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Section 1

Probability Interpretations
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Probability Interpretations

Frequentist (Long Run) Interpretation [1]
Probability are defined with respect to potentially infinite repetition of experi-
ments. [2]

Probability of heads in coin tossing: If we repeat the experiment of
flipping a coin (at ‘random’), the limit of the number of heads that
occurred over the number of tosses is defined as the probability of a head
occurring.’
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Probability Interpretations

Bayesian (Degree of Belief) Interpretation
Probability is a tool to quantify our uncertainty about something (This defini-
tion is fundamentally related to information rather than repeated trials.)

The probability that a user likes or dislikes movies in the database:
This probability cannot be interpreted via repeated trials.
Assume that the user behaves consistently with other users. Then we can
make a reasonable guess about whether he/she likes or dislikes the movie.
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Random Variable
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Random Variables and Events

Random Variable
Suppose X represents some quantity of interest. If the value of X is unknown
and/or could change, we call it a Random Variable (RV).

Sample Space or State Space
The set of all possible values for Random variable X, denoted X , is known as
the sample space or state space.

Event
An event is a set of values from a random variable.
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Examples

Random Variable
X as the result of rolling a dice
T as the room temperature

Sample Space or State Space
X = {1, 2, 3, 4, 5, 6} for random variable X

T = R for random variable T

Event
Seeing an odd number in dice rolling experiment (X ∈ {1, 3, 5})
The temperature room is positive (T ∈ R+)
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Discrete Random Variable

Discrete Random Variable
Random variable X is Discrete if its sample space X is finite or countably
infinite.

Probability Mass Function
Consider x to be an arbitrary element in the sample space of random variable
X. Probability mass function assigns p(x) to x as:

p(x) ≜ Pr(X = x), x ∈ X
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Discrete Random Variable

Joint Distribution
Suppose a set of random variables {X1, . . . , Xn}. We can define the joint dis-
tribution of these random variables as:

p(x1, . . . , xn) ≜ Pr(X1 = x1, . . . , Xn = xn),





x1 ∈ X1

...
xn ∈ Xn

Marginal Distribution
Given a joint distribution, we define the marginal distribution of random vari-
able Xi as:

p(xi) =
∑

x1∈X1

. . .
∑

xi−1∈Xi−1

∑

xi+1∈Xi+1

. . .
∑

xn∈Xn

p(x1, . . . , xn)
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Continuous Random Variable

Continuous Random Variable
Random variable X is Continuous if its sample space X is infinite and uncount-
able (Typically sample space is R).

Cumulative Distribution Function
Consider x to be an arbitrary real value number. Cumulative Distribution
Function assigns P (x) to x as:

P (x) ≜ Pr(X ≤ x), x ∈ R

Probability Density Function (pdf)
Consider x to be an arbitrary real value number. Probability Density Function
is defined using CDF as:

p(x) ≜ d

dx
P (x)
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Continuous Random Variable

Joint Distribution
Suppose a set of random variables {X1, . . . , Xn}. We can define the joint distribution of these
random variables as:

p(x1, . . . , xn) ≜
dn

dx1 . . . dxn
Pr(X1 ≤ x1, . . . , Xn ≤ xn),


x1 ∈ R
...
xn ∈ R

Marginal Distribution
Given a joint distribution, we define the marginal distribution of random variable Xi as:

p(xi) =

∫ ∞

x1=−∞
. . .

∫ ∞

xi−1=−∞

∫ ∞

xi+1=−∞
. . .

∫ ∞

xn=−∞
p(x1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn
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Bayes Rule
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Conditional Probability (Bayes Rule)

Conditional Probability
The probability of event x conditioned on knowing event y is defined as:

p(x|y) ≜ p(x, y)

p(y)

If p(y) = 0 then p(x|y) is not defined. Equivalently we have:

p(x, y) = p(x|y)p(y) = p(y|x)p(x) ⇒ p(x|y) = p(y|x)p(x)
p(y)
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Bayes Rule for Machine Learning

Naming Bayes Rule Factors

Posterior︷ ︸︸ ︷
p(x|y) =

Likelihood︷ ︸︸ ︷
p(y|x)

Prior︷︸︸︷
p(x)

p(y)︸︷︷︸
Marginal
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Bayes Rule for Machine Learning

Unsupervised learning

Replace

{
x → θ

y → {xi}Ni=1

, then:

p(θ|{xi}) =
p({xi}|θ)p(θ)

p({xi})

Coin Tossing
Assume:

Xi: Random variable representing the result of i-th tossing experiment
θ: Bernoulli parameter

Then:

p(θ|{xi}) =
p({xi}|θ)p(θ)

p({xi})
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Bayes Rule for Machine Learning

Supervised learning

Replace





x → θ

y → {yi}Ni=1

Conditioning on {xi}Ni=1

, then:

p(θ|{yi}, {xi}) =
p({yi}|θ, {xi})p(θ|{xi})

p({yi}|{xi})

=
[
∏

i p(yi|θ,xi)] p(θ)

p({yi}|{xi})
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Bayes Rule

Bayes Rule Interpreting [1]
Consider a dart board with 20 equal sections and the following RV:

X : Randy hit region 5

Prior: Randy hits any of 20 sections at random.
p(X = 1) = 1

20

Knowledge (Evidence): Randy hasn’t hit region number 20.
Posterior:

p(X = True|not 20) =p(X = True, not 20)

p(not 20)
=

p(X = True)

p(not 20)

=
1/20

19/20
=

1

19
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Section 4

Independence
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Independence

Independence
Two random variable X and Y are unconditionally independent or marginally
independent, denoted X ⊥ Y , iff we can represent the joint distribution as the
product of the two marginal distribution. Thus we have:

X ⊥ Y ⇔ p(x, y) = p(x)p(y)

Equivalent Definitions
The following items are equivalent to independence:

p(x|y) = p(x)

p(y|x) = p(y)

p(x, y) = kf(x)g(y)

k: constant
f(·) : positive function
g(·) : positive function
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Independence

Independence [1]
Consider binary random variables X and Y with the following PMF:

p(X = a;Y = 1) = 1, p(X = a;Y = 2) = 0

p(X = b;Y = 2) = 0; p(X = b;Y = 1) = 0

p(x)p(y) = p(x, y) for all x ∈ X and y ∈ Y, thus the RVs are independent.
X and Y are always in the same joint state.

It is not a Contradiction
X and Y are independent if knowing the state of variable Y tells you something
more than you knew before about variable X (you knew before means p(x, y)).
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Conditional Independence

Conditional Independence
Two random variable X and Y are conditionally independent given Z, denoted
X ⊥ Y |Z , if we can represent the conditional joint distribution as the product
of the two conditional marginal distribution. Thus we have:

X ⊥ Y |Z ⇔ p(x, y|z) = p(x|z)p(y|z)

Empty Condition
If we have the following conditions:

X ⊥ Y |Z
Z = ∅

then X and Y are unconditionally independent.
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Independence Implication

Independence Implication [1]
Suppose three random variables X, Y and Z. we have the following conditions:

X ⊥ Y

Y ⊥ Z

Does this conditions imply X ⊥ Z?

Answer
NO! Assume p(x, y, z) = p(y)p(x, z), then we can show clearly that the condi-
tions hold while X is not necessarily independent of Z.
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Conditional Independence [3]

Temperature
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Figure: Conditional Independence (common cause)
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Section 5

Probabilistic Reasoning
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Probabilistic Reasoning (Inference) [1]

Probabilistic Reasoning
Consider the following two steps:

Identifying all relevant random variables X1, . . . , Xn in the environment
Building a probabilistic model p(x1, . . . , xn) of their interaction

Then inference is performed by:
Introducing evidence that sets some variables in known state
Computing probabilities of interest, conditioned on the evidence.

Probabilistic Reasoning
The rules of probability combined with Bayes’ rule make for a complete proba-
bilistic reasoning system.
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Hamburger [1]

Hamburger
Consider the following RVs:

K: RV showing that a person have Kreuzfeld-Jacob disease (KJ)
H: RV showing that a person is a hamburgers eater

We have also the following probabilities:
Prior: p(K = 1) = 1

100000

Likelihood: p(H = 1|K = 1) = 0.9

Suppose p(H = 1) = 0.5. Whats is the probability of p(K = 1|H = 1).
Solution:

p(K = 1|H = 1) =
p(H = 1,K = 1)

p(H = 1)
=

p(H = 1|K = 1)p(K = 1)

p(H = 1)

=
9
10

× 1
100000
1
2

= 1.8× 10−5
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Hamburger [1]

Hamburger
Consider the following RVs:

K: The probability that a person has Kreuzfeld-Jacob disease (KJ)
H: The probability that a person is a hamburgers eater

We have also the following probabilities:
Prior: p(K = 1) = 1

100000

Likelihood: p(H = 1|K = 1) = 0.9

Suppose p(H = 1) = 0.001. Whats is the probability of p(K = 1|H = 1).
Solution:

p(K = 1|H = 1) =
p(H = 1,K = 1)

p(H = 1)
=

p(H = 1|K = 1)p(K = 1)

p(H = 1)

=
9
10

× 1
100000
1

1000

≈ 1/100

Intuition: This example shows a stornger relation between eating hamburgers and KJ.
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Inspector Challenge [1]

Inspector Challenge
Consider the following RVs:

K: The murder uses a knife
B: Butler is the murder
M : Maid is the murder

Note that B and M are independent. We have also the following probabilities:
Prior p(B = 1) = 0.6, p(M = 1) = 0.2

Likelihood

p(K = 1|B = 0,M = 0) = 0.3, p(K = 1|B = 0,M = 1) = 0.2

p(K = 1|B = 1,M = 0) = 0.6, p(K = 1|B = 1,M = 1) = 0.1

Assume that the inspector finds that the murder was done using knife. What is the probability
that Bob is the murder1.
Solution:

p(B = 1|K = 1) =
∑
m

p(B = 1,M = m|K = 1) =
∑
m

p(B = 1,M = m,K = 1)

p(K = 1)

=
p(B = 1)

∑
m p(K = 1|B = 1,M = m)p(M = m)∑

b p(B = b)
∑

m p(K = 1|B = b,M = m)p(M = m)
≈ 0.73

Intuition: Knowing that the knife was the murder weapon strengthens our belief that the butler
did it.
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Resolution Reasoning

Resolution Reasoning
Resolution reasoning states that if A ⇒ B and B ⇒ C, then we can infere
A ⇒ C.

Resolution Reasoning
Consider the following statements:

Statement A: All apples are fruit⇒ p(F = 1|A = 1) = 1

Statement B: All fruits grow on trees⇒ p(T = 1|F = 1) = 1

Show that p(T = 1|A = 1) = 1.
Solution:

p(T = 1|A = 1) =
∑
f

p(T = 1, F = f |A = 1)) =
∑
f

p(T = 1|F = f,A = 1)p(F = f |A = 1)

= p(T = 1|F = 0)

=0︷ ︸︸ ︷
p(F = 0|A = 1)+

=1︷ ︸︸ ︷
p(T = 1|F = 1)

=1︷ ︸︸ ︷
p(F = 1|A = 1) = 1
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Inverse Modus Ponens[1]

Inverse Modus Ponens
According to Logic, from the statement If A is true then B is true, one may
deduce that if B is false then A is false.

Inverse Modus Ponens
Consider the following statement:

If A is true then B is true: p(B = 1|A = 1) = 1

Show that p(A = 0|B = 0) = 1

Solution:

p(A = 0|B = 0) = 1− p(A = 1|B = 0) = 1− p(A = 1, B = 0)

p(B = 0)

= 1− p(B = 0|A = 1)p(A = 1)

p(B = 0|A = 1)p(A = 1) + p(B = 0|A = 0)p(A = 0)
= 1
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Testing for COVID-19

COVID-19 Test Interpretation
Consider the following RVs:

Y : RV showing that a person is infected with COVID-19

X: RV showing person COVID-19 test result.

We have also the following probabilities:

Prior: p(Y = 1) = 0.1 (prevalence of the disease in the area)

Likelihood:

p(X = 1|Y = 1) = 0.875, p(X = 0|Y = 0) = 0.975

Calculate the posterior p(Y = 1|X = 1) and p(Y = 1|X = 0)

Solution:

p(Y = 1|X = 1) =
p(X = 1|Y = 1)p(Y = 1)

p(X = 1|Y = 1)p(Y = 1) + p(X = 1|Y = 0)p(Y = 0)

=
0.875 × 0.1

0.875 × 0.1 + 0.025 × 0.9
= 0.795

p(Y = 1|X = 0) =
p(X = 0|Y = 1)p(Y = 1)

p(X = 0|Y = 1)p(Y = 1) + p(X = 0|Y = 0)p(Y = 0)

=
0.125 × 0.1

0.125 × 0.1 + 0.975 × 0.9
= 0.014
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Toward to Classification

Several Definitions:
We can assume the previous example as a binary classification problem where:

Y : True state of infection
X : Test result showing the state of infection

Based on this assumption we can have the following definitions:
True Positive Rate (TPR) or Sensitivity: p(X = 1|Y = 1)

True Negative Rate (TNR) or Specificity: p(X = 0|Y = 0)

Flase Positive Rate (FPR): p(X = 1|Y = 0) = 1− TNR

Flase Negative Rate (FNR): p(X = 0|Y = 1) = 1− TPR
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Section 6

Sample PMF and Classification
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Bernoulli Distribution

Bernoulli Distribution
Consider tossing a coin, where the probability of event that it lands heads is
given by 0 ≤ θ ≤ 1. Let Y = 1 denote this event. Then random variable Y is
distributed as Bernoulli distribution denoted by:

Y ∼ Ber(θ)

The PMF of this distribution is:

Ber(y|θ) =
{
1− θ if y = 0

θ if y = 1

=θy(1− θ)1−y

where 0 ≤ θ ≤ 1
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Binomial Distribution

Binomial Distribution
Consider observing a set of N Bernoulli trials, denoted Yn ∼ Ber(·|θ). Let
us define random variable S ≜

∑N
n=1 I(Yn = 1). Then random variable S is

distributed as Binomial distribution denoted by:

Bin(s|N, θ) ≜
(
N

s

)
θs(1− θ)N−s
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Bernoulli Distribution for Binary Classification

Classification Using Bernoulli Distribution
Suppose we want to predict a binary variable y ∈ {0, 1} given some inputs
x ∈ X . We can use Bernoulli Distribution to model conditional probability
distribution as:

p(y|x,θ) = Ber(y|f(x;θ))

where 0 ≤ f(x;θ) ≤ 1 is some function that predicts the mean parameter of
the output distribution.
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Sigmoid (Logistic) Function [4]

Sigmoid (Logistic) Function
Sigmoid (logistic) function, denoted σ : R 7→ [0, 1], is defined as:σ(a) ≜ 1

1+e−a

Sigmoid Function vs. Heaviside Step Function
The sigmoid function can be thought of as a soft version of the heaviside step
function, defined by: H(a) ≜ I(a > 0)

−10 −5 0 5 10

a

0.0

0.2

0.4

0.6

0.8

1.0

σ
(a

)

−10 −5 0 5 10

a

0.0

0.2

0.4

0.6

0.8

1.0

H
(a

)

Figure: Sigmoid (Logistic) Function vs Heaviside Step Function

Sajjad Amini IML-S02 Sample PMF and Classification 40 / 56



Bernoulli Distribution for Binary Classification

Classification Using Bernoulli Distribution
Suppose we want to predict a binary variable y ∈ {0, 1} given some inputs
x ∈ X . We can use Bernoulli Distribution to model conditional probability
distribution as:

p(y|x,θ) = Ber(y|f(x;θ))

To avoid 0 ≤ f(x;θ) ≤ 1 constraints, we can use the following conditional
probability distribution:

p(y|x,θ) = Ber(y|σ(f(x;θ)))

Now f(x;θ) is an arbitrary function.
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Bernoulli Distribution for Binary Classification

From Sigmoid to Logit
Assume a = f(x;θ). Based on classification model p(y|x,θ) = Ber(y|f(x;θ)),
we have:

p(y = 1|x;θ) = 1

1 + e−a
= σ(a)

p(y = 0|x;θ) = 1− 1

1 + e−a
= σ(−a)

Also if we define p ≜ p(y = 1|x;θ), we can calculate a as:

a = σ−1(p) = log

(
p

1− p

)

Value a and function σ−1(·) are known as log odds and logit function, respec-
tively.
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Iris Classification
50 Chapter 2. Probability: Univariate Models

Figure 2.11: Logistic regression applied to a 1-dimensional, 2-class version of the Iris dataset. Generated by
code at figures.probml.ai/book1/2.11. Adapted from Figure 4.23 of [Gér19].

maps the whole real line to [0, 1], which is necessary for the output to be interpreted as a probability
(and hence a valid value for the Bernoulli parameter ✓). The sigmoid function can be thought of as a
“soft” version of the heaviside step function, defined by

H(a) , I (a > 0) (2.80)

as shown in Figure 2.10b.
Plugging the definition of the sigmoid function into Equation (2.78) we get

p(y = 1|x,✓) =
1

1 + e�a
=

ea

1 + ea
= �(a) (2.81)

p(y = 0|x,✓) = 1� 1

1 + e�a
=

e�a

1 + e�a
=

1

1 + ea
= �(�a) (2.82)

The quantity a is equal to the log odds, log( p
1�p ), where p = p(y = 1|x;✓). To see this, note that

log

✓
p

1� p

◆
= log

✓
ea

1 + ea

1 + ea

1

◆
= log(ea) = a (2.83)

The logistic function or sigmoid function maps the log-odds a to p:

p = logistic(a) = �(a) , 1

1 + e�a
=

ea

1 + ea
(2.84)

The inverse of this is called the logit function, and maps p to the log-odds a:

a = logit(p) = ��1(p) , log

✓
p

1� p

◆
(2.85)

See Table 2.3 for some useful properties of these functions.

2.4.3 Binary logistic regression

In this section, we use a conditional Bernoulli model, where we use a linear predictor of the form
f(x;✓) = wTx + b. Thus the model has the form

p(y|x;✓) = Ber(y|�(wTx + b)) (2.86)

Draft of “Probabilistic Machine Learning: An Introduction”. February 8, 2022

Figure: Iris classification using sigmoid function
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Categorical Distribution

Categorical Distribution
Consider a distribution over a finite set of labels, Y = {1, . . . , C}. Let Y denote
the label in one trial. Then random variable Y is distributed as Categorical
distribution denoted by:

Y ∼ Cat(θ)

The PMF of this distribution is:

Cat(y|θ) ≜
C∏

c=1

θI(y=c)
c

where 0 ≤ θc ≤ 1 and
∑C

c=1 θc = 1.
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Categorical Distribution Using one-hot Vector

One-hot encoding

Y =





1 → [1, 0, 0, . . . , 0, 0]T ∈ RC

2 → [0, 1, 0, . . . , 0, 0]T ∈ RC

...
...

C − 1 → [0, 0, 0, . . . , 1, 0]T ∈ RC

C → [0, 0, 0, . . . , 0, 1]T ∈ RC

Categorical Distribution (Revisited)
If we define the one-hot coded vector y we have Categorical Distribution as:

Cat(y|θ) ≜
C∏

c=1

θyc
c

where 0 ≤ θc ≤ 1 and
∑C

c=1 θc = 1.
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Multinomial Distribution

Multinomial Distribution
Consider observing a set of N Categorical trials, denoted Yn ∼ Cat(·|θ). Let
us define random vector S ≜

∑N
n=1 yn. Then random vector S is distributed

as Multinomial distribution denoted by:

Mu(s|N,θ) ≜
(

N

s1, . . . , sC

) C∏

c=1

θscc

where
(

N

s1, . . . , sC

)
≜ N !

s1!...sC !

Multinomial Distribution
For a multinomial distribution we have:∑C

c=1 sc = N

If N = 1 then multinomial distribution becomes the categorical
distribution.
If C = 2 then multinomial distribution becomes the binomial distribution.
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Categorical Distribution for Multiclass Classification

Classification Using Categorical Distribution
Suppose we want to predict one-hot coded vecotr of multiclass label y ∈
{1, . . . , C}, denoted y, given some inputs x ∈ X . We can use Categorical
Distribution to model conditional probability distribution as:

p(y|x,θ) = Cat(y|f(x;θ))

where 0 ≤ fc(x;θ) ≤ 1, c = 1, . . . , C and
∑C

c=1 fc(x;θ) = 1. This function
predicts the parameter of the output distribution.
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Softmax Function [5]

Softmax Function
Softmax function, denoted S : RC 7→ [0, 1]C , is defined as:

S(a) ≜
[

ea1

∑C
c′=1 e

ac′
, . . . ,

eaC

∑C
c′=1 e

ac′

]
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Figure: Softmax
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Categorical Distribution for Multiclass Classification

Classification Using Categorical Distribution
Suppose we want to predict a variable y ∈ {1, . . . , C} given some inputs x ∈ X .
We can use Categorical Distribution to model conditional probability distribu-
tion as:

p(y|x,θ) = Cat(y|f(x;θ))

To avoid 0 ≤ fc(x;θ) ≤ 1, c = 1, . . . , C and
∑C

c=1 fc(x;θ) = 1 constraints, we
can use the following conditional probability distribution:

p(y|x,θ) = Cat(y|S(f(x;θ)))

Now f(x;θ) is an arbitrary function.
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Section 7

Sample PDF
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Gaussian Distribution [6]

Gaussian (Normal) Distribution
The PDF for Gaussian (normal) distribution is:

N (y|µ, σ2) ≜ 1√
2πσ2

e−
1

2σ2 (y−µ)2

where µ and σ2 are mean and variance, respectively.
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Figure: Normal Distribution
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Laplace Distribution [7]

Laplace Distribution
The PDF for Laplace distribution is:

Lap(y|µ,b) ≜ 1

2b
e(−

|y−µ|
b )

where µ and b > 0 are location and scale, respectively.
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Figure: Laplace Distribution (Varying location and scale )
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Section 8

Robust PDFs
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Robust Distributions

Heavy-tailed distribution
Assume random variable X. The right tail distribution function is defined as
f̄(x) = Pr(X > x). Random variable X is sain to be right heavy tailed if:

lim
x⇒∞

etxf̄(x) = ∞

Heavy-tailed Distribution
Random variables with Student t and Laplace distributions are heavy-tailed
while Gaussian random variable is light-tailed.
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Robust Distributions
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