Lecture 07: Optimization

Introduction to Machine Learning [25737]

Sajjad Amini

Sharif University of Technology

Contents

(1) Basic Definitions
(2) First Order Methods
(3) Second Order Methods
(4) Stochastic Gradient Descent
(5) Constrained Optimization

References

The material in the slides except cited are inspired from the following reference:

- Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.

Section 1

Basic Definitions

Optimization Problem

Training as Optimization Problem

Assume function $\mathcal{L}: \Theta \rightarrow \mathbb{R}$. An optimization problem is the process of finding the value for vector $\boldsymbol{\theta} \in \Theta$, denoted $\boldsymbol{\theta}^{\star}$ that minimizes L. We write this process as:

$$
\theta^{\star} \in \overbrace{\underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta})}^{\text {Set }}
$$

where:

$$
\begin{aligned}
& \mathcal{L}(\boldsymbol{\theta}) \\
& R(\boldsymbol{\theta})=-\mathcal{L}(\boldsymbol{\theta}) \\
& R(\boldsymbol{\theta}), \mathcal{L}(\boldsymbol{\theta}) \\
& \Theta \subseteq \mathbb{R}^{D} \\
& D
\end{aligned}
$$

Loss function or cost function
Score function or reward function
Objective function
Parameter space
Number of Variables

Global vs Local Optimization

Global Minimum

The set for global minimum is:

$$
\left\{\boldsymbol{\theta}^{\star}: \forall \boldsymbol{\theta} \in \Theta, \mathcal{L}\left(\boldsymbol{\theta}^{\star}\right) \leq \mathcal{L}(\boldsymbol{\theta})\right\}
$$

The set for strict global minimum is:

$$
\left\{\boldsymbol{\theta}^{\star}: \forall \boldsymbol{\theta} \in \Theta, \mathcal{L}\left(\boldsymbol{\theta}^{\star}\right)<\mathcal{L}(\boldsymbol{\theta})\right\}
$$

Local Minimum

The set for local minimum is:

$$
\left\{\boldsymbol{\theta}^{\star}: \exists \delta>0, \forall \boldsymbol{\theta} \in \Theta, \boldsymbol{\theta} \neq \boldsymbol{\theta}^{\star}, \text { if }\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{\star}\right\|<\delta \text { then } \mathcal{L}\left(\boldsymbol{\theta}^{\star}\right) \leq \mathcal{L}(\boldsymbol{\theta})\right\}
$$

The set for strict local minimum is:

$$
\left\{\boldsymbol{\theta}^{\star}: \exists \delta>0, \forall \boldsymbol{\theta} \in \Theta, \boldsymbol{\theta} \neq \boldsymbol{\theta}^{\star}, \text { if }\left\|\boldsymbol{\theta}-\boldsymbol{\theta}^{\star}\right\|<\delta \text { then } \mathcal{L}\left(\boldsymbol{\theta}^{\star}\right)<\mathcal{L}(\boldsymbol{\theta})\right\}
$$

Illustration of Local and Global Minimum

(a) Local minimum vs global minimum

(b) Saddle point

Optimality Conditions

Local Minimum

Assume \mathcal{L} to be twice differentiable and $\Theta=\mathbb{R}^{D}$. Consider a point $\boldsymbol{\theta}^{\star} \in \mathbb{R}^{D}$ and let $\boldsymbol{g}^{\star}=\left.\boldsymbol{g}(\boldsymbol{\theta})\right|_{\boldsymbol{\theta}^{\star}}$ and $\boldsymbol{H}^{\star}=\left.\boldsymbol{H}(\boldsymbol{\theta})\right|_{\boldsymbol{\theta}^{\star}}$ to be gradient vector and Hessian matrix at $\boldsymbol{\theta}^{\star}$. Then:

- Necessary condition: If $\boldsymbol{\theta}^{\star}$ is a local minimum, then we must have $\boldsymbol{g}^{\star}=\mathbf{0}$ and $\boldsymbol{H}^{\star} \succeq 0$.
- Sufficient condition: If $\boldsymbol{g}^{\star}=\mathbf{0}$ and $\boldsymbol{H}^{\star} \succ 0$, then $\boldsymbol{\theta}^{\star}$ is a local minimum.

Constrained vs Unconstrained Optimization

Feasible Set

Feasible set is the subset of the parameter space that satisfies the constraints over the parameter vector as:

$$
\mathcal{C}=\left\{\boldsymbol{\theta}: g_{j}(\boldsymbol{\theta}) \leq 0, j \in \mathcal{I} \text { and } h_{k}(\boldsymbol{\theta})=0, k \in \epsilon\right\} \subseteq \mathbb{R}^{D}
$$

where:

$g_{j}(\boldsymbol{\theta})$	Inequality constraints
$h_{k}(\boldsymbol{\theta})=0$	Equality constraints
\mathcal{I}	Index set for Inequality constraints
ϵ	Index set for Equality constraints

Constrained vs Unconstrained Optimization

$$
\theta^{\star} \in \underset{\boldsymbol{\theta} \in \mathcal{C}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta})
$$

The above optimization problem is unconstrained if $\mathcal{C} \in \mathbb{R}^{D}$, otherwise it is constrained.

Section 2

First Order Methods

First Order Methods

General Properties

First order methods are methods that:

- Leverage first order derivatives of the objective function
- Ignore curvature (higher order derivatives)

Procedure

- Specify starting point $\boldsymbol{\theta}_{0}$
- Perform update by:

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\eta_{t} \boldsymbol{d}_{t}
$$

where:

$$
\begin{array}{ll}
\eta_{t} & \text { Step size or learning rate } \\
\boldsymbol{d}_{t} & \text { Descent direction }
\end{array}
$$

First Order Methods

Gradient Direction

Using Taylor expansion we have:

$$
\mathcal{L}(\boldsymbol{\theta}+\epsilon \boldsymbol{\lambda}) \simeq \mathcal{L}(\boldsymbol{\theta})+\epsilon \boldsymbol{g}^{T}(\boldsymbol{\theta}) \boldsymbol{\lambda}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Thus if we assume $\boldsymbol{\lambda}=-\boldsymbol{g}(\boldsymbol{\theta})$, then for a small enough ϵ, we have:

$$
\mathcal{L}(\boldsymbol{\theta}+\epsilon \boldsymbol{\lambda})-\mathcal{L}(\boldsymbol{\theta}) \simeq-\epsilon\|\boldsymbol{g}(\boldsymbol{\theta})\|^{2} \leq 0
$$

So $-\boldsymbol{g}(\boldsymbol{\theta})$ is a descent direction.

First Order Methods

Gradient Descent

Gradient Descent (GD) method uses the following direction:

$$
\boldsymbol{d}_{t}=-\left.\boldsymbol{g}(\boldsymbol{\theta})\right|_{\boldsymbol{\theta}_{t}}
$$

Momentum

Momentum method uses the following direction:

$$
\begin{aligned}
\boldsymbol{m}_{t} & =\beta \boldsymbol{m}_{t-1}+\boldsymbol{g}_{t-1} \\
\boldsymbol{\theta}_{t} & =\boldsymbol{\theta}_{t-1}-\eta_{t} \boldsymbol{m}_{t}
\end{aligned}
$$

where \boldsymbol{m}_{t} is the momentum vector and $\beta<1$

Momentum as Generalization of GD

For $\beta=1$, momentum method degenerated to GD method.

Learning Rate Schedule

Learning Rate Schedule

The sequence of step sizes $\left\{\eta_{t}\right\}$ is called the learning rate schedule.

Sample Schedules

- Constant: $\eta_{t}=\eta$
- Too large values may fail convergence
- Too small values lead to low convergence rate
- Armijo-Goldstein: Assume $m=\left\langle\boldsymbol{g}\left(\boldsymbol{\theta}_{t}\right), \boldsymbol{d}_{t}\right\rangle$ and select $\tau \in(0,1), c \in(0,1)$ and η_{0}, then:
- $\gamma=-c m$ and $j=0$
- Until $\mathcal{L}\left(\boldsymbol{\theta}_{t}\right)-\mathcal{L}\left(\boldsymbol{\theta}_{t}+\eta_{t j} \boldsymbol{d}_{t}\right) \geq \eta_{t, j} \gamma$, increament j and set $\eta_{t, j}=\tau \eta_{t,(j-1)}$
- $\eta_{t, j}$ is the learning rate at iteration t.

Section 3

Second Order Methods

Newton's Method

Descent Direction

Assume $\left.\boldsymbol{H}_{t} \triangleq \nabla^{2} \mathcal{L}(\boldsymbol{\theta})\right|_{\boldsymbol{\theta}_{t}} \succ 0$. Then Second order approximation of $\mathcal{L}(\cdot)$ in $\boldsymbol{\theta}=\boldsymbol{\theta}_{t}$ is:

$$
\mathcal{L}(\boldsymbol{\theta}) \simeq \mathcal{L}\left(\boldsymbol{\theta}_{t}\right)+\boldsymbol{g}_{t}^{T}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{t}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{t}\right)^{T} \boldsymbol{H}_{t}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{t}\right)
$$

The minimizer for the above approximation is: $\boldsymbol{\theta}_{t}-\boldsymbol{H}_{t}^{-1} \boldsymbol{g}_{t}$. Thus:

$$
\Rightarrow \boldsymbol{d}_{t}=-\boldsymbol{H}_{t}^{-1} \boldsymbol{g}_{t}
$$

Optimization Methods

```
Algorithm 0: Optimization based on descent direction
Input : t max (Maximum iterations),
                                    f
                                    fl(\cdot) (learning rate function)
Initialization: t=0, 褁, flag}
begin
    while flagg}\mathrm{ do
            \mp@subsup{\boldsymbol{d}}{t}{}=\mp@subsup{f}{d}{}(\mp@subsup{\boldsymbol{0}}{t}{})
            \eta}=\mp@subsup{f}{l}{}(\mp@subsup{\boldsymbol{0}}{t}{}
            \mp@subsup{\boldsymbol{0}}{t+1}{}=\mp@subsup{\boldsymbol{0}}{t}{}-\mp@subsup{\eta}{t}{}\mp@subsup{\boldsymbol{d}}{t}{}
            t\leftarrowt+1
            if |\mp@subsup{\boldsymbol{g}}{t+1}{}|\leq\delta\mathrm{ or }t>\mp@subsup{t}{\mathrm{ max }}{}\mathrm{ then}
            flagc}\leftarrow\leftarrow\mathrm{ False
            end
    end
end
Output : 陼
```


Section 4

Stochastic Gradient Descent

Stochastic Gradient Descent

Loss Measurement Limitation

Previously we have seen that Gradient Descent (GD) method uses $\boldsymbol{d}_{t}=-\left.\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right|_{\boldsymbol{\theta}_{t}}$. Now assume you only have access to a noisy version of loss function, denoted $\mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{z}_{t}\right)$, where $\boldsymbol{z}_{t} \sim q$ and we have:

$$
\mathcal{L}(\boldsymbol{\theta})=\mathbb{E}_{q(\boldsymbol{z})}[\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{z})]
$$

Stochastic gradient descent is a solution to the aforementioned problem.

Stochastic Gradient Descent

The update rule for stochastic gradient descent is:

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta_{t} \nabla \mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{z}_{t}\right)=\boldsymbol{\theta}_{t}-\eta_{t} \boldsymbol{g}_{t}
$$

The sequence $\left\{\boldsymbol{\theta}_{t}\right\}$ is guaranteed to converge to a stationary point provided:

- The step size η_{t} is decayed at a certain rate
- \boldsymbol{z} is independent of $\boldsymbol{\theta}$

Section 5

Constrained Optimization

Convex Set

Convex Set

Set \mathcal{S} is convex if, for any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{S}$, we have:

$$
\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{x}^{\prime} \in \mathcal{S}, \forall \lambda \in[0,1]
$$

(a) Convex sets

(b) Nonconvex sets

Convex function

Convex Function

Function $f(\boldsymbol{x})$ is convex if it is defined on a convex set \mathcal{S} and if, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$, and for any $0 \leq \lambda \leq 1$, we have:

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})
$$

Figure: Convexity check based on epigraph

Properties of Convex Functions

Hessian Matrix of Convex Function

A twice differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if the Hessian $\nabla^{2} f(\boldsymbol{x})$ is positive semi-definite for all $\boldsymbol{x} \in \mathbb{R}^{n}$ [1].

Hessian Matrix of Convex Function

Assume that $f: \mathbb{R}^{n} \rightarrow R$ is convex and differentiable. Then \boldsymbol{x}^{\star} is a global minimizer of $f(\cdot)$, if and only if $\nabla f\left(\boldsymbol{x}^{\star}\right)=\mathbf{0}$ [1].

Constrained vs Unconstrained Optimization

Constrained Optimization

A constrained optimization is defined as:

$$
\theta^{\star} \in \underset{\boldsymbol{\theta} \in \mathcal{C}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta})
$$

where $\mathcal{C}=\left\{\boldsymbol{\theta}: g_{j}(\boldsymbol{\theta}) \leq 0, j \in \mathcal{I}\right.$ and $\left.h_{k}(\boldsymbol{\theta})=0, k \in \epsilon\right\} \subseteq \mathbb{R}^{D}$. The above optimization problem is unconstrained if $\mathcal{C} \in \mathbb{R}^{D}$, otherwise it is constrained.

Lagrange Multiplier

Simple Case with One Equality Constraint

Assume we have $\theta^{\star} \in \operatorname{argmin}_{h(\boldsymbol{\theta})=0} \mathcal{L}(\boldsymbol{\theta})$. Then:

- $\nabla h(\boldsymbol{\theta})$ is orthogonal to constraint surface because:

$$
\left\{\begin{array}{l}
h(\boldsymbol{\theta}+\boldsymbol{\epsilon}) \simeq h(\boldsymbol{\theta})+\boldsymbol{\epsilon}^{T} \nabla h(\boldsymbol{\theta}) \\
h(\boldsymbol{\theta})=h(\boldsymbol{\theta}+\boldsymbol{\epsilon}) \\
\boldsymbol{\epsilon} \| \text { constraint surface }
\end{array} \Rightarrow \nabla h(\boldsymbol{\theta}) \perp\right. \text { constraint surface }
$$

- If $\boldsymbol{\theta}^{\star}$ is optimizer then $\nabla \mathcal{L}\left(\boldsymbol{\theta}^{\star}\right) \perp$ constraint surface

Altogether: $\nabla \mathcal{L}\left(\boldsymbol{\theta}^{\star}\right)=\boldsymbol{\lambda}^{\star} \nabla h\left(\boldsymbol{\theta}^{\star}\right), \boldsymbol{\lambda}^{\star} \in \mathbb{R}$

Lagrange Multiplier

Figure: Solving problem $\theta^{\star} \in \operatorname{argmin}_{\theta_{1}+\theta_{2}=0} \theta_{1}^{2}+\theta_{2}^{2}$

Lagrangian

Lagrangian

Assume Lagrangian as:

$$
L(\boldsymbol{\theta}, \lambda) \triangleq \mathcal{L}(\boldsymbol{\theta})+\lambda h(\boldsymbol{\theta})
$$

Then we have:

$$
\nabla_{\boldsymbol{\theta}, \lambda} L(\boldsymbol{\theta}, \lambda)=0 \Leftrightarrow\left\{\begin{array}{l}
\lambda \nabla_{\boldsymbol{\theta}} h(\boldsymbol{\theta})=-\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) \\
h(\boldsymbol{\theta})=0
\end{array}\right.
$$

Thus the stationary points of Lagrangian satisfy constraints and lead to parallel gradient vectors.

M Equality constraints

For this case we simply find the stationary points of Lagrangian defined as:

$$
L(\boldsymbol{\theta}, \boldsymbol{\lambda})=\mathcal{L}(\boldsymbol{\theta})+\sum_{j=1}^{m} \lambda_{j} h_{j}(\boldsymbol{\theta})
$$

Generalizing the Results (M Equality constraints)

Constrained Optimization with M Equality Constraints

Assume the following optimization problem:

$$
\begin{aligned}
& \theta^{\star} \in \underset{\boldsymbol{\theta} \in \mathcal{C}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta}) \\
& \quad \mathcal{C}=\left\{\boldsymbol{\theta}: g_{j}(\boldsymbol{\theta}) \leq 0, j \in \mathcal{I} \text { and } h_{k}(\boldsymbol{\theta})=0, k \in \epsilon\right\} \subseteq \mathbb{R}^{D}
\end{aligned}
$$

- The necessary condition for $\boldsymbol{\theta}^{\star}$ is $L\left(\boldsymbol{\theta}^{\star}, \boldsymbol{\lambda}^{\star}\right)=\mathbf{0}$
- If $\mathcal{L}(\boldsymbol{\theta})$ is convex and equality constraints are Affine $\left(h_{k}(\boldsymbol{\theta})=\boldsymbol{a}_{k} \boldsymbol{\theta}=0\right)$, then the optimization problem is convex and condition $L\left(\boldsymbol{\theta}^{\star}, \boldsymbol{\lambda}^{\star}\right)=\mathbf{0}$ is sufficient.

KKT Conditions

Constrained Optimization

Assume the following optimization problem:

$$
\begin{aligned}
& \theta^{\star} \in \underset{\boldsymbol{\theta} \in \mathcal{C}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta}) \\
& \quad \mathcal{C}=\left\{\boldsymbol{\theta}: g_{j}(\boldsymbol{\theta}) \leq 0, j \in \mathcal{I} \text { and } h_{k}(\boldsymbol{\theta})=0, k \in \epsilon\right\} \subseteq \mathbb{R}^{D}
\end{aligned}
$$

We define the generalized Lagrangian as:

$$
L(\boldsymbol{\theta}, \boldsymbol{\mu}, \boldsymbol{\lambda})=\mathcal{L}(\boldsymbol{\theta})+\sum_{i} \mu_{i} g_{i}(\boldsymbol{\theta})+\sum_{j} \lambda_{j} h_{j}(\boldsymbol{\theta})
$$

Then the KKT (Karush-Kuhn-Tucker) conditions are:

- $\nabla \mathcal{L}(\boldsymbol{\theta})+\sum_{i} \mu_{i} \nabla g_{i}(\boldsymbol{\theta})+\sum_{j} \lambda_{j} \nabla h_{j}(\boldsymbol{\theta})=0$ (Stationary point of Lagrangian)
- $\boldsymbol{g}(\boldsymbol{\theta}) \leq 0, \boldsymbol{h}(\boldsymbol{\theta})=0$ (Feasibilty)
- $\boldsymbol{\mu} \geq 0$ (Dual feasibility)
- $\boldsymbol{\mu} \odot \boldsymbol{g}=\mathbf{0}$ (Complementary Slackness)

KKT Conditions

Constrained Optimization

Again assume the following optimization problem:

$$
\begin{aligned}
& \theta^{\star} \in \underset{\boldsymbol{\theta} \in \mathcal{C}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta}) \\
& \quad \mathcal{C}=\left\{\boldsymbol{\theta}: g_{j}(\boldsymbol{\theta}) \leq 0, j \in \mathcal{I} \text { and } h_{k}(\boldsymbol{\theta})=0, k \in \epsilon\right\} \subseteq \mathbb{R}^{D}
\end{aligned}
$$

Then KKT conditions are:

- Necessary for $\boldsymbol{\theta}$
- Sufficient for $\boldsymbol{\theta}$ if above problem is convex $\left(\mathcal{L}(\boldsymbol{\theta})\right.$ and $\left\{g_{j}(\boldsymbol{\theta})\right\}_{j} \in \mathcal{I}$ are convex functions and $\left\{h_{k}(\boldsymbol{\theta})\right\}_{k \in \epsilon}$ are Affine transforms).

KKT Conditions

KKT Conditions [2]

Consider the following convex optimization problem:

$$
\begin{aligned}
& \min _{(x, y) \in \mathcal{S}} \frac{1}{x+y} \\
& \text { subject to }\left\{\begin{array}{l}
2 x+y^{2}-6 \leq 0 \\
1-x \leq 0 \\
1-y \leq 0
\end{array}\right.
\end{aligned}
$$

where $\mathcal{S}=\{(x, y): x, y>0\}$. Find the optimal point.
Solution: From zero Lagrangian gradient we have:

$$
\left[\begin{array}{c}
-\frac{1}{(x+y)^{2}} \\
-\frac{1}{(x+y)^{2}}
\end{array}\right]+\mu_{1}\left[\begin{array}{c}
2 \\
2 y
\end{array}\right]+\mu_{2}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+\mu_{3}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

From complementary slackness equations we have:

$$
\mu_{1}\left(2 x+y^{2}-6\right)=\mu_{2}(1-x)=\mu_{3}(1-y)=0
$$

KKT Conditions

KKT Conditions [2] (Continue)

Assume $\mu_{1}=0$, then:

$$
\begin{aligned}
{\left[\begin{array}{c}
-\frac{1}{(x+y)^{2}} \\
-\frac{1}{(x+y)^{2}}
\end{array}\right]+\mu_{2}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+\mu_{3}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } & \Rightarrow \mu_{2}=\mu_{3}=-\frac{1}{(x+y)^{2}} \leq 0 \\
& \Rightarrow\left\{\begin{array}{l}
\text { Contradiction } \\
2 x+y^{2}-6=0
\end{array}\right.
\end{aligned}
$$

No we assume $x=1$ then:

$$
x=1 \Rightarrow y=\left\{+2(\text { valid })-2(\text { invalid }) \Rightarrow\left\{\begin{array} { l }
{ \mu _ { 1 } = \frac { 1 } { 3 6 } } \\
{ \mu _ { 2 } = - \frac { 1 } { 1 8 } } \\
{ \mu _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\text { Contradiction } \\
x \neq 0
\end{array}\right.\right.\right.
$$

No we assume $y=1$ then:

$$
y=1 \Rightarrow x=2.5 \Rightarrow\left\{\begin{array} { l }
{ \mu _ { 1 } = \frac { 2 } { 4 9 } } \\
{ \mu _ { 2 } = 0 } \\
{ \mu _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\boldsymbol{\theta}^{\star}=(2.5,1) \\
\boldsymbol{\mu}=\left(\frac{2}{49}, 0,0\right)
\end{array}\right.\right.
$$

References I

Markus Grasmair,
"Basic properties of convex functions,"
Department of Mathematics, Norwegian University of Science and Technology, 2016.
"Chapter 5, lecture 6: Kkt theorem, gradient form,"
https://faculty.math.illinois.edu/~mlavrov/docs/484-spring-2019/ch5lec6.pdf, Accessed: 2022-10-26.

