Lecture 03: Multivariate Probability Introduction to Machine Learning [25737]

Sajjad Amini

Sharif University of Technology

- 1 Important Notation Definition
- 2 Basic Definitions
- 3 Sample Distributions
- 4 Linear Gaussian Systems

5 Mixture Models

Except explicitly cited, the reference for the material in slides is:

• Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.

Section 1

Important Notation Definition

Notation for Random Variable, Vector and Matrix

Throughout the course, we use the following notation to show random variable, random vector, random matrix and their corresponding outcomes:

Random variable (Upper-case letter)
Outcome of a random variable (lower-case letter)
Random vector/matrix (Blackboard boldface letter)
Outcome of a random vector/matrix (Boldface letter)
Random variable/vector/matrix
Outcome of random variable
Outcome of random vector/matrix

Section 2

Basic Definitions

Basic Definitions

Covariance

• Suppose two random variables X and Y. The Covariance is defined as:

$$\operatorname{Cov}[X, Y] \triangleq \operatorname{E}[(X - \operatorname{E}[X])(Y - \operatorname{E}[Y])] = \operatorname{E}[XY] - \operatorname{E}[X]\operatorname{E}[Y]$$

• Assume $\mathbb{X} = [X_1, X_2, \dots, X_D]^T$ is a D-dimensional random vector, then its covariance matrix is defined as:

$$\operatorname{Cov}[\mathbb{X}] \triangleq \operatorname{E}[(\mathbb{X} - \operatorname{E}[\mathbb{X}])(\mathbb{X} - \operatorname{E}[\mathbb{X}])^T] = \mathbf{\Sigma}$$
$$= \begin{bmatrix} \operatorname{Cov}[X_1, X_1] & \operatorname{Cov}[X_1, X_2] & \cdots & \operatorname{Cov}[X_1, X_D] \\ \operatorname{Cov}[X_2, X_1] & \operatorname{Cov}[X_2, X_2] & \cdots & \operatorname{Cov}[X_2, X_D] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_D, X_1] & \operatorname{Cov}[X_D, X_2] & \cdots & \operatorname{Cov}[X_D, X_D] \end{bmatrix}$$

• Cross-covariance: $\operatorname{Cov}[\mathbb{X}, \mathbb{Y}] = \operatorname{E}[(\mathbb{X} - \operatorname{E}[\mathbb{X}])(\mathbb{Y} - \operatorname{E}[\mathbb{Y}])^T]$

Covariance

•
$$\mathbf{E}[\mathbb{X}\mathbb{X}^T] = \mathbf{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^T, \ \boldsymbol{\mu} \triangleq \mathbf{E}[\mathbb{X}]$$

•
$$\operatorname{Cov}[\mathbf{A}\mathbb{X} + \mathbf{b}] = \mathbf{A}\operatorname{Cov}[\mathbb{X}]\mathbf{A}^T$$

Correlation

• Suppose two random variables X and Y. The Correlation that measure the level of **Linear** relation between two variables is defined as:

$$\rho \triangleq \operatorname{Cor}[X, Y] \triangleq \frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{V}[X]\operatorname{V}[Y]}}$$

• If X is a D-dimensional random vector, its correlation matrix is defined as:

$$\operatorname{Cor}[\mathbb{X}] \triangleq \left[\begin{array}{ccc} \operatorname{Cor}[X_1, X_1] = 1 & \operatorname{Cor}[X_1, X_2] & \cdots & \operatorname{Cor}[X_1, X_D] \\ \operatorname{Cor}[X_2, X_1] & \operatorname{Cor}[X_2, X_2] = 1 & \cdots & \operatorname{Cor}[X_2, X_D] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cor}[X_D, X_1] & \operatorname{Cor}[X_D, X_2] & \cdots & \operatorname{Cor}[X_D, X_D] = 1 \end{array} \right]$$

Correlation

• One can show that $-1 \le \rho \le 1$

•
$$|\operatorname{Cor}[X,Y]| = 1$$
 iff $Y = aX + b$

Correlation and Nonlinear Dependencies [1]

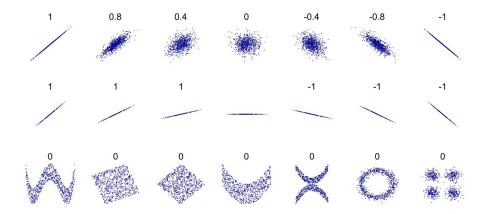


Figure: Visual interpretation of conditional probability

Independence implies Uncorrelatedness

$$\operatorname{Cov}[X, Y] = \operatorname{E}[XY] - \operatorname{E}[X] \operatorname{E}[Y] = \operatorname{E}[X] \operatorname{E}[Y] - \operatorname{E}[X] \operatorname{E}[Y] = 0$$
$$\Rightarrow \operatorname{Cor}[X, Y] = \frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{V}[X] \operatorname{V}[Y]}} = 0$$

Uncorrelatedness Does NOT Imply Independence

Suppose:
$$\begin{cases} X \propto U(-1,1) \\ Y = X^2 \end{cases}$$
 Then:
$$\begin{cases} \operatorname{Cor}[X,Y] = 0 \ (Uncorrelated) \\ X \not \perp Y \end{cases}$$

Causation Does NOT Imply Correlatedness

Suppose:
$$\begin{cases} X \propto U(-1,1) \\ Y = X^2 \end{cases}$$
 Then:
$$\begin{cases} \operatorname{Cor}[X,Y] = 0 \ (Uncorrelated) \\ X \ clearly \ causes \ Y. \end{cases}$$

Correlatedness Does NOT Imply Causation

$Z \propto U(-1,1)$		$\left(Cor[Y, V] - 1 \left(Cornelated \right) \right)$
$X=Z^2$	Then: \langle	$\begin{cases} \operatorname{Cor}[X,Y] = 1 \ (Correlated) \end{cases}$
$Y = Z^2$		X and Y don't have causal effect on each other.

Spurious Correlation [2]

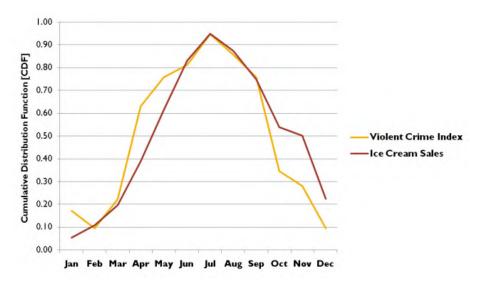


Figure: Violent Crime Index vs Ice Cream Sales

Section 3

Sample Distributions

The Multivariate Gaussian (Normal) Distribution

Random vector \mathbb{Y} is said to be multivariate normally distributed if every linear combination of its components has a univariate normal distribution.

Probability Density Function

The PDF for MVN with dimension D is defined as:

$$\mathcal{N}(\boldsymbol{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \triangleq rac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-rac{1}{2} (\boldsymbol{y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})
ight]$$

where:

$$\boldsymbol{\mu} = \mathbf{E}[\mathbb{Y}] \in \mathbb{R}^D$$
$$\boldsymbol{\Sigma} = \operatorname{Cov}[\mathbb{Y}] \in \mathbb{R}^{D \times D}$$

Symmetric Matrix

Matrix $A \in \mathbb{R}^{n \times n}$ is symmetric iff $A = A^T$ (We usually show this by $A \in \mathbb{S}^n$)

Positive (Semi)Definite

Suppose $\boldsymbol{A} \in \mathbb{S}^n$. Then $\forall \boldsymbol{v} \in \mathbb{R}^n \setminus \{0\}$:

A is positive definite (PD), denoted $A \succ 0$ \Leftrightarrow $v^T A v > 0$ A is positive semidefinite (PSD), denoted $A \succeq 0$ \Leftrightarrow $v^T A v \ge 0$ A is negative definite (ND), denoted $A \prec 0$ \Leftrightarrow $v^T A v \ge 0$ A is negative semidefinite (NSD), denoted $A \preceq 0$ \Leftrightarrow $v^T A v < 0$ A is negative semidefinite (NSD), denoted $A \preceq 0$ \Leftrightarrow $v^T A v \le 0$

 \boldsymbol{A} is indefinite iff it is none of the above.

Covariance Matrix is PSD

Assume Σ to be the covariance matrix of $\mathbb X$ D-dimensional random vector. Then:

- $\Sigma \in \mathbb{S}^D$ based on definition.
- $\Sigma \succeq 0$ (PSD) because:

$$\boldsymbol{v}^T \boldsymbol{\Sigma} \boldsymbol{v} = \mathbf{V}[\boldsymbol{v}^T \mathbb{X}] \ge 0, \ \forall \boldsymbol{v} \in \mathbb{R}^D$$

• If X is distributed normally, then $\Sigma \succ 0$ (PD) because:

 $\exists \boldsymbol{v} \neq \boldsymbol{0}: \ \boldsymbol{v}^T \boldsymbol{\Sigma} \boldsymbol{v} = \boldsymbol{0} \rightarrow \boldsymbol{V}[\boldsymbol{v}^T \mathbb{X}] = \boldsymbol{0} \rightarrow \boldsymbol{v}^T \mathbb{X} \text{ is not normally distributed}$

Bivariate Noraml (D=2)

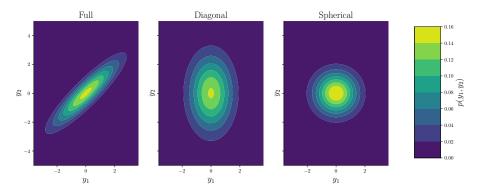


Figure: Level set of constant probability density

Mahalanobis Distance

Mahalanobis Distance (Δ) is a metric to calculate the distance between point \boldsymbol{y} and distribution p with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ and is defined as:

$$\Delta^2 \triangleq (\boldsymbol{y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})$$

MVN and Mahalanobis Distance

The log probability of MVN at a specific point \boldsymbol{y} is given by:

$$\log p(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = -\frac{1}{2} \overbrace{(\boldsymbol{y}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})}^{\Delta^2} + \text{constant}$$

Marginals and Conditionals of an MVN

Suppose $\mathbb{Y} = (\mathbb{Y}_1, \mathbb{Y}_2)$ where \mathbb{Y}_1 and \mathbb{Y}_2 have D_1 and D_2 dimension, respectively (thus \mathbb{Y} is (D_1+D_2) -dimensional). Assume \mathbb{Y} to be Gaussian with following parameters:

$$\boldsymbol{\mu} = \left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right], \ \boldsymbol{\Sigma} = \left[\begin{array}{c} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right], \ \boldsymbol{\Lambda} = \boldsymbol{\Sigma}^{-1} = \left[\begin{array}{c} \boldsymbol{\Lambda}_{11} & \boldsymbol{\Lambda}_{12} \\ \boldsymbol{\Lambda}_{21} & \boldsymbol{\Lambda}_{22} \end{array} \right]$$

where $\boldsymbol{\mu}_1 \in \mathbb{R}^{D_1}$, $\boldsymbol{\mu}_2 \in \mathbb{R}^{D_2}$, $\boldsymbol{\Sigma}_{ij} \in \mathbb{R}^{D_i \times D_j}$ and $\boldsymbol{\Lambda}_{ij} \in \mathbb{R}^{D_i \times D_j}$. Then the marginals and conditionals are given by:

$$\begin{split} p(\boldsymbol{y}_1) &= \mathcal{N}(\boldsymbol{y}_1 | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}) \\ p(\boldsymbol{y}_2) &= \mathcal{N}(\boldsymbol{y}_2 | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22}) \\ p(\boldsymbol{y}_1 | \boldsymbol{y}_2) &= \mathcal{N}(\boldsymbol{y}_1 | \boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2}) \end{split}$$

where:

$$\begin{split} \boldsymbol{\mu}_{1|2} &= \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\boldsymbol{y}_2 - \boldsymbol{\mu}_2) \text{ (Affine function of observed vector } \boldsymbol{y}_2) \\ \boldsymbol{\Sigma}_{1|2} &= \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} \text{ (Independent of observed vector } \boldsymbol{y}_2) \end{split}$$

Using MVN Marginals

Imputing Missing Values

Consider the following scenario:

- $\bullet~$ Select D~ movies
- Ask N people to give them scores $(\mathbb{Y} \in \mathbb{R}^D)$
- Some people have not scored all movies.
- You know that the scoring vector comes from $\mathcal{N}(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{\Sigma})$

How to fill missing scores by MVN marginals?

Using MVN Marginals

Imputing Missing Values

Consider the following scenario:

- $\bullet~$ Select D~ movies
- Ask N people to give them scores $(\mathbb{Y} \in \mathbb{R}^D)$
- Some people have not scored all movies.
- You know that the scoring vector comes from $\mathcal{N}(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{\Sigma})$

How to fill missing scores by MVN marginals?

Solution

We can fill person n scoring vector as:

• Compute $p(\boldsymbol{y}_{n,\boldsymbol{h}} \boldsymbol{y}_{n,\boldsymbol{v}},\boldsymbol{\theta})$ where:	ces
$\begin{cases} \boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\Sigma}) : \text{Parameters} \\ \boldsymbol{h} : \text{missing (hidden) score indices} \\ \boldsymbol{v} : \text{submitted (visible) score indices} \end{cases}$	dices
• Impute missing values by: $\begin{cases} \bar{\boldsymbol{y}}_{n,\boldsymbol{h}} = \mathrm{E}[\mathbb{Y}_{n,\boldsymbol{h}} \boldsymbol{y}_{n,\boldsymbol{v}}, \boldsymbol{\theta}] : \mathrm{Posterior metric} \\ \mathrm{Posterior \ sampling} \end{cases}$	ean

Using MVN Marginals

Imputing Missing Values

Consider the following scenario:

- $\bullet~$ Select D~ movies
- Ask N people to give them scores $(\mathbb{Y} \in \mathbb{R}^D)$
- Some people have not scored all movies.
- You know that the scoring vector comes from $\mathcal{N}(\boldsymbol{y}|\boldsymbol{\mu},\boldsymbol{\Sigma})$

How to fill missing scores by MVN marginals?

Solution

We can fill person n scoring vector as:

• Compute $p(\boldsymbol{y}_{n,\boldsymbol{h}}|\boldsymbol{y}_{n,\boldsymbol{v}},\boldsymbol{\theta})$ where: $\begin{cases} \boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\Sigma}) : \text{Parameters} \\ \boldsymbol{h} : \text{missing (hidden) score indices} \\ \boldsymbol{v} : \text{submitted (visible) score indices} \end{cases}$ • Impute missing values by: $\{ \bar{\boldsymbol{y}}_{n,\boldsymbol{h}} = \mathrm{E}[\mathbb{Y}_{n,\boldsymbol{h}}|\boldsymbol{y}_{n,\boldsymbol{v}},\boldsymbol{\theta}] : \text{Posterior mean} \\ \text{Posterior sampling} \end{cases}$

Imputing Missing Values

How to estimate μ and θ ? Solution: By using Expectation Maximization.

Section 4

Linear Gaussian Systems

Linear Gaussian Systems (LGS)

Linear Gaussian Systems

Assume the following items:

- $\mathbb{Z} \in \mathbb{R}^L$: Unknown vector
- $\mathbb{Y} \in \mathbb{R}^D$: Noisy measurements
- The following distributions hold:

•
$$p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}|\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z)$$

• $p(\boldsymbol{y}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{y}|\boldsymbol{W}\boldsymbol{z} + \boldsymbol{b}, \boldsymbol{\Sigma}_y), \ \boldsymbol{W} \in \mathbb{R}^{D \times L}, \ \boldsymbol{b} \in \mathbb{R}^{D}$

then:

• Joint distribution p(z, y) = p(z)p(y|z) is a L + D dimensional Gaussian with the following parameters:

$$oldsymbol{\mu} = \left[egin{array}{cc} oldsymbol{\mu}_z \ oldsymbol{W} oldsymbol{\mu}_z + oldsymbol{b} \end{array}
ight], \ oldsymbol{\Sigma} = \left[egin{array}{cc} oldsymbol{\Sigma}_z & oldsymbol{\Sigma}_z oldsymbol{W}^T \ oldsymbol{W} oldsymbol{\Sigma}_z & oldsymbol{\Sigma}_y + oldsymbol{W} oldsymbol{\Sigma}_z oldsymbol{W}^T \end{array}
ight]$$

• Using Bayes rule, the posterior $p(\boldsymbol{z}|\boldsymbol{y})$ is also L dimensional Gaussian with the following parameters:

$$\begin{split} \boldsymbol{\Sigma}_{z|y}^{-1} &= \boldsymbol{\Sigma}_{z}^{-1} + \boldsymbol{W}^{T} \boldsymbol{\Sigma}_{y}^{-1} \boldsymbol{W} \\ \boldsymbol{\mu}_{z|y} &= \boldsymbol{\Sigma}_{z|y} \left[\boldsymbol{W}^{T} \boldsymbol{\Sigma}_{y}^{-1} (\boldsymbol{y} - \boldsymbol{b}) + \boldsymbol{\Sigma}_{z}^{-1} \boldsymbol{\mu}_{z} \right] \end{split}$$

Conjugate Priors

Assume \mathcal{F} as a family of distribution functions (*e.g.* Gaussian). We say that a prior $p(\mathbf{z}) \in \mathcal{F}$ is a conjugate prior for a likelihood function $p(\mathbf{y}|\mathbf{z})$ if the posterior is in the same family of distribution, i.e., $p(\mathbf{z}|\mathbf{y}) \in \mathcal{F}$.

Conjugate Priors

Based on slide 22, Gaussian prior is a conjugate prior for the Gaussian likelihood.

Inferring an Unknown Scalar

Suppose:

- Prior: We want to estimate unknown quantity Z where $p(z) = \mathcal{N}(z|\mu_0, \lambda_0^{-1})$
- Likelihood We have N independent noisy measurements y_i distributed as $p(y_i|z) = \mathcal{N}(y_i|z, \lambda_y^{-1})$

compute the posterior $p(z|y_1,\ldots,y_N)$.

Inferring an Unknown Scalar

Suppose:

- Prior: We want to estimate unknown quantity Z where $p(z) = \mathcal{N}(z|\mu_0, \lambda_0^{-1})$
- Likelihood We have N independent noisy measurements y_i distributed as $p(y_i|z) = \mathcal{N}(y_i|z, \lambda_y^{-1})$

compute the posterior $p(z|y_1,\ldots,y_N)$.

Solution

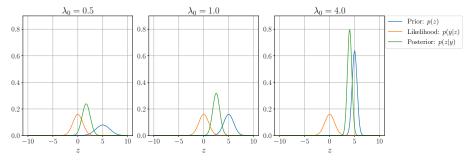
We start by defining $\mathbb{Y} = (y_1, \ldots, y_N)$. Then we can easily show that the problem is linear Gaussian system with $\mathbf{W} = \mathbf{1}_N$ and $\mathbf{\Sigma}_y^{-1} = \operatorname{diag}(\lambda_y \mathbf{I})$. Thus:

$$p(z|\boldsymbol{y}) = \mathcal{N}(z|\mu_N, \lambda_N^{-1})$$

where:

$$\begin{split} \boldsymbol{\Sigma}_{z|\boldsymbol{y}}^{-1} &= \boldsymbol{\Sigma}_{z}^{-1} + \boldsymbol{W}^{T} \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \boldsymbol{W} \Rightarrow \lambda_{z|\boldsymbol{y}} = \lambda_{0} + \boldsymbol{1}^{T} \operatorname{diag}(\lambda_{y} \boldsymbol{I}) \boldsymbol{1} = \lambda_{0} + N \lambda_{y} \\ \boldsymbol{\mu}_{z|\boldsymbol{y}} &= \boldsymbol{\Sigma}_{z|\boldsymbol{y}} \left[\boldsymbol{W}^{T} \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1}(\boldsymbol{y} - \boldsymbol{b}) + \boldsymbol{\Sigma}_{z}^{-1} \boldsymbol{\mu}_{z} \right] \Rightarrow \boldsymbol{\mu}_{z|\boldsymbol{y}} = \lambda_{z|\boldsymbol{y}}^{-1} \left[\boldsymbol{1}^{T} \operatorname{diag}(\lambda_{y} \boldsymbol{I})(\boldsymbol{y} - \boldsymbol{0}) + \lambda_{0} \boldsymbol{\mu}_{0} \right] \\ \Rightarrow \boldsymbol{\mu}_{z|\boldsymbol{y}} &= \frac{N \lambda_{y} \, \bar{\boldsymbol{y}} + \lambda_{0} \boldsymbol{\mu}_{0}}{\lambda_{z|\boldsymbol{y}}} = \frac{N \lambda_{y}}{N \lambda_{y} + \lambda_{0}} \, \bar{\boldsymbol{y}} + \frac{\lambda_{0}}{N \lambda_{y} + \lambda_{0}} \, \boldsymbol{\mu}_{0} \end{split}$$

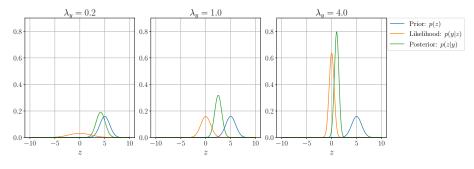
Linear Gaussian System



LGS system with $N = 1, \lambda_y = 1.0$

Figure: Prior precision (λ_0) effect

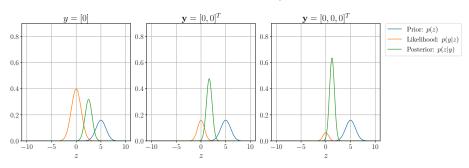
Linear Gaussian System



LGS system with $N = 1, \lambda_0 = 1.0$

Figure: Likelihood precision (λ_y) effect

Linear Gaussian System



LGS system with $\lambda_0 = 1.0, \lambda_y = 1.0$

Figure: Number of measurements (N) effect

Suppose:

- Prior: We want to estimate unknown vector \mathbb{Z} where $p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}|\mu_0, \boldsymbol{\Sigma}_0)$
- Likelihood: We have 2 sensors and 1 measurements of each sensor, denoted \mathbb{Y}_1 and \mathbb{Y}_2 , distributes as $\mathcal{N}(\boldsymbol{y}_i|\boldsymbol{z}, \boldsymbol{\Sigma}_i)$ ($\boldsymbol{\Sigma}_i$ demonstrates the reliability for *i*-th sensor).

compute the posterior $p(\boldsymbol{z}|\boldsymbol{y}_1, \boldsymbol{y}_2)$.

Suppose:

- Prior: We want to estimate unknown vector \mathbb{Z} where $p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}|\mu_0, \boldsymbol{\Sigma}_0)$
- Likelihood: We have 2 sensors and 1 measurements of each sensor, denoted \mathbb{Y}_1 and \mathbb{Y}_2 , distributes as $\mathcal{N}(\boldsymbol{y}_i|\boldsymbol{z}, \boldsymbol{\Sigma}_i)$ ($\boldsymbol{\Sigma}_i$ demonstrates the reliability for *i*-th sensor).

compute the posterior $p(\boldsymbol{z}|\boldsymbol{y}_1, \boldsymbol{y}_2)$.

Solution

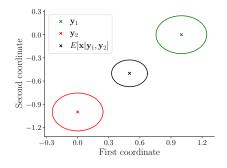
We start by defining $\mathbb{Y} = (\mathbb{Y}_1, \mathbb{Y}_2)$. Then we can easily show that the problem is linear Gaussian system with $\boldsymbol{W} = [\boldsymbol{I}; \boldsymbol{I}]$ and $\boldsymbol{\Sigma}_y = \begin{bmatrix} \boldsymbol{\Sigma}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_2 \end{bmatrix}$. Thus the posterior $p(\boldsymbol{z}|\boldsymbol{y}) = \mathcal{N}(\boldsymbol{z}|\boldsymbol{\mu}_{z|y}, \boldsymbol{\Sigma}_{z|y})$ where $\boldsymbol{\mu}_{z|y}$ and $\boldsymbol{\Sigma}_{z|y}$ can be calculated using formulas in Slide 22.

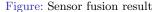
Sensor Fusion

Suppose the sensor fusion example in Slide 28, with the following parameters:

$$\mu_0 = [0;0], \ \Sigma_0 = 1000 I, \ \Sigma_1 = \Sigma_2 = 0.01 I$$

and assume $y_1 = (0, -1)$ and $y_2 = (1, 0)$. Visualize the measurements and posterior p(z|y).





IML-S03

Sensor Fusion

Suppose the sensor fusion example in Slide 28, with the following parameters:

$$\mu_0 = [0; 0], \ \Sigma_0 = 1000 I, \ \Sigma_1 = 0.01 I, \ \Sigma_2 = 0.05 I$$

and assume $y_1 = (0, -1)$ and $y_2 = (1, 0)$. Visualize th measurements and posterior p(z|y).

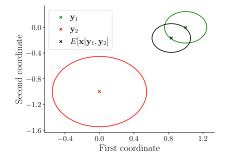


Figure: Sensor fusion result

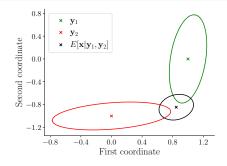
San	ad	Amini	

Sensor Fusion

Suppose the sensor fusion example in Slide 28, with the following parameters:

$$\boldsymbol{\mu}_0 = [0;0], \ \boldsymbol{\Sigma}_0 = 1000 \boldsymbol{I}, \ \boldsymbol{\Sigma}_1 = 0.01 \begin{bmatrix} 10 & 1\\ 1 & 1 \end{bmatrix}, \ \boldsymbol{\Sigma}_2 = 0.01 \begin{bmatrix} 1 & 1\\ 1 & 10 \end{bmatrix}$$

and assume $y_1 = (0, -1)$ and $y_2 = (1, 0)$. Visualize th measurements and posterior p(z|y).



Section 5

Mixture Models

Mixture Models

Mixture Models

One way to create more complex probability models is to take a convex combination of simple distributions. This is called a mixture model. This has the form $p(\boldsymbol{y}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p_k(\boldsymbol{y})$ where:

- p_k is the k-th mixture component
- $\{\pi_k\}_{k=1}^K$ are mixture weights with the following constraints:

•
$$0 \leq \pi_k \leq 1, k = 1, \ldots, K$$

•
$$\sum_{k=1}^{K} \pi_k = 1$$

Mixture Models - Generative Story

Suppose latent variable Z to be a categorical RV and distributed as $p(z|\theta) = Cat(z|\pi)$ and conditional $p(y|z = k, \theta) = p_k(y) = p(y|\theta_k)$. We can interpret mixture models as follows:

- We sample a specific component.
- We generate y using sampled value of z.

Using the above procedure, we have:

$$p(\boldsymbol{y}|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(z=k|\boldsymbol{\theta}) p(\boldsymbol{y}|z=k, \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p(\boldsymbol{y}|\boldsymbol{\theta}_k)$$

Gaussian Mixture Model

Gaussian Mixture Model (GMM) or Mixture of Gaussian (MoG) is defined as:

$$p(\boldsymbol{y}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{y}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

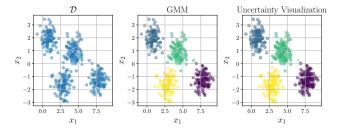


Figure: Sample GMM distribution and its application for clustering

"Pearson correlation coefficient,"

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.

"The logic of causal conclusions: How we know that fire burns, fertilizer helps plants grow, and vaccines prevent disease," http://icbseverywhere.com/blog/2014/10/the-logic-of-causal-conclusions/.