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Basic Definitions
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Optimization Problem

Training as Optimization Problem

Assume function £ : © — R. An optimization problem is the process of finding
the value for vector 8 € ©, denoted 6 that minimizes L. We write this process
as:
Set
——
0* € argmin £(0)
6co
where:
L(0) Loss function or cost function
R(0) = —L(0) Score function or reward function
R(0), L(0) Objective function
© CRP Parameter space
D Number of Variables
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Global vs Local Optimization

The set for global minimum is:
{6 :V0 € ©,L£(6%) < L(0)}
The set for strict global minimum is:

(0% :V0 € ©,L£(0%) < L(6)}

\

The set for local minimum is:
{6 :36 > 0,V0 € ©,0 +# 0, if |6 — 0”|| < then L(6%) < L(0)}

The set for strict local minimum is:

{6*:36>0,¥0 € ©,0 # 0", if || — 6*|| < & then £(6%) < L£(0)}

\
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[lustration of Local and Glo

addle Poinf
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(a) Local minimum vs global minimum (b) Saddle point
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Optimality Conditions

Assume £ to be twice differentiable and © = R”. Consider a point 8* € RP
and let g* = g(0)’9* and H* = H(O)‘g* to be gradient vector and Hessian
matrix at 8*. Then:

@ Necessary condition: If 8 is a local minimum, then we must have g* = 0
and H* > 0.

o Sufficient condition: If g* = 0 and H* = 0, then 6” is a local minimum.
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Constrained vs Unconstrained Optimization

Feasible Set

Feasible set is the subset of the parameter space that satisfies the constraints over the
parameter vector as:

C=1{0:9;(0)<0,j€Zand hy(0) =0,k € ¢} CR"

where:
9;(0) Inequality constraints
hi(0) =0 Equality constraints
T Index set for Inequality constraints
€ Index set for Equality constraints

Constrained vs Unconstrained Optimization

0* € argmin £(0)
oec

The above optimization problem is unconstrained if C € RP, otherwise it is con-
strained.
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Section 2

First Order Methods
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First Order Methods

General Properties

First order methods are methods that:
o Leverage first order derivatives of the objective function

@ Ignore curvature (higher order derivatives)

Procedure

| A\

@ Specify starting point 6
e Perform update by:

0,11 =0, +n.d;

where:
N Step size or learning rate
d; Descent direction

Sajjad Amini IML-S05 First Order Methods



First Order Methods

Gradient Direction

Using Taylor expansion we have:
L0+ eX) =~ L(0) +egm (0)X + O(e?)
Thus if we assume A = —g(0), then for a small enough €, we have:
L0+ eX) — £(6) ~ —elg(O)]| < 0

So —g(0) is a descent direction.
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First Order Methods

Gradient Descent
Gradient Descent (GD) method uses the following direction:

d; = —g(0)

6

Momentum method uses the following direction:

my = Bmy_1 +g;_;

0y =0;_1 —nmy

where m; is the momentum vector and § < 1

Momentum as Generalization of GD

For 8 = 1, momentum method degenerated to GD method.
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Learning Rate Schedule

Learning Rate Schedule

The sequence of step sizes {n;} is called the learning rate schedule.

o Constant: n; =1

e Too large values may fail convergence
e Too small values lead to low convergence rate
e Armijo-Goldstein: Assume m = (g(0;),d;) and select 7 € (0,1), ¢ € (0,1)
and 7, then:
e y=—cmand j=0
o Until £(6:) — L(6: + n:;d:) > n: 5, increament j and set 0 ; = 70, (j—1)
e 1,5 is the learning rate at iteration ¢.
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Second Order Methods
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Newton’s Method

Descent Direction

Assume H; £ V2L(0) 0 0. Then Second order approximation of £(:) in
0=0,is: t

£(6) =~ £(8.) + g7 (6~ 6.) + (6~ 0)TH.(6 - 0,)

The minimizer for the above approximation is: 8, — H, 1 g;. Thus:

=d,=—-H;'g,
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Optimization Methods

Algorithm 0: Optimization based on descent direction

Input : tmax (Maximum iterations),
fa(+) (direction function),
f1(*) (learning rate function)

Initialization: t = 0, 6y, flag. = True

begin

while flag. do

d; = fa(0:)

ne = f l(ot)

011 =06, —md,

t—t+1

if ||g; 1]| <6 ort > tyax then
| flag. < False
end

end

end
Output : 0
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Stochastic Gradient Descent
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Stochastic Gradient Descent

surement Limitation

Previously we have seen that Gradient Descent (GD) method uses d; = — 31;29) .
6

Now assume you only have access to a noisy version of loss function, denoted £(6, z),
where z; ~ ¢ and we have:

L£(6) = Eq(z)[£(6, 2)]

Stochastic gradient descent is a solution to the aforementioned problem.

Stochastic Gradient Descent

The update rule for stochastic gradient descent is:
Oi41=0;— ﬂtV£(9t, Zt) = 60; — mg,

The sequence {0} is guaranteed to converge to a stationary point provided:

@ The step size 7: is decayed at a certain rate

@ z is independent of 6
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Constrained Optimization
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Convex Set

Convex Set

Set S is convex if, for any x, ' € S, we have:

Az + (1= Nz’ € S,V € [0,1]

(a) Convex sets (b) Nonconvex sets
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Convex function

Function f(x) is convex if it is defined on a convex set S and if, for any x,y € S,
and for any 0 < A <1, we have:

fOz+ (1= Ny) <Af(z)+ (1 -2 f(y)

X1 X2

Figure: Convexity check based on epigraph
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Properties of Convex Funct

Hessian Matrix of Convex Function

A twice differentiable function f : R™ — R is convex if and only if the Hessian
V2 f(zx) is positive semi-definite for all z € R™ [1].

v

Hessian Matrix of Convex Function

Assume that f : R — R is convex and differentiable. Then x* is a global
minimizer of f(-), if and only if V f(z*) = 0 [1].

v,

Sajjad Amini IML-S05 Constrained Optimization



Constrained vs Unconstrained Optimization

Constrained Optimization

A constrained optimization is defined as:

0* € argmin £(0)
6ec

where C = {6 : ¢;(8) < 0,5 € Z and hi(0) = 0,k € ¢} C RP. The above
optimization problem is unconstrained if C € R, otherwise it is constrained.
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Lagrange Multiplier

Simple Case with One Equality Constraint
Assume we have 6* € argmin, (0)=0 L£(60). Then:

e Vh(0) is orthogonal to constraint surface because:
h(6 + €) ~ h(0) + eI’ Vh(0)

h(0) = h(6 + €) = Vh(0) L constraint surface
€ || constraint surface

o If 0™ is optimizer then VL(6*) L constraint surface
Altogether: VL(0*) = X*Vh(6%),\* € R
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Lagrange Multiplier

Sajjad Amini

0°=(1/2,1/2)

- 01

f(6) = 6.2 + 6,2

Figure: Solving problem 6* € argming 4, 0% + 62
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Lagrangian

Lagrangian

Assume Lagrangian as:

L6, \) £ L(0) + \h(0)
Then we have:

_ AVgh(8) = —VeL(0)
V97,\L(0,)\>—0<:>{h(0) 0
Thus the stationary points of Lagrangian satisfy constraints and lead to parallel
gradient vectors.

V.

M Equality constraints

For this case we simply find the stationary points of Lagrangian defined as:

m

L(O,X) = L(6) + > _ X;h;(6)

il
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Generalizing the Results (M Equality constraints)

Constrained Optimization with M Equality Constraints
Assume the following optimization problem:
0* € argmin £(0)
oeC
C=1{60:9;(0)<0,j €T and h(0) =0,k € e} CRP

@ The necessary condition for 8% is L(6*,A\*) =0

e If £(0) is convex and equality constraints are Affine (hy(0) = a0 = 0),
then the optimization problem is convex and condition L(6*,X\*) = 0 is
sufficient.
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KKT Conditions

Constrained Optimization

Assume the following optimization problem:
0* € argmin £(0)
oeC
C=1{60:9;(0)<0,j €T and h(8) =0,k € e} CRP

We define the generalized Lagrangian as:
L(6,p, \) = L(6) + Zuzgl + Aih;(0)
J

Then the KKT (Karush—-Kuhn—Tucker) conditions are:
o VL(O)+ >, 1:Vgi(0) + 37, A;Vh;(8) = 0 (Stationary point of
Lagrangian)
e g(0) <0,h(0) =0 (Feasibilty)
o 1 > 0 (Dual feasibility)
e 1 ® g =0 (Complementary Slackness)

Sajjad Amini IML-S05 Constrained Optimization



KKT Conditions

Constrained Optimization

Again assume the following optimization problem:
0* € argmin £(0)
oec
C=1{0:g;(0)<0,j €T and h,(0) =0,k € e} CRP

Then KKT conditions are:
@ Necessary for 0

o Sufficient for @ if above problem is convex (£(0) and {g;(0)}; € Z are
convex functions and {hy(0)}ree are Affine transforms).
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KKT Conditions

KKT Conditions [2]

Consider the following convex optimization problem:

1
min
(z,y)€ES T+ Y
20 +1y2-6<0
subject to ¢ 1 —2 <0
1-y<0

where S = {(x,y) : ,y > 0}. Find the optimal point.
Solution: From zero Lagrangian gradient we have:

v gy o 5] i | ) = 5]

From complementary slackness equations we have:

1
[ (z4)*

" (@ty)?

(22 +y* — 6) = pa(1 —2) = p3(1 —y) =0
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KKT Conditions

KKT Conditions [2] (Continue)

Assume g1 = 0, then:

___ 1 _
[ (90-0—19)2
T (zty)2

-1 0 0 1
= = = =—— <0
+ p2 [ 0 } + p3 {_J [O} H2 = p3 G

Contradiction
2c+y2 —6=0

No we assume x = 1 then:

. . . = %1 Contradiction
r=1=y= {—1—2 (valid) — 2 (invalid) = qp2=—153 = 20
%
pu3s =0

No we assume y = 1 then:

#121
® 0* = (2.5,1)
y=1=2>2=25= ux=0 =

u3 =0

Constrained Optimization



References I

ﬁ Markus Grasmair,
“Basic properties of convex functions,”
Department of Mathematics, Norwegian University of Science and Technology, 2016.

ﬁ “Chapter 5, lecture 6: Kkt theorem, gradient form,”
https://faculty.math.illinois.edu/ "mlavrov/docs/484-spring-2019/ch5lec6.pdf,
Accessed: 2022-10-26.



https://faculty.math.illinois.edu/~mlavrov/docs/484-spring-2019/ch5lec6.pdf

	Basic Definitions
	First Order Methods
	Second Order Methods
	Stochastic Gradient Descent
	Constrained Optimization

