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Basic Definitions

Sajjad Amini IML-S05 Basic Definitions 4 / 43



Basic Definitions

Vectors
In this course we assume column vectors represented by:

x =


x1

x2

...
xn

 = (x1, x2, . . . , xn)

Matrices

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn
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Basic Definitions

Matrix Rows

A =


−AT

1,:−
−AT

2,:−
...

−AT
m,:−

 =
[
AT

1,: ; AT
2,: ; . . . ; AT

m,:

]

Matrix Columns

A =

 | | |
A:,1 A:,2 . . . A:,n

| | |

 =
[
A:,1 , A:,2 , . . . , A:,n

]
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Vectorizing

Vectorizing Operator

vec(A) = [A:,1; . . . ;A:,n] ∈ Rmn×1

I-vectorizing Operator

A = ivec(vec(A),O)
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Vector Space
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Vector Space

Vector Space
A vector space is a set of vectors x ∈ Rn, denoted V, such that:

It is closed under vector addition: if x,y ∈ V ⇒ x + y ∈ V

It is closed under multiplication by a real scalar c ∈ R: if x ∈ V ⇒ cx ∈ R

Linear Independence
A set of vectors {x1,x2, . . . ,xn} is said to be (linearly) dependent if:

∃j : xj =
∑
i,i ̸=j

xi

Otherwise the set is said to be (linearly) independent.

Span
The span of a set of vectors {x1,x2, . . . ,xn} is defined as:

span({x1,x2, . . . ,xn}) ≜

{
v : v =

n∑
i=1

αixi, αi ∈ R
}
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Products
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Matrix-Vector Product

Matrix-Vector Product
Assume A ∈ Rm×n and x ∈ Rn. Then the product vector y = Ax ∈ Rm can be viewed as follows:

View 1

y = Ax =


− âT

1 −
− âT

2 −
...

− âT
m −

x =


âT

1 x

âT
2 x

...
âT

mx



View 2

y = Ax =

 | | |
a1 a2 . . . an

| | |



x1

x2

...
xn

 =

 |
a1

|

 x1 +

 |
a2

|

 x2 + . . . +

 |
an

|

 xn

Sajjad Amini IML-S05 Products 11 / 43



Matrix-Matrix Product

Matrix-Matrix Product
Assume A ∈ Rm×n and B ∈ Rn×p. Then the product vector C = AB ∈ Rm×p can be viewed as
follows:

View 1

C = AB =


− âT

1 −
− âT

2 −
...

− âT
m −


 | | |
b1 b2 . . . bp

| | |

 =


âT

1 b1 âT
1 b2 . . . âT

1 bp

âT
2 b1 âT

2 b2 . . . âT
2 bp

...
...

. . .
...

âT
mb1 âT

mb2 . . . âT
mbp



View 2

C = AB =

 | | |
a1 a2 . . . an

| | |



− b̂

T

1 −
− b̂

T

2 −
...

− b̂
T

n −

 =
n∑

i=1

aib̂
T

i
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Matrix-Matrix Product

Matrix-Matrix Product
Assume A ∈ Rm×n and B ∈ Rn×p. Then the product vector C = AB ∈ Rm×p can be viewed as
follows:

View 3

C = AB = A

 | | |
b1 b2 . . . bp

| | |

 =

 | | |
Ab1 Ab2 . . . Abp

| | |



View 4

C = AB =


− âT

1 −
− âT

2 −
...

− âT
m −

B =


− âT

1 B −
− âT

2 B −
...

− âT
mB −
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Range and Null Spaces

Range of a Matrix
Assume A ∈ Rm×n. The range or columns space of A is the span of the columns
of A as:

range(A) ≜ {v ∈ Rm : v = Ax,x ∈ Rn}

Null Space of a Matrix
Assume A ∈ Rm×n. The null space of A is the set of all vectors x that get
mapped to the null vector when multiplied by A as:

nullspace(A) ≜ {x ∈ Rn : Ax = 0}
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Norms
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Vector Norms

Definition
Norm is any function f : Rn → R that satisfies the following properties:

1 ∀x ∈ Rn ⇒ f(x) ≥ 0 (non-negativity)
2 f(x) = 0 iff x = 0 (definiteness)
3 ∀x ∈ Rn,∀t ∈ R ⇒ f(tx) = |t|f(x) (absolute value homogeneity)
4 ∀x ∈ Rn,∀y ∈ Rn ⇒ f(x+ y) ≤ f(x) + f(y) (triangle inequality)

Examples of Vector Norm

p-norm (ℓp): ∥x|p = (
∑n

i=1 |xi|p)
1/p

, p ≥ 1 ⇒


ℓ1 : ∥x∥1 =

∑n
i=1 |xi|

ℓ2 : ∥x∥2 =
√∑n

i=1 x
2
i

ℓ∞ : ∥x∥∞ = maxi |xi|
0-norm (ℓ0): |x∥0 =

∑n
i=1 I(|xi| > 0) (Pseudo norm due to

inhomogeneity)
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Matrix Norms

Examples of Matrix Norm
Assume matrix A ∈ Rm×n, then:

p-norm (ℓp): ∥A∥p = maxx̸=0
∥Ax∥p

∥x∥p
= max∥x∥=1 ∥Ax∥p

Frobenius norm (ℓF ): ∥A∥F =
√∑m

i=1

∑n
j=1 a

2
ij = ∥ vec(A)∥2

Sajjad Amini IML-S05 Norms 17 / 43



Section 5

Matrix Operators
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Trace of a Square Matrix

Definition
The trace of a square matrix A ∈ Rn×n, denoted tr(A), is the sum of diagonal
elements in the matrix as:

tr(A) ≜
n∑

i=1

Aii

Properties
Assume matrices A,B ∈ Rn×n and scalar c ∈ R.

tr(A) = tr(AT )

tr(A+B) = tr(A) + tr(B)

tr(cA) = c tr(A)

tr(AB) = tr(BA)
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Trace of a Square Matrix

Cyclic Permutation Property
For real matrices A, B and C where ABC is square, then we have:

tr(ABC) = tr(CAB) = tr(BCA)
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Determinant of a Square Matrix

Minor
Assume A ∈ Rn×n. The (i, j) minor, denoted Aij is the matrix obtained from
A by deleting the i-th row and the j-th column.

Cofactor
Assume A ∈ Rn×n. The (i, j) cofactor, denoted Cij is: Cij = (−1)i+j det(Aij),
where det(Aij) is the determinant of (i, j) minor.

Determinant
The determinant of a square matrix, denoted det(A) or |A|, is a measure of
how much it changes a unit volume when viewed as a linear transformation and
is defined as:

det(A) =

n∑
i=1

ai1Ci1
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Condition Number of a Square Matrix

Condition Number
The condition number of a square matrix A is a measure for the stability of
linear equation set Ax = b and is defined as follows: κ(A) ≜ ∥A∥ × ∥A−1∥ A
suitable option for the matrix norm is ℓ2 norm which result in κ(A) ≥ 1.

Matrix Conditioning
Assume square matrix A. Based on the condition number, this matrix can be
divided into two categories:

A is ill-conditioned if κ(A) is large.
A is well-conditioned if κ(A) is small (close to 1).
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Condition Number of a Square Matrix

Frame Title
In a linear system of equations Ax = b, assume we change b to b+∆b. Compute
the change in x vector (∆x) for the following two matrices:

A = 0.1I100×100 (κ(A) = 1,det(A) = 10−100):

∆x = A−1∆b = 10I∆b = 10∆b

A = 0.5

[
1 1

1 + 10−10 1− 10−10

]
(κ(A) = 2× 1010,det(A) = −2× 10−10):

∆x = A−1∆b = 1

[
∆b1 − 1010(∆b1 −∆b2)
∆b2 + 1010(∆b1 −∆b2)

]
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Special Matrices
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Special Matrices

Diagonal Matrix
Diagonal matrix:

D =


d1

d2
. . .

dn

 = diag(d1, d2, . . . , dn)

Block diagonal Matrix: A square matrix with square matrices in the main
diagonal blocks and zero matrices in all off-diagonal blocks as:

A =


A1

A2

. . .
An

 = diag(A1,A2, . . . ,An)
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Special Matrices

Band-diagonal Matrix
A band-diagonal matrix only has non-zero entries along the diagonal, and on k
sides of the diagonal (k is known as bandwidth).

Tridiagonal Matrix
Tridiagonal matrix is a band-diagonal matrix with k = 1. A sample 6 × 6
tridiagonal matrix is:

A =


a11 a12 0 0 0 0
a21 a22 a23 0 0 0
0 a32 a33 a34 0 0
0 0 a43 a44 a45 0
0 0 0 a54 a55 a56
0 0 0 0 a65 a66
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Triangular Matrix

Lower Triangular Matrix

L =


l11
l21 l22
l31 l32 l33
...

...
. . . . . .

ln1 ln2 . . . ln(n−1) lnn


Upper Triangular Matrix

U =



u11 u12 u13 . . . u1n

u22 u23 . . . u2n

. . . . . .
...

. . . u(n−1)n

unn
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Definite and Indefinite Matrices

Symmetric Matrix
Matrix A ∈ Rn×n is symmetric iff A = AT (We usually show this by A ∈ Sn)

Definite and Indefinite Matrices
Suppose A ∈ Sn and arbitrary nonzero vector v ∈ Rn \ {0} then:

A is positive definite (PD), denoted A ≻ 0, iff: vTAv > 0

A is positive semidefinite (PSD), denoted A ⪰ 0, iff: vTAv ≥ 0

A is negative definite (ND), denoted A ≺ 0, iff: vTAv < 0

A is negative semidefinite (NSD), denoted A ⪯ 0, iff: vTAv ≤ 0

A is indefinite iff it is none of the above.
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Orthogonal Square Matrices

Orthogonal Square Matrices

A =

 | | |
a1 a2 . . . an

| | |

 is orthogonal iff:

aT
i aj =

{
0 if i ̸= j

1 if i = j
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Inverse Matrix
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Inverse Matrix

Inverse Matrix
The inverse of a square matrix A ∈ Rn×n, denoted A−1, is the unique matrix
such that:

A−1A = AA−1 = I

Singular Matrix
A−1 exists iff det(A) ̸= 0. If det(A) = 0, A is called a singular matrix.
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Eigenvalue Decomposition
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Eigenvalue and Eigenvector

Eigenvalue and Eigenvector
Assume a square matrix A ∈ R2×2, we say that λ ∈ R is an eigenvalue of A
and u ∈ Rn is the corresponding eigenvector if:

Au = λu, u ̸= 0

“The” Eigenvector
For any eigenvector u ∈ Rn\{0} and scalar c ∈ R\{0}, cu is also an eigenvector.
“The” eigenvector is normalized to have unit length.
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Eigenvalue and Eigenvector

Characteristic Equation
(λ,u) is (eigenvalue,eigenvector) pair if:

(λI −A)u = 0, u ̸= 0

Thus:
u is in the nullspace of λI −A.
det(A) = 0

Equation det(A) = 0 is called characteristic equation.

Characteristic Equation
The order of characteristic equation is n.
Characteristic equation has n roots, denoted λ1, . . . , λn, possibly complex.
ui corresponding to λi can be easily found by finding the nullspace of
λiI −A matrix.
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Eigenvalue and Eigenvector

Eigenvalue and Eigenvector

Find the eigenvalues and eigenvectors of A =

[
0.8 0.3
0.2 0.7

]
.

Solution:

det(A− λI) = det

([
0.8− λ 0.3
0.2 0.7− λ

])
= (λ− 1)(λ− 0.5) = 0

⇒

{
λ1 = 1

λ2 = 0.5

(A− λ1I)u1 = 0 ⇒
[
−0.2 0.3
0.2 −0.3

]
u1 = 0 ⇒ u1 =

[
1.5
1

]
(A− λ2I)u2 = 0 ⇒

[
0.3 0.3
0.2 0.2

]
u2 = 0 ⇒ u2 =

[
1
−1

]
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Eigenvalue and Eigenvector

Rank
The rank of matrix A is equal to the number of non-zero eigenvalues of A.

Connection to Trace and Determinant
Assume A ∈ Rn×n with eigenvalues λ1, . . . , λn. Then:

The rank of A equals to the number of non-zero eigenvalues of A.
A−1 shares the eigenvector with A while its eigenvalues are
1
λ1
, 1
λ2
, . . . , 1

λn
.

Symmetric matrix A is PD iff λi > 0, i = 1, . . . , n.
Symmetric matrix A is PSD iff λi ≥ 0, i = 1, . . . , n.
tr(A) =

∑n
i=1 λi

det(A) =
∏n

i=1 λi
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Diagonalizable

Diagonalizable
As we see: Aui = λiui, i = 1, . . . , n
We can write the above equalities as:

AU = UΛ

where:

U ∈ Rn×n =

 | | |
u1 u2 un

| | |


Λ = diag(λ1, . . . , λn)

Now assume that matrix U is invertible. Then:

A = UΛU−1

A matrix that can be written in this form is called diagonalizable.
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Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvectors of Symmetric Matrices
Based on Spectral Theorem, for symmetric matrices we have:

All eigenvalues are real
Eigenvectors are orthonormal (U is orthogonal thus U−1 = UT )

Then we have:

A =UΛUT =

 | | |
u1 u2 un

| | |



λ1

λ2

. . .
λn



− uT

1 −
− uT

2 −
...

− uT
m −


=

n∑
i=1

λiuiu
T
i
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Data Whitening Using Eigenvectors

Data Whitening Using Eigenvectors
Suppose we have a dataset X ∈ RN×D where the empirical mean verctor is zero
and empirical covariance matrix is Σ = 1

NXTX. Find matrix W ∈ RD ×D
such that empirical covariance matrix for transformed vector y = Wx is I.
Solution: Matrix Σ is symmetric, thus Σ = UDUT . Assume W = D− 1

2UT ,
then the covariance matrix for y is:

Cov[y] =
1

N
Y TY =

1

N
(XW T )T (XW T ) = WΣW T

=D− 1
2 UTU︸ ︷︷ ︸

I

DUTU︸ ︷︷ ︸
I

D− 1
2 = D− 1

2DD− 1
2 = I
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Matrix Calculus
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Gradient

Gradient
Assume function f : Rn → R. The gradient vector of this function at a point x
is the vector of partial derivatives as:

g =
∂f

∂x
= ∇f =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn


To emphasize the gradient evaluation point we write:

g(x⋆) ≜
∂f

∂x

∣∣∣
x=x⋆
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Hessian

Hessian
Assume function f : Rn → R. The Hessian matrix of this function is the matrix
of second partial derivatives as:

Hf =
∂2f

∂x2
= ∇2f =


∂2f
∂x2

1
. . . ∂2f

∂x1∂xn

... . . .
...

∂2f
∂xn∂x1

. . . ∂2f
∂x2

n
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Jacobian

Jacobian
Assume function f : Rn → Rm. The Jacobian matrix of this function is an
m× n matrix of partial derivatives as:

Jf (x) =
∂f

∂xT
≜


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 =

∇f1(x)
T

...
∇fm(x)T
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