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Important Notation Definition
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Notation Definition

Notation for Random Variable, Vector and Matrix
Throughout the course, we use the following notation to show random variable,
random vector, random matrix and their corresponding outcomes:

X

x

X
x/X

Θ

θ

θ

Random variable (Upper-case letter)
Outcome of a random variable (lower-case letter)
Random vector/matrix (Blackboard boldface letter)
Outcome of a random vector/matrix (Boldface letter)
Random variable/vector/matrix
Outcome of random variable
Outcome of random vector/matrix
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Section 2

Basic Definitions
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Basic Definitions

Covariance
Suppose two random variables X and Y . The Covariance is defined as:

Cov[X,Y ] ≜ E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X] E[Y ]

Assume X = [X1, X2, . . . , XD]T is a D-dimensional random vector, then its covariance
matrix is defined as:

Cov[X] ≜ E[(X− E[X])(X− E[X])T ] = Σ

=


Cov[X1, X1] Cov[X1, X2] · · · Cov[X1, XD]
Cov[X2, X1] Cov[X2, X2] · · · Cov[X2, XD]

...
...

. . .
...

Cov[XD, X1] Cov[XD, X2] · · · Cov[XD, XD]


Cross-covariance: Cov[X,Y] = E[(X− E[X])(Y− E[Y])T ]

Covariance
E[XXT ] = Σ+ µµT , µ ≜ E[X]
Cov[AX+ b] = ACov[X]AT
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Basic Definitions

Correlation
Suppose two random variables X and Y . The Correlation that measure the level of
Linear relation between two variables is defined as:

ρ ≜ Cor[X,Y ] ≜
Cov[X,Y ]√
V[X] V[Y ]

If X is a D-dimensional random vector, its correlation matrix is defined as:

Cor[X] ≜


Cor[X1, X1] = 1 Cor[X1, X2] · · · Cor[X1, XD]
Cor[X2, X1] Cor[X2, X2] = 1 · · · Cor[X2, XD]

...
...

. . .
...

Cor[XD, X1] Cor[XD, X2] · · · Cor[XD, XD] = 1



Correlation
One can show that −1 ≤ ρ ≤ 1

|Cor[X,Y ]| = 1 iff Y = aX + b
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Correlation and Nonlinear Dependencies [1]

Figure: Visual interpretation of conditional probability
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Uncorrelatedness vs. Independence

Independence implies Uncorrelatedness

Cov[X,Y ] = E[XY ]− E[X] E[Y ] = E[X] E[Y ]− E[X] E[Y ] = 0

⇒ Cor[X,Y ] =
Cov[X,Y ]√
V[X] V[Y ]

= 0

Uncorrelatedness Does NOT Imply Independence

Suppose:

{
X ∝ U(−1, 1)

Y = X2
Then:

{
Cor[X,Y ] = 0 (Uncorrelated)

X⊥̸⊥Y
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Correlatedness vs. Causation

Causation Does NOT Imply Correlatedness

Suppose:

{
X ∝ U(−1, 1)

Y = X2
Then:

{
Cor[X,Y ] = 0 (Uncorrelated)

X clearly causes Y.

Correlatedness Does NOT Imply Causation




Z ∝ U(−1, 1)

X = Z2

Y = Z2

Then:

{
Cor[X,Y ] = 1 (Correlated)

X and Y don′t have causal effect on each other.
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Spurious Correlation [2]3.1. Joint distributions for multiple random variables 77

Figure 3.2: Examples of spurious correlation between causally unrelated time series. Consumption of ice
cream (red) and violent crime rate (yellow). over time. From http: // icbseverywhere. com/ blog/ 2014/
10/ the-logic-of-causal-conclusions/ . Used with kind permission of Barbara Drescher.

where Kxx is the auto-covariance matrix

Kxx = ⌃ = E
⇥
(x� E [x])(x� E [x])T

⇤
= Rxx � µµT (3.10)

and Rxx = E
⇥
xxT

⇤
is the autocorrelation matrix.

3.1.3 Uncorrelated does not imply independent

If X and Y are independent, meaning p(X, Y ) = p(X)p(Y ), then Cov [X, Y ] = 0, and hence
corr [X, Y ] = 0. So independent implies uncorrelated. However, the converse is not true: uncorrelated
does not imply independent. For example, let X ⇠ U(�1, 1) and Y = X2. Clearly Y is dependent on
X (in fact, Y is uniquely determined by X), yet one can show (Exercise 3.1) that corr [X, Y ] = 0.
Some striking examples of this fact are shown in Figure 3.1. This shows several data sets where
there is clear dependence between X and Y , and yet the correlation coefficient is 0. A more general
measure of dependence between random variables is mutual information, discussed in Section 6.3.
This is zero only if the variables truly are independent.

3.1.4 Correlation does not imply causation

It is well known that “correlation does not imply causation”. For example, consider Figure 3.2.
In red, we plot x1:T , where xt is the amount of ice cream sold in month t. In yellow, we plot y1:T ,
where yt is the violent crime rate in month t. (Quantities have been rescaled to make the plots
overlap.) We see a strong correlation between these signals. Indeed, it is sometimes claimed that
“eating ice cream causes murder” [Pet13]. Of course, this is just a spurious correlation, due to a
hidden common cause, namely the weather. Hot weather increases ice cream sales, for obvious

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Figure: Violent Crime Index vs Ice Cream Sales
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Section 3

Sample Distributions
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The Multivariate Gaussian (Normal) Distribution (MVN)

The Multivariate Gaussian (Normal) Distribution
Random vector Y is said to be multivariate normally distributed if every linear
combination of its components has a univariate normal distribution.

Probability Density Function
The PDF for MVN with dimension D is defined as:

N (y|µ,Σ) ≜
1

(2π)D/2|Σ|1/2 exp

[
−1

2
(y − µ)TΣ−1(y − µ)

]

where:

µ = E[Y] ∈ RD

Σ = Cov[Y] ∈ RD×D
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MVN Covariance Matrix Properties

Symmetric Matrix
Matrix A ∈ Rn×n is symmetric iff A = AT (We usually show this by A ∈ Sn)

Positive (Semi)Definite
Suppose A ∈ Sn. Then ∀v ∈ Rn \ {0}:

A is positive definite (PD), denoted A ≻ 0

A is positive semidefinite (PSD), denoted A ⪰ 0

A is negative definite (ND), denoted A ≺ 0

A is negative semidefinite (NSD), denoted A ⪯ 0

⇔
⇔
⇔
⇔

vTAv > 0

vTAv ≥ 0

vTAv < 0

vTAv ≤ 0

A is indefinite iff it is none of the above.
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MVN Covariance Matrix Properties

Covariance Matrix is PSD
Assume Σ to be the covariance matrix of X D-dimensional random vector.
Then:

Σ ∈ SD based on definition.
Σ ⪰ 0 (PSD) because:

vTΣv = V[vTX] ≥ 0, ∀v ∈ RD

If X is distributed normally, then Σ ≻ 0 (PD) because:

∃v ̸= 0 : vTΣv = 0 → V[vTX] = 0 → vTX is not normally distributed
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Bivariate Noraml (D=2)
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Figure: Level set of constant probability density

Sajjad Amini IML-S03 Sample Distributions 17 / 35



Mahalanobis Distance

Mahalanobis Distance
Mahalanobis Distance (∆) is a metric to calculate the distance between point
y and distribution p with mean µ and covariance matrix Σ and is defined as:

∆2 ≜ (y − µ)TΣ−1(y − µ)

MVN and Mahalanobis Distance
The log probability of MVN at a specific point y is given by:

log p(y|µ,Σ) = −1

2

∆2

︷ ︸︸ ︷
(y − µ)TΣ−1(y − µ)+constant
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Inference for MVN

Marginals and Conditionals of an MVN
Suppose Y = (Y1,Y2) where Y1 and Y2 have D1 and D2 dimension, respectively (thus Y is (D1+D2)-
dimensional). Assume Y to be Gaussian with following parameters:

µ =
[

µ1
µ2

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]
, Λ = Σ

−1
=

[
Λ11 Λ12
Λ21 Λ22

]
where µ1 ∈ RD1 , µ2 ∈ RD2 , Σij ∈ RDi×Dj and Λij ∈ RDi×Dj . Then the marginals and
conditionals are given by:

p(y1) = N (y1|µ1,Σ11)

p(y2) = N (y2|µ2,Σ22)

p(y1|y2) = N (y1|µ1|2,Σ1|2)

where:

µ1|2 = µ1 + Σ12Σ
−1
22 (y2 − µ2) (Affine function of observed vector y2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (Independent of observed vector y2)
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Using MVN Marginals

Imputing Missing Values
Consider the following scenario:

Select D movies
Ask N people to give them scores (Y ∈ RD)
Some people have not scored all movies.
You know that the scoring vector comes from N (y|µ,Σ)

How to fill missing scores by MVN marginals?

Solution
We can fill person n scoring vector as:

Compute p(yn,h|yn,v ,θ) where:

{
θ = (µ,Σ) : Parameters
h : missing (hidden) score indices
v : submitted (visible) score indices

Impute missing values by:
{
ȳn,h = E[Yn,h|yn,v ,θ] : Posterior mean
Posterior sampling

Imputing Missing Values
How to estimate µ and θ? Solution: By using Expectation Maximization.
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Section 4

Linear Gaussian Systems
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Linear Gaussian Systems (LGS)

Linear Gaussian Systems
Assume the following items:

Z ∈ RL: Unknown vector
Y ∈ RD: Noisy measurements

The following distributions hold:

p(z) = N (z|µz,Σz)
p(y|z) = N (y|Wz + b,Σy), W ∈ RD×L, b ∈ RD

then:
Joint distribution p(z,y) = p(z)p(y|z) is a L+D dimensional Gaussian with the
following parameters:

µ =
[

µz
Wµz + b

]
, Σ =

[
Σz ΣzW

T

WΣz Σy +WΣzW
T

]
,

Using Bayes rule, the posterior p(z|y) is also L dimensional Gaussian with the
following parameters:

Σ−1
z|y = Σ−1

z +W TΣ−1
y W

µz|y = Σz|y

[
W TΣ−1

y (y − b) +Σ−1
z µz

]
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Conjugate Priors

Conjugate Priors
Assume F as a family of distribution functions (e.g. Gaussian). We say that
a prior p(z) ∈ F is a conjugate prior for a likelihood function p(y|z) if the
posterior is in the same family of distribution, i.e., p(z|y) ∈ F .

Conjugate Priors
Based on slide 22, Gaussian prior is a conjugate prior for the Gaussian likelihood.
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Linear Gaussian System

Inferring an Unknown Scalar
Suppose:

Prior: We want to estimate unknown quantity Z where p(z) = N (z|µ0, λ
−1
0 )

Likelihood We have N independent noisy measurements yi distributed as
p(yi|z) = N (yi|z, λ−1

y )

compute the posterior p(z|y1, . . . , yN ).

Solution
We start by defining Y = (y1, . . . , yN ). Then we can easily show that the problem is linear Gaussian
system with W = 1N and Σ−1

y = diag(λyI). Thus:

p(z|y) = N (z|µN , λ
−1
N )

where:

Σ
−1
z|y = Σ

−1
z + W

T
Σ

−1
y W ⇒ λz|y = λ0 + 1

T
diag(λyI)1 = λ0 + Nλy

µz|y = Σz|y

[
W

T
Σ

−1
y (y − b) + Σ

−1
z µz

]
⇒ µz|y = λ

−1
z|y

[
1
T
diag(λyI)(y − 0) + λ0µ0

]
⇒µz|y =

Nλy ȳ + λ0µ0

λz|y
=

Nλy

Nλy + λ0

ȳ +
λ0

Nλy + λ0

µ0
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Linear Gaussian System
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Figure: Prior precision (λ0) effect
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Linear Gaussian System
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Linear Gaussian System
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Linear Gaussian System

Sensor Fusion
Suppose:

Prior: We want to estimate unknown vector Z where p(z) = N (z|µ0,Σ0)

Likelihood: We have 2 sensors and 1 measurements of each sensor,
denoted Y1 and Y2, distributes as N (yi|z,Σi) (Σi demonstrates the
reliability for i-th sensor).

compute the posterior p(z|y1,y2).

Solution
We start by defining Y = (Y1,Y2). Then we can easily show that the problem

is linear Gaussian system with W = [I; I] and Σy =

[
Σ1 0
0 Σ2

]
. Thus the

posterior p(z|y) = N (z|µz|y,Σz|y) where µz|y and Σz|y can be calculated using
formulas in Slide 22.
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Sensor Fusion

Sensor Fusion
Suppose the sensor fusion example in Slide 28, with the following parameters:

µ0 = [0; 0], Σ0 = 1000I, Σ1 = Σ2 = 0.01I

and assume y1 = (0,−1) and y2 = (1, 0). Visualize th measurements and
posterior p(z|y).
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Figure: Sensor fusion result
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Sensor Fusion

Sensor Fusion
Suppose the sensor fusion example in Slide 28, with the following parameters:

µ0 = [0; 0], Σ0 = 1000I, Σ1 = 0.01I, Σ2 = 0.05I

and assume y1 = (0,−1) and y2 = (1, 0). Visualize th measurements and
posterior p(z|y).
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Sensor Fusion

Sensor Fusion
Suppose the sensor fusion example in Slide 28, with the following parameters:
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Section 5

Mixture Models
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Mixture Models

Mixture Models
One way to create more complex probability models is to take a convex combination of simple
distributions. This is called a mixture model. This has the form p(y|θ) =

∑K
k=1 πkpk(y)

where:
pk is the k-th mixture component

{πk}Kk=1 are mixture weights with the following constraints:

0 ≤ πk ≤ 1, k = 1, . . . ,K∑K
k=1 πk = 1

Mixture Models - Generative Story
Suppose latent variable Z to be a categorical RV and distributed as p(z|θ) = Cat(z|π) and
conditional p(y|z = k,θ) = pk(y) = p(y|θk). We can interpret mixture models as follows:

We sample a specific component.
We generate y using sampled value of z.

Using the above procedure, we have:

p(y|θ) =
K∑

k=1

p(z = k|θ)p(y|z = k,θ) =

K∑
k=1

πkp(y|θk)
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Gaussian Mixture Model

Gaussian Mixture Model
Gaussian Mixture Model (GMM) or Mixture of Gaussian (MoG) is defined as:

p(y|θ) =
K∑

k=1

πkN (y|µk,Σk)
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Figure: Sample GMM distribution and its application for clustering
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“Pearson correlation coefficient,”
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.

“The logic of causal conclusions: How we know that fire burns, fertilizer helps plants grow,
and vaccines prevent disease,”
http://icbseverywhere.com/blog/2014/10/the-logic-of-causal-conclusions/.
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