Lecture 06: Linear Algebra
 Introduction to Machine Learning [25737]

Sajjad Amini

Sharif University of Technology

Contents

(1) Basic Definitions
(2) Vector Space
(3) Products
(4) Norms
(5) Matrix Operators
(6) Special Matrices
(7) Inverse Matrix
(8) Eigenvalue Decomposition
(9) Matrix Calculus

References

Except explicitly cited, the reference for the material in slides is:

- Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.

Section 1

Basic Definitions

Basic Definitions

Vectors

In this course we assume column vectors represented by:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Matrices

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Basic Definitions

Matrix Rows

$$
\boldsymbol{A}=\left[\begin{array}{c}
-\boldsymbol{A}_{1,}^{T}- \\
-\boldsymbol{A}_{2,:}^{T}- \\
\vdots \\
-\boldsymbol{A}_{m,:}^{T}
\end{array}\right]=\left[\begin{array}{lllllll}
\boldsymbol{A}_{1,:}^{T} & ; & \boldsymbol{A}_{2,:}^{T} & ; & \ldots & ; & \boldsymbol{A}_{m,:}^{T}
\end{array}\right]
$$

Matrix Columns

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{A}_{:, 1} & \boldsymbol{A}_{:, 2} & \ldots & \boldsymbol{A}_{:, n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{llllll}
\boldsymbol{A}_{:, 1} & , & \boldsymbol{A}_{:, 2} & , & \ldots & , \\
\boldsymbol{A}_{:, n}
\end{array}\right]
$$

Vectorizing

Vectorizing Operator

$$
\operatorname{vec}(\boldsymbol{A})=\left[\boldsymbol{A}_{:, 1} ; \ldots ; \boldsymbol{A}_{:, n}\right] \in \mathbb{R}^{m n \times 1}
$$

I-vectorizing Operator

$$
\boldsymbol{A}=\operatorname{ivec}(\operatorname{vec}(\boldsymbol{A}), \mathcal{O})
$$

Section 2

Vector Space

Vector Space

Vector Space

A vector space is a set of vectors $\boldsymbol{x} \in \mathbb{R}^{n}$, denoted \mathcal{V}, such that:

- It is closed under vector addition: if $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V} \Rightarrow \boldsymbol{x}+\boldsymbol{y} \in \mathcal{V}$
- It is closed under multiplication by a real scalar $c \in \mathbb{R}$: if $\boldsymbol{x} \in \mathcal{V} \Rightarrow c \boldsymbol{x} \in \mathbb{R}$

Linear Independence

A set of vectors $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ is said to be (linearly) dependent if:

$$
\exists j: \boldsymbol{x}_{j}=\sum_{i, i \neq j} \boldsymbol{x}_{i}
$$

Otherwise the set is said to be (linearly) independent.

Span

The span of a set of vectors $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ is defined as:

$$
\operatorname{span}\left(\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}\right) \triangleq\left\{\boldsymbol{v}: \boldsymbol{v}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{x}_{i}, \alpha_{i} \in \mathbb{R}\right\}
$$

Section 3

Products

Matrix-Vector Product

Matrix-Vector Product

Assume $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{x} \in \mathbb{R}^{n}$. Then the product vector $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \mathbb{R}^{m}$ can be viewed as follows:
View 1

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ccc}
- & \widehat{\boldsymbol{a}}_{1}^{T} & - \\
- & \widehat{\boldsymbol{a}}_{2}^{T} & - \\
& \vdots & \\
- & \widehat{\boldsymbol{a}}_{m}^{T} & -
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{c}
\widehat{\boldsymbol{a}}_{1}^{T} \boldsymbol{x} \\
\widehat{\boldsymbol{a}}_{2}^{T} \boldsymbol{x} \\
\vdots \\
\widehat{\boldsymbol{a}}_{m}^{T} \boldsymbol{x}
\end{array}\right]
$$

View 2

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\mid \\
\boldsymbol{a}_{1} \\
\mid
\end{array}\right] x_{1}+\left[\begin{array}{c}
\mid \\
\boldsymbol{a}_{2} \\
\mid
\end{array}\right] x_{2}+\ldots+\left[\begin{array}{c}
\mid \\
\boldsymbol{a}_{n} \\
\mid
\end{array}\right] x_{n}
$$

Matrix-Matrix Product

Matrix-Matrix Product

Assume $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times p}$. Then the product vector $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B} \in \mathbb{R}^{m \times p}$ can be viewed as follows:

View 1

$$
\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{ccc}
- & \widehat{\boldsymbol{a}}_{1}^{T} & - \\
- & \widehat{\boldsymbol{a}}_{2}^{T} & - \\
& \vdots & \\
- & \widehat{\boldsymbol{a}}_{m}^{T} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \ldots & \boldsymbol{b}_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\widehat{\boldsymbol{a}}_{1}^{T} \boldsymbol{b}_{1} & \widehat{\boldsymbol{a}}_{1}^{T} \boldsymbol{b}_{2} & \ldots & \widehat{\boldsymbol{a}}_{1}^{T} \boldsymbol{b}_{p} \\
\widehat{\boldsymbol{a}}_{2}^{T} \boldsymbol{b}_{1} & \widehat{\boldsymbol{a}}_{2}^{T} \boldsymbol{b}_{2} & \ldots & \widehat{\boldsymbol{a}}_{2}^{T} \boldsymbol{b}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\widehat{\boldsymbol{a}}_{m}^{T} \boldsymbol{b}_{1} & \widehat{\boldsymbol{a}}_{m}^{T} \boldsymbol{b}_{2} & \ldots & \widehat{\boldsymbol{a}}_{m}^{T} \boldsymbol{b}_{p}
\end{array}\right]
$$

View 2

$$
C=A B=\left[\begin{array}{cccc}
1 & 1 & & \mid \\
a_{1} & a_{2} & \ldots & a_{n} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{ccc}
- & \hat{b}_{1}^{T} & - \\
- & \hat{b}_{2}^{T} & - \\
\vdots & \\
\vdots & \hat{b}_{n}^{T} & -
\end{array}\right]=\sum_{i=1}^{n} a_{i} \hat{b}_{i}^{T}
$$

Matrix-Matrix Product

Matrix-Matrix Product

Assume $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times p}$. Then the product vector $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B} \in \mathbb{R}^{m \times p}$ can be viewed as follows:

View 3

$$
\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}=\boldsymbol{A}\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \ldots & \boldsymbol{b}_{p} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{A} \boldsymbol{b}_{1} & \boldsymbol{A} \boldsymbol{b}_{2} & \ldots & \boldsymbol{A} \boldsymbol{b}_{p} \\
\mid & \mid & & \mid
\end{array}\right]
$$

View 4

$$
\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{ccc}
- & \widehat{\boldsymbol{a}}_{1}^{T} & - \\
- & \widehat{\boldsymbol{a}}_{2}^{T} & - \\
& \vdots & \\
- & \widehat{\boldsymbol{a}}_{m}^{T} & -
\end{array}\right] \boldsymbol{B}=\left[\begin{array}{ccc}
- & \widehat{\boldsymbol{a}}_{1}^{T} \boldsymbol{B} & - \\
- & \widehat{\boldsymbol{a}}_{2}^{T} \boldsymbol{B} & - \\
& \vdots & \\
- & \widehat{\boldsymbol{a}}_{m}^{T} \boldsymbol{B} & -
\end{array}\right]
$$

Range and Null Spaces

Range of a Matrix

Assume $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. The range or columns space of \boldsymbol{A} is the span of the columns of \boldsymbol{A} as:

$$
\operatorname{range}(\boldsymbol{A}) \triangleq\left\{\boldsymbol{v} \in \mathbb{R}^{m}: \boldsymbol{v}=\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{n}\right\}
$$

Null Space of a Matrix

Assume $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. The null space of \boldsymbol{A} is the set of all vectors \boldsymbol{x} that get mapped to the null vector when multiplied by \boldsymbol{A} as:

$$
\text { nullspace }(\boldsymbol{A}) \triangleq\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\right\}
$$

Section 4

Norms

Vector Norms

Definition

Norm is any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies the following properties:
(1) $\forall \boldsymbol{x} \in \mathbb{R}^{n} \Rightarrow f(\boldsymbol{x}) \geq 0$ (non-negativity)
(2) $f(\boldsymbol{x})=0$ iff $\boldsymbol{x}=0$ (definiteness)
(3) $\forall \boldsymbol{x} \in \mathbb{R}^{n}, \forall t \in \mathbb{R} \Rightarrow f(t \boldsymbol{x})=|t| f(x)$ (absolute value homogeneity)
(1) $\forall \boldsymbol{x} \in \mathbb{R}^{n}, \forall \boldsymbol{y} \in \mathbb{R}^{n} \Rightarrow f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+f(\boldsymbol{y})$ (triangle inequality)

Examples of Vector Norm

- p-norm $\left(\ell_{p}\right): \|\left.\boldsymbol{x}\right|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}, p \geq 1 \Rightarrow\left\{\begin{array}{l}\ell_{1}:\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\ \ell_{2}:\|\boldsymbol{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \\ \ell_{\infty}:\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|\end{array}\right.$
- 0 -norm $\left(\ell_{0}\right): \mid x \|_{0}=\sum_{i=1}^{n} \mathbb{I}\left(\left|x_{i}\right|>0\right)$ (Pseudo norm due to inhomogeneity)

Matrix Norms

Examples of Matrix Norm

Assume matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, then:

- p-norm $\left(\ell_{p}\right):\|\boldsymbol{A}\|_{p}=\max _{\boldsymbol{x} \neq 0} \frac{\|\boldsymbol{A}\|_{p}}{\|\boldsymbol{x}\|_{p}}=\max _{\|\boldsymbol{x}\|=1}\|\boldsymbol{A} \boldsymbol{x}\|_{p}$
- Frobenius norm $\left(\ell_{F}\right):\|\boldsymbol{A}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}=\|\operatorname{vec}(\boldsymbol{A})\|_{2}$

Section 5

Matrix Operators

Trace of a Square Matrix

Definition

The trace of a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr}(\boldsymbol{A})$, is the sum of diagonal elements in the matrix as:

$$
\operatorname{tr}(\boldsymbol{A}) \triangleq \sum_{i=1}^{n} A_{i i}
$$

Properties

Assume matrices $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n}$ and scalar $c \in \mathbb{R}$.

- $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{A}^{T}\right)$
- $\operatorname{tr}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{tr}(\boldsymbol{A})+\operatorname{tr}(\boldsymbol{B})$
- $\operatorname{tr}(c \boldsymbol{A})=c \operatorname{tr}(\boldsymbol{A})$
- $\operatorname{tr}(\boldsymbol{A B})=\operatorname{tr}(\boldsymbol{B A})$

Trace of a Square Matrix

Cyclic Permutation Property

For real matrices $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} where $\boldsymbol{A B C}$ is square, then we have:

$$
\operatorname{tr}(\boldsymbol{A B C})=\operatorname{tr}(\boldsymbol{C A B})=\operatorname{tr}(\boldsymbol{B C A})
$$

Determinant of a Square Matrix

Minor

Assume $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. The (i, j) minor, denoted $\boldsymbol{A}_{i j}$ is the matrix obtained from \boldsymbol{A} by deleting the i-th row and the j-th column.

Cofactor

Assume $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. The (i, j) cofactor, denoted $C_{i j}$ is: $C_{i j}=(-1)^{i+j} \operatorname{det}\left(\boldsymbol{A}_{i j}\right)$, where $\operatorname{det}\left(\boldsymbol{A}_{i j}\right)$ is the determinant of (i, j) minor.

Determinant

The determinant of a square matrix, $\operatorname{denoted} \operatorname{det}(\boldsymbol{A})$ or $|\boldsymbol{A}|$, is a measure of how much it changes a unit volume when viewed as a linear transformation and is defined as:

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i 1} C_{i 1}
$$

Condition Number of a Square Matrix

Condition Number

The condition number of a square matrix \boldsymbol{A} is a measure for the stability of linear equation set $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and is defined as follows: $\kappa(\boldsymbol{A}) \triangleq\|\boldsymbol{A}\| \times\left\|\boldsymbol{A}^{-1}\right\| \mathrm{A}$ suitable option for the matrix norm is ℓ_{2} norm which result in $\kappa(\boldsymbol{A}) \geq 1$.

Matrix Conditioning

Assume square matrix \boldsymbol{A}. Based on the condition number, this matrix can be divided into two categories:

- \boldsymbol{A} is ill-conditioned if $\kappa(\boldsymbol{A})$ is large.
- \boldsymbol{A} is well-conditioned if $\kappa(\boldsymbol{A})$ is small (close to 1).

Condition Number of a Square Matrix

Frame Title

In a linear system of equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, assume we change \boldsymbol{b} to $\boldsymbol{b}+\Delta \boldsymbol{b}$. Compute the change in \boldsymbol{x} vector $(\Delta \boldsymbol{x})$ for the following two matrices:

- $\boldsymbol{A}=0.1 \boldsymbol{I}_{100 \times 100}\left(\kappa(\boldsymbol{A})=1, \operatorname{det}(\boldsymbol{A})=10^{-100}\right)$:

$$
\Delta \boldsymbol{x}=\boldsymbol{A}^{-1} \Delta \boldsymbol{b}=10 \boldsymbol{I} \Delta \boldsymbol{b}=10 \Delta \boldsymbol{b}
$$

- $\boldsymbol{A}=0.5\left[\begin{array}{cc}1 & 1 \\ 1+10^{-10} & 1-10^{-10}\end{array}\right]\left(\kappa(\boldsymbol{A})=2 \times 10^{10}, \operatorname{det}(\boldsymbol{A})=-2 \times 10^{-10}\right)$:

$$
\Delta \boldsymbol{x}=\boldsymbol{A}^{-1} \Delta \boldsymbol{b}=1\left[\begin{array}{l}
\Delta b_{1}-10^{10}\left(\Delta b_{1}-\Delta b_{2}\right) \\
\Delta b_{2}+10^{10}\left(\Delta b_{1}-\Delta b_{2}\right)
\end{array}\right]
$$

Section 6

Special Matrices

Special Matrices

Diagonal Matrix

- Diagonal matrix:

$$
\boldsymbol{D}=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

- Block diagonal Matrix: A square matrix with square matrices in the main diagonal blocks and zero matrices in all off-diagonal blocks as:

$$
\boldsymbol{A}=\left[\begin{array}{llll}
\boldsymbol{A}_{1} & & & \\
& \boldsymbol{A}_{2} & & \\
& & \ddots & \\
& & & \boldsymbol{A}_{n}
\end{array}\right]=\operatorname{diag}\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{n}\right)
$$

Special Matrices

Band-diagonal Matrix

A band-diagonal matrix only has non-zero entries along the diagonal, and on k sides of the diagonal (k is known as bandwidth).

Tridiagonal Matrix

Tridiagonal matrix is a band-diagonal matrix with $k=1$. A sample 6×6 tridiagonal matrix is:

$$
\boldsymbol{A}=\left[\begin{array}{cccccc}
a_{11} & a_{12} & 0 & 0 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\
0 & a_{32} & a_{33} & a_{34} & 0 & 0 \\
0 & 0 & a_{43} & a_{44} & a_{45} & 0 \\
0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\
0 & 0 & 0 & 0 & a_{65} & a_{66}
\end{array}\right]
$$

Triangular Matrix

Lower Triangular Matrix

$$
\boldsymbol{L}=\left[\begin{array}{ccccc}
l_{11} & & & & \\
l_{21} & l_{22} & & & \\
l_{31} & l_{32} & l_{33} & & \\
\vdots & \vdots & \ddots & \ddots & \\
l_{n 1} & l_{n 2} & \ldots & l_{n(n-1)} & l_{n n}
\end{array}\right]
$$

Upper Triangular Matrix

$$
\boldsymbol{U}=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
& u_{22} & u_{23} & \ldots & u_{2 n} \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & u_{(n-1) n} \\
& & & & u_{n n}
\end{array}\right]
$$

Definite and Indefinite Matrices

Symmetric Matrix

Matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric iff $\boldsymbol{A}=\boldsymbol{A}^{T}$ (We usually show this by $\boldsymbol{A} \in \mathbb{S}^{n}$)

Definite and Indefinite Matrices

Suppose $\boldsymbol{A} \in \mathbb{S}^{n}$ and arbitrary nonzero vector $\boldsymbol{v} \in \mathbb{R}^{n} \backslash\{0\}$ then:

- \boldsymbol{A} is positive definite (PD), denoted $\boldsymbol{A} \succ 0$, iff: $\boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}>0$
- \boldsymbol{A} is positive semidefinite (PSD), denoted $\boldsymbol{A} \succeq 0$, iff: $\boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v} \geq 0$
- \boldsymbol{A} is negative definite (ND), denoted $\boldsymbol{A} \prec 0$, iff: $\boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}<0$
- \boldsymbol{A} is negative semidefinite (NSD), denoted $\boldsymbol{A} \preceq 0$, iff: $\boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v} \leq 0$
- \boldsymbol{A} is indefinite iff it is none of the above.

Orthogonal Square Matrices

Orthogonal Square Matrices

$\boldsymbol{A}=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \ldots & \boldsymbol{a}_{n} \\ \mid & \mid & & \mid\end{array}\right]$ is orthogonal iff:

$$
\boldsymbol{a}_{i}^{T} \boldsymbol{a}_{j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Section 7

Inverse Matrix

Inverse Matrix

Inverse Matrix

The inverse of a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, denoted \boldsymbol{A}^{-1}, is the unique matrix such that:

$$
\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}
$$

Singular Matrix

\boldsymbol{A}^{-1} exists iff $\operatorname{det}(\boldsymbol{A}) \neq 0$. If $\operatorname{det}(\boldsymbol{A})=0, \boldsymbol{A}$ is called a singular matrix.

Section 8

Eigenvalue Decomposition

Eigenvalue and Eigenvector

Eigenvalue and Eigenvector

Assume a square matrix $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$, we say that $\lambda \in \mathbb{R}$ is an eigenvalue of \boldsymbol{A} and $\boldsymbol{u} \in \mathbb{R}^{n}$ is the corresponding eigenvector if:

$$
\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u}, \boldsymbol{u} \neq \mathbf{0}
$$

"The" Eigenvector

For any eigenvector $\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and scalar $c \in \mathbb{R} \backslash\{0\}, c \boldsymbol{u}$ is also an eigenvector. "The" eigenvector is normalized to have unit length.

Eigenvalue and Eigenvector

Characteristic Equation

$(\lambda, \boldsymbol{u})$ is (eigenvalue,eigenvector) pair if:

$$
(\lambda \boldsymbol{I}-\boldsymbol{A}) \boldsymbol{u}=\mathbf{0}, \boldsymbol{u} \neq \mathbf{0}
$$

Thus:

- \boldsymbol{u} is in the nullspace of $\lambda \boldsymbol{I}-\boldsymbol{A}$.
- $\operatorname{det}(\boldsymbol{A})=0$

Equation $\operatorname{det}(\boldsymbol{A})=0$ is called characteristic equation.

Characteristic Equation

- The order of characteristic equation is n.
- Characteristic equation has n roots, denoted $\lambda_{1}, \ldots, \lambda_{n}$, possibly complex.
- \boldsymbol{u}_{i} corresponding to λ_{i} can be easily found by finding the nullspace of $\lambda_{i} \boldsymbol{I}-\boldsymbol{A}$ matrix.

Eigenvalue and Eigenvector

Eigenvalue and Eigenvector

Find the eigenvalues and eigenvectors of $\boldsymbol{A}=\left[\begin{array}{ll}0.8 & 0.3 \\ 0.2 & 0.7\end{array}\right]$.
Solution:

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\operatorname{det}\left(\left[\begin{array}{cc}
0.8-\lambda & 0.3 \\
0.2 & 0.7-\lambda
\end{array}\right]\right)=(\lambda-1)(\lambda-0.5)=0 \\
\Rightarrow & \left\{\begin{array}{l}
\lambda_{1}=1 \\
\lambda_{2}=0.5
\end{array}\right. \\
& \left(\boldsymbol{A}-\lambda_{1} \boldsymbol{I}\right) \boldsymbol{u}_{1}=\mathbf{0} \Rightarrow\left[\begin{array}{cc}
-0.2 & 0.3 \\
0.2 & -0.3
\end{array}\right] \boldsymbol{u}_{1}=\mathbf{0} \Rightarrow \boldsymbol{u}_{1}=\left[\begin{array}{c}
1.5 \\
1
\end{array}\right] \\
& \left(\boldsymbol{A}-\lambda_{2} \boldsymbol{I}\right) \boldsymbol{u}_{2}=\mathbf{0} \Rightarrow\left[\begin{array}{ll}
0.3 & 0.3 \\
0.2 & 0.2
\end{array}\right] \boldsymbol{u}_{2}=\mathbf{0} \Rightarrow \boldsymbol{u}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Eigenvalue and Eigenvector

Rank

The rank of matrix \boldsymbol{A} is equal to the number of non-zero eigenvalues of \boldsymbol{A}.

Connection to Trace and Determinant

Assume $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then:

- The rank of \boldsymbol{A} equals to the number of non-zero eigenvalues of \boldsymbol{A}.
- \boldsymbol{A}^{-1} shares the eigenvector with \boldsymbol{A} while its eigenvalues are $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{n}}$.
- Symmetric matrix \boldsymbol{A} is PD iff $\lambda_{i}>0, i=1, \ldots, n$.
- Symmetric matrix \boldsymbol{A} is PSD iff $\lambda_{i} \geq 0, i=1, \ldots, n$.
- $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}$
- $\operatorname{det}(\boldsymbol{A})=\prod_{i=1}^{n} \lambda_{i}$

Diagonalizable

Diagonalizable

As we see: $\boldsymbol{A} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}, i=1, \ldots, n$
We can write the above equalities as:

$$
\boldsymbol{A} \boldsymbol{U}=\boldsymbol{U} \boldsymbol{\Lambda}
$$

where:

- $\boldsymbol{U} \in \mathbb{R}^{n \times n}=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{n} \\ \mid & \mid & \mid\end{array}\right]$
- $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$

Now assume that matrix \boldsymbol{U} is invertible. Then:

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{-1}
$$

A matrix that can be written in this form is called diagonalizable.

Eigenvalues and Eigenvectors of Symmetric Matrices

Eigenvalues and Eigenvectors of Symmetric Matrices

Based on Spectral Theorem, for symmetric matrices we have:

- All eigenvalues are real
- Eigenvectors are orthonormal $\left(\boldsymbol{U}\right.$ is orthogonal thus $\left.\boldsymbol{U}^{-1}=\boldsymbol{U}^{T}\right)$

Then we have:

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{n} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{ccc}
- & \boldsymbol{u}_{1}^{T} & - \\
- & \boldsymbol{u}_{2}^{T} & - \\
& \vdots & \\
- & \boldsymbol{u}_{m}^{T} & -
\end{array}\right] \\
& =\sum_{i=1}^{n} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{T}
\end{aligned}
$$

Data Whitening Using Eigenvectors

Data Whitening Using Eigenvectors

Suppose we have a dataset $\boldsymbol{X} \in \mathbb{R}^{N \times D}$ where the empirical mean verctor is zero and empirical covariance matrix is $\boldsymbol{\Sigma}=\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X}$. Find matrix $\boldsymbol{W} \in \boldsymbol{R} D \times D$ such that empirical covariance matrix for transformed vector $\boldsymbol{y}=\boldsymbol{W} \boldsymbol{x}$ is \boldsymbol{I}. Solution: Matrix $\boldsymbol{\Sigma}$ is symmetric, thus $\boldsymbol{\Sigma}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{T}$. Assume $\boldsymbol{W}=\boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{U}^{T}$, then the covariance matrix for \boldsymbol{y} is:

$$
\begin{aligned}
\operatorname{Cov}[\boldsymbol{y}] & =\frac{1}{N} \boldsymbol{Y}^{T} \boldsymbol{Y}=\frac{1}{N}\left(\boldsymbol{X} \boldsymbol{W}^{T}\right)^{T}\left(\boldsymbol{X} \boldsymbol{W}^{T}\right)=\boldsymbol{W} \boldsymbol{\Sigma} \boldsymbol{W}^{T} \\
& =\boldsymbol{D}^{-\frac{1}{2}} \underbrace{\boldsymbol{U}^{T} \boldsymbol{U}}_{\boldsymbol{I}} \boldsymbol{D} \underbrace{\boldsymbol{U}^{T} \boldsymbol{U}}_{\boldsymbol{I}} \boldsymbol{D}^{-\frac{1}{2}}=\boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{D} \boldsymbol{D}^{-\frac{1}{2}}=\boldsymbol{I}
\end{aligned}
$$

Section 9

Matrix Calculus

Gradient

Gradient

Assume function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The gradient vector of this function at a point \boldsymbol{x} is the vector of partial derivatives as:

$$
\boldsymbol{g}=\frac{\partial f}{\partial \boldsymbol{x}}=\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

To emphasize the gradient evaluation point we write:

$$
\left.\boldsymbol{g}\left(\boldsymbol{x}^{\star}\right) \triangleq \frac{\partial f}{\partial \boldsymbol{x}}\right|_{\boldsymbol{x}=\boldsymbol{x}^{\star}}
$$

Hessian

Hessian

Assume function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The Hessian matrix of this function is the matrix of second partial derivatives as:

$$
\boldsymbol{H}_{f}=\frac{\partial^{2} f}{\partial \boldsymbol{x}^{2}}=\nabla^{2} f=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \cdots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Jacobian

Jacobian

Assume function $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The Jacobian matrix of this function is an $m \times n$ matrix of partial derivatives as:

$$
\boldsymbol{J}_{\boldsymbol{f}}(\boldsymbol{x})=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}^{T}} \triangleq\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
\nabla f_{1}(\boldsymbol{x})^{T} \\
\vdots \\
\nabla f_{m}(\boldsymbol{x})^{T}
\end{array}\right]
$$

