictly convex if the
inequality is strict. A function f(x) is concave if −f(x) is convex, and strictly concave if −f(x)
is strictly convex. See Figure 8.5(b) for a 1d example of a function that is neither convex nor concave.
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Convex function

Convex Function
Function f(x) is convex if it is defined on a convex set S and if, for any x,y ∈ S,
and for any 0 ≤ λ ≤ 1, we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
8.1. Introduction 273

epi f (x)

f (x)

x1 x2

(a) (b)

Figure 8.4: (a) Illustration of the epigraph of a function. (b) For a convex function f(x), its epipgraph can
be represented as the intersection of half-spaces defined by linear lower bounds derived from the conjugate
function f∗(λ) = maxx λx− f(x).

X y

1- l

l

(a)

A B

(b)

Figure 8.5: (a) Illustration of a convex function. We see that the chord joining (x, f(x)) to (y, f(y)) lies
above the function. (b) A function that is neither convex nor concave. A is a local minimum, B is a global
minimum.

Here are some examples of 1d convex functions:

x2

eax

− log x

xa, a > 1, x > 0

|x|a, a ≥ 1

x log x, x > 0

8.1.3.3 Characterization of convex functions

Intuitively, a convex function is shaped like a bowl. Formally, one can prove the following important
result:

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Figure: Convexity check based on epigraph
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Properties of Convex Functions

Hessian Matrix of Convex Function
A twice differentiable function f : Rn → R is convex if and only if the Hessian
∇2f(x) is positive semi-definite for all x ∈ Rn [1].

Hessian Matrix of Convex Function
Assume that f : Rn → R is convex and differentiable. Then x⋆ is a global
minimizer of f(·), if and only if ∇f(x⋆) = 0 [1].
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Constrained vs Unconstrained Optimization

Constrained Optimization
A constrained optimization is defined as:

θ⋆ ∈ argmin
θ∈C

L(θ)

where C = {θ : gj(θ) ≤ 0, j ∈ I and hk(θ) = 0, k ∈ ϵ} ⊆ RD. The above
optimization problem is unconstrained if C ∈ RD, otherwise it is constrained.

Sajjad Amini IML-S05 Constrained Optimization 24 / 33



Lagrange Multiplier

Simple Case with One Equality Constraint
Assume we have θ⋆ ∈ argmin

h
(
θ
)
=0
L(θ). Then:

∇h(θ) is orthogonal to constraint surface because:
h(θ + ϵ) ≃ h(θ) + ϵT∇h(θ)
h(θ) = h(θ + ϵ)

ϵ ∥ constraint surface
⇒ ∇h(θ) ⊥ constraint surface

If θ⋆ is optimizer then ∇L(θ⋆) ⊥ constraint surface
Altogether: ∇L(θ⋆) = λ⋆∇h(θ⋆),λ⋆ ∈ R
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Lagrange Multiplier
296 Chapter 8. Optimization

𝜃 * = (1/2 , 1/2) 

𝜃₁ + 𝜃₂ = 1

𝜃₂

𝜃₁

f(𝜃) = 𝜃₁² + 𝜃₂²

0

𝜃₂ − 𝜃₁ ≤ 1

−𝜃₂ − 𝜃₁ ≤ 1 𝜃₁ − 𝜃₂ ≤ 1

𝜃₁ + 𝜃₂ ≤ 1

𝜃₂

𝜃₁

(3/2 , 1/8)

Figure 8.20: Illustration of some constrained optimization problems. Red contours are the level sets of the
objective function L(θ). Optimal constrained solution is the black dot, (a) Blue line is the equality constraint
h(θ) = 0. (b) Blue lines denote the inequality constraints |θ1|+ |θ2| ≤ 1. (Compare to Figure 11.8 (left).)

where E is the set of equality constraints, and I is the set of inequality constraints.
For example, suppose we have a quadratic objective, L(θ) = θ2

1 + θ2
2, subject to a linear equality

constraint, h(θ) = 1− θ1 − θ2 = 0. Figure 8.20(a) plots the level sets of L, as well as the constraint
surface. What we are trying to do is find the point θ∗ that lives on the line, but which is closest to
the origin. It is clear from the geometry that the optimal solution is θ = (0.5, 0.5), indicated by the
solid black dot.
In the following sections, we briefly describe some of the theory and algorithms underlying

constrained optimization. More details can be found in other books, such as [BV04; NW06; Ber15;
Ber16].

8.5.1 Lagrange multipliers

In this section, we discuss how to solve equality contrained optimization problems. We initially
assume that we have just one equality constraint, h(θ) = 0.

First note that for any point on the constraint surface, ∇h(θ) will be orthogonal to the constraint
surface. To see why, consider another point nearby, θ + ε, that also lies on the surface. If we make a
first-order Taylor expansion around θ we have

h(θ + ε) ≈ h(θ) + εT∇h(θ) (8.88)

Since both θ and θ + ε are on the constraint surface, we must have h(θ) = h(θ + ε) and hence
εT∇h(θ) ≈ 0. Since ε is parallel to the constraint surface, ∇h(θ) must be perpendicular to it.

We seek a point θ∗ on the constraint surface such that L(θ) is minimized. We just showed that it
must satisfy the condition that ∇h(θ∗) is orthogonal to the constraint surface. In addition, such a
point must have the property that ∇L(θ) is also orthogonal to the constraint surface, as otherwise
we could decrease L(θ) by moving a short distance along the constraint surface. Since both ∇h(θ)
and ∇L(θ) are orthogonal to the constraint surface at θ∗, they must be parallel (or anti-parallel) to
each other. Hence there must exist a constant λ∗ ∈ R such that

∇L(θ∗) = λ∗∇h(θ∗) (8.89)
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Figure: Solving problem θ⋆ ∈ argminθ1+θ2=0 θ21 + θ22
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Lagrangian

Lagrangian
Assume Lagrangian as:

L(θ, λ) ≜ L(θ) + λh(θ)

Then we have:

∇θ,λL(θ, λ) = 0⇔
{
λ∇θh(θ) = −∇θL(θ)
h(θ) = 0

Thus the stationary points of Lagrangian satisfy constraints and lead to parallel
gradient vectors.

M Equality constraints
For this case we simply find the stationary points of Lagrangian defined as:

L(θ,λ) = L(θ) +
m∑
j=1

λjhj(θ)
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Generalizing the Results (M Equality constraints)

Constrained Optimization with M Equality Constraints
Assume the following optimization problem:

θ⋆ ∈ argmin
θ∈C

L(θ)

C = {θ : gj(θ) ≤ 0, j ∈ I and hk(θ) = 0, k ∈ ϵ} ⊆ RD

The necessary condition for θ⋆ is L(θ⋆,λ⋆) = 0

If L(θ) is convex and equality constraints are Affine (hk(θ) = akθ = 0),
then the optimization problem is convex and condition L(θ⋆,λ⋆) = 0 is
sufficient.
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KKT Conditions

Constrained Optimization
Assume the following optimization problem:

θ⋆ ∈ argmin
θ∈C

L(θ)

C = {θ : gj(θ) ≤ 0, j ∈ I and hk(θ) = 0, k ∈ ϵ} ⊆ RD

We define the generalized Lagrangian as:

L(θ,µ,λ) = L(θ) +
∑
i

µigi(θ) +
∑
j

λjhj(θ)

Then the KKT (Karush–Kuhn–Tucker) conditions are:
∇L(θ) +∑

i µi∇gi(θ) +
∑

j λj∇hj(θ) = 0 (Stationary point of
Lagrangian)
g(θ) ≤ 0,h(θ) = 0 (Feasibilty)
µ ≥ 0 (Dual feasibility)
µ⊙ g = 0 (Complementary Slackness)
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KKT Conditions

Constrained Optimization
Again assume the following optimization problem:

θ⋆ ∈ argmin
θ∈C

L(θ)

C = {θ : gj(θ) ≤ 0, j ∈ I and hk(θ) = 0, k ∈ ϵ} ⊆ RD

Then KKT conditions are:
Necessary for θ
Sufficient for θ if above problem is convex (L(θ) and {gj(θ)}j ∈ I are
convex functions and {hk(θ)}k∈ϵ are Affine transforms).
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KKT Conditions

KKT Conditions [2]
Consider the following convex optimization problem:

min
(x,y)∈S

1

x+ y

subject to

2x+ y2 − 6 ≤ 0
1− x ≤ 0
1− y ≤ 0

where S = {(x, y) : x, y > 0}. Find the optimal point.
Solution: From zero Lagrangian gradient we have:[

− 1
(x+y)2

− 1
(x+y)2

]
+ µ1

[
2
2y

]
+ µ2

[
−1
0

]
+ µ3

[
0
−1

]
=

[
0
0

]
From complementary slackness equations we have:

µ1(2x+ y2 − 6) = µ2(1− x) = µ3(1− y) = 0
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KKT Conditions

KKT Conditions [2] (Continue)
Assume µ1 = 0, then:[

− 1
(x+y)2

− 1
(x+y)2

]
+ µ2

[
−1
0

]
+ µ3

[
0
−1

]
=

[
0
0

]
⇒ µ2 = µ3 = −

1

(x+ y)2
≤ 0

⇒
{

Contradiction
2x+ y2 − 6 = 0

No we assume x = 1 then:

x = 1 ⇒ y =
{
+2 (valid)− 2 (invalid) ⇒


µ1 = 1

36

µ2 = − 1
18

µ3 = 0

⇒
{

Contradiction
x ̸= 0

No we assume y = 1 then:

y = 1 ⇒ x = 2.5 ⇒


µ1 = 2

49

µ2 = 0

µ3 = 0

⇒
{
θ⋆ = (2.5, 1)

µ = ( 2
49

, 0, 0)
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