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Probability Interpretations
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Probability Intery

Frequentist (Long Run) Interpretation [1]

Probability are defined with respect to potentially infinite repetition of experi-
ments. [2]

@ Probability of heads in coin tossing: If we repeat the experiment of
flipping a coin (at ‘random’), the limit of the number of heads that
occurred over the number of tosses is defined as the probability of a head
occurring.’
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Probability Intery

Bayesian (Degree of Belief) Interpretation

Probability is a tool to quantify our uncertainty about something (This defini-
tion is fundamentally related to information rather than repeated trials.)
e The probability that a user likes or dislikes movies in the database:

e This probability cannot be interpreted via repeated trials.
o Assume that the user behaves consistently with other users. Then we can
make a reasonable guess about whether he/she likes or dislikes the movie.

v
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Random Variable
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Random Variables and Events

Random Variable

Suppose X represents some quantity of interest. If the value of X is unknown
and/or could change, we call it a Random Variable (RV).

Sample Space or State Space

The set of all possible values for Random variable X, denoted X, is known as
the sample space or state space.

An event is a set of values from a random variable.

Sajjad Amini IML-S02 Random Variable



Random Variable
@ X as the result of rolling a dice

o T as the room temperature

Sample Space or State Space
e X =1{1,2,3,4,5,6} for random variable X

e 7 = R for random variable T'

@ Seeing an odd number in dice rolling experiment (X € {1,3,5})

e The temperature room is positive (1 € RT)
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Discrete Random Variable

Discrete Random Variable

Random variable X is Discrete if its sample space X is finite or countably
infinite.

Probability Mass Function

Consider z to be an arbitrary element in the sample space of random variable
X. Probability mass function assigns p(x) to z as:

p(z) £Pr(X =12), 2€ X
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Discrete Random Variable

Joint Distribution

Suppose a set of random variables {X1,...,X,,}. We can define the joint dis-
tribution of these random variables as:

T € X
p(z1,...,2n) 2Pr( X1 =21,..., X0 = x,), :
T, € X,

Marginal Distribution

Given a joint distribution, we define the marginal distribution of random vari-
able X; as:

p(z;) = Z Z Z Z p(T1,. .. Ty)

T1 €A Ti—1E€EXi—1 Tit1€Xi41 Tp €EXp
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Continuous Random Variable

Continuous Random Variable

Random variable X is Continuous if its sample space X is infinite and uncount-
able (Typically sample space is R).

Cumulative Distribution Function

Consider z to be an arbitrary real value number. Cumulative Distribution
Function assigns P(z) to x as:

P(z)£Pr(X <z), z€R

Probability Density Function (pdf)

Consider x to be an arbitrary real value number. Probability Density Function
is defined using CDF as:
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Continuous Random Varia

Joint Distribution

Suppose a set of random variables {X71,..., X, }. We can define the joint distribution of these
random variables as:
1 €ER
2 ar
p(x1,...,2n) = Pr(X1 <z1,...,Xn < zn),
dxi...dxn .
T, € R

Marginal Distribution

Given a joint distribution, we define the marginal distribution of random variable X; as:

oo oo} o0 oo
p(x;) :/ / / / p(x1,...,zn)dx1 ... dei_1dxiy ... dan
T]=—00 zj_1=—00 Jx;y1=—00 Tp=—00
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Bayes Rule
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Conditional Probability (Bayes Rule)

Conditional Probability

The probability of event x conditioned on knowing event y is defined as:

s P(@,Y)

p(zly)

If p(y) = 0 then p(x|y) is not defined. Equivalently we have:

plylz)p(z)

p(e,y) = p(al)py) = plylalp(e) = plely) = 200
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‘hine Learning

Naming Bayes Rule Factors

Likelihood Prior

Posterior —N— ~ =~
~—= _ plylz) pz)
p(zly) =
p(y)
~—~
Marginal
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Bayes Rule for Machine Learning

Unsupervised learning

Replace {m —0

, then:
y = {zi}i,

ol 10e)
PO == e

Coin Tossing

| \

Assume:
e X;: Random variable representing the result of i-th tossing experiment
@ 0: Bernoulli parameter

Then:

A0
POREH) == )
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Bayes Rule for Machine Learning

Supervised learning

x— 0
Replace < y — {y;:}¥, , then:
Conditioning on {z;}¥,

p({yi}10. {zi})p(6|{=:})
p{yitl{zi})

_ T p(y:|6, )| p(6)
p{yi}[{z:})

p(O{yi}, {zi}) =
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Bayes Rule

Bayes Rule Interpreting [1]

Consider a dart board with 20 equal sections and the following RV:

X : Randy hit region 5

e Prior: Randy hits any of 20 sections at random.
o p(X=1)=35
o Knowledge (Evidence): Randy hasn’t hit region number 20.

e Posterior:

p(X = True,not 20)  p(X = True)

p(X = Truelnot 20) = =

p(not 20) p(not 20)
120 1
~19/20 19
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Independence

Independence

Two random variable X and Y are unconditionally independent or marginally
independent, denoted X 1 Y | iff we can represent the joint distribution as the
product of the two marginal distribution. Thus we have:

X 1Y < p(x,y) = pa)ply)

A,

Equivalent Definitions

The following items are equivalent to independence:
o p(zly) = p(x)
° p(ylz) = p(y)
° p(z,y) = kf(z)g(y)

: constant
(+) : positive function
(+) : positive function

o k
o f
°4g

\
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Independence

Independence [1]
Consider binary random variables X and Y with the following PMF":

pX=a;Y=1)=1, p(X=a;Y =2)=0
PX=bY =2 =0p(X =bY =1)=0

e p(z)p(y) = p(x,y) for all z € X and y € Y, thus the RVs are independent.

@ X and Y are always in the same joint state.

Sajjad Amini IML-S02 Independence



Independence

Independence [1]
Consider binary random variables X and Y with the following PMF":

pX=a;Y=1)=1, p(X=a;Y =2)=0
PX=bY =2 =0p(X =bY =1)=0

e p(z)p(y) = p(x,y) for all z € X and y € Y, thus the RVs are independent.

@ X and Y are always in the same joint state.

It is not a Contradiction

X and Y are independent if knowing the state of variable Y tells you something
more than you knew before about variable X (you knew before means p(z,y))

v
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Conditional Independence

Conditional Independence

Two random variable X and Y are conditionally independent given Z, denoted
X LY|Z,if we can represent the conditional joint distribution as the product
of the two conditional marginal distribution. Thus we have:

X LY|Z < plx,y|z) = p(z|2)p(y|2)

If we have the following conditions:
e X LY|Z
o Z =10

then X and Y are unconditionally independent.
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Independence Implication

Independence Implication [1]

Suppose three random variables X, Y and Z. we have the following conditions:

e X 1Y
oY 1 Z
Does this conditions imply X 1 Z7?
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endence Implicats

Independence Implication [1]

Suppose three random variables X, Y and Z. we have the following conditions:

e X 1Y
oY 1 Z
Does this conditions imply X 1 Z7

NO! Assume p(z,y, z) = p(y)p(z, 2), then we can show clearly that the condi-
tions hold while X is not necessarily independent of Z.

v
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Conditional Independence

Temperature
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Figure: Conditional Independence (common cause)
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Probabilistic Reasoning (Inference) [1]

Probabilistic Reasoning
Consider the following two steps:
o Identifying all relevant random variables X, ..., X, in the environment

e Building a probabilistic model p(x1, ..., x,) of their interaction
Then inference is performed by:

o Introducing evidence that sets some variables in known state

e Computing probabilities of interest, conditioned on the evidence.

Probabilistic Reasoning

The rules of probability combined with Bayes’ rule make for a complete proba-
bilistic reasoning system.
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Hamburger [1]

Hamburger
Consider the following RVs:
@ K: RV showing that a person have Kreuzfeld-Jacob disease (KJ)
@ H: RV showing that a person is a hamburgers eater
We have also the following probabilities:
o Prior: p(K =1) = 15500
@ Likelihood: p(H =1|K =1) =0.9

Suppose p(H = 1) = 0.5. Whats is the probability of p(K = 1|H = 1).
Solution:

p(K = 1|H = 1)

_pH=1LK=1) pH=1K=1pK=1)
p(H =1) p(H =1)

SO
__ 10 100000 __ -5
=" = 1.8 x 10

2
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Hamburger [1]

Consider the following RVs:
@ K: The probability that a person has Kreuzfeld-Jacob disease (KJ)
@ H: The probability that a person is a hamburgers eater
We have also the following probabilities:
o Prior: p(K =1) = 150550
@ Likelihood: p(H = 1|K =1) =0.9

Suppose p(H = 1) = 0.001. Whats is the probability of p(K = 1|H = 1).
Solution:

WE=D T pE=D
9 X 1
— 10 1100000 ~ 1/100
1000

Intuition: This example shows a stornger relation between eating hamburgers and KJ.
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Inspector Challenge [1]

Inspector Challenge

Consider the following RVs:
@ K: The murder uses a knife
@ B: Butler is the murder
@ M: Maid is the murder
Note that B and M are independent. We have also the following probabilities:
@ Prior p(B=1)=0.6, p(M =1)=0.2
@ Likelihood

p(K=1B=0,M=0)=0.3, p(K=1B=0,M=1)=0.2
p(K=1B=1,M =0)=0.6, p(K=1B=1,M =1)=0.1
Assume that the inspector finds that the murder was done using knife. What is the probability

that Bob is the murderl.
Solution:

p(B:1|K:1)=Zp(B:1,M:m\K=1)=ZP(B:1];(J\;I(:=T)’K:1)

_ p(B=1S,p(K=1B=1,M=m)p(M =m)
>, p(B=b)%,, p(K = 1|B = b, M = m)p(M = m)

~ 0.73

Intuition: Knowing that the knife was the murder weapon strengthens our belief that the butler
did it.

o




Resolution Reasoning

Resolution Reasoning

Resolution reasoning states that if A = B and B = C, then we can infere
A=C.

Resolution Reasoning

Consider the following statements:

@ Statement A: All apples are fruit= p(F =1|A=1)=1
@ Statement B: All fruits grow on trees= p(T =1|F =1) =1

Show that p(T'=1]A=1) = 1.
Solution:

p(T=1A=1)=> p(T=1,F=fl[A=1)=> p(T=1F =f,A=1)p(F = f[A=1)
f f

=0 =il =il
=p(T=1F=0)p(F=0A=1)+p(T=1F=1)p(F=1A=1)=1




Inverse Modus Ponens|1|

Inverse Modus Ponens

According to Logic, from the statement If A is true then B is true, one may
deduce that if B is false then A is false.

V.

Inverse Modus Ponens
Consider the following statement:

o If A is true then B is true: p(B=1|A=1) =1
Show that p(A=0|B=0) =1

Solution:
_ o B o p(A=1,B=0)
p(A=0B=0)=1-p(A=1B=0)=1- (B =0)
- p(B =0[A=1)p(A=1) _
N p(B=0A=1)p(A=1)+p(B=0[A=0)p(A=0)
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Consider the following RVs:

@ Y: RV showing that a person is infected with COVID-19
@ X: RV showing person COVID-19 test result.
We have also the following probabilities:

@ Prior: p(Y = 1) = 0.1 (prevalence of the disease in the area)
@ Likelihood:

p(X =1]Y = 1) = 0.875, p(X = 0|Y =0) = 0.975

Calculate the posterior p(Y = 1|X = 1) and p(Y = 1|X = 0)

Solution:

p(X = 1]Y = p(¥ = 1)
P(X = 1Y = )p(Y = 1) + p(X = 1Y = 0)p(Y = 0)
0.875 x 0.1
= = 0.795
0.875 x 0.1 4+ 0.025 x 0.9
P(X =0y = Hp(¥ = 1)
P(X = 0Y = Dp(Y = 1) + p(X = 0]Y = 0)p(Y = 0)
0.125 x 0.1

_ =0.014
0.125 x 0.1 4 0.975 x 0.9

p(Y =1|X = 1)

p(Y = 11X = 0)
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Toward to Classification

Several Definitions:
We can assume the previous example as a binary classification problem where:
@ Y : True state of infection
@ X : Test result showing the state of infection
Based on this assumption we can have the following definitions:
e True Positive Rate (TPR) or Sensitivity: p(X = 1|Y = 1)
e True Negative Rate (TNR) or Specificity: p(X = 0|Y = 0)
o Flase Positive Rate (FPR): p(X =1]Y =0)=1—-TNR
Flase Negative Rate (FNR): p(X =0|Y =1)=1—-TPR
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Sample PMF and Classification

Sajjad Amini IML-S02 Sample PMF and Cla:



Bernoulli Distribution

Bernoulli Distribution

Consider tossing a coin, where the probability of event that it lands heads is
given by 0 < 6 < 1. Let Y = 1 denote this event. Then random variable Y is
distributed as Bernoulli distribution denoted by:

Y ~ Ber(9)
The PMF of this distribution is:
Beryley =4}~ 7 ¥=0
6 ify=1
=6Y(1—0)' Y

where 0 <0 <1
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Binomial Distribution

Binomial Distribution

Consider observing a set of N Bernoulli trials, denoted Y;, ~ Ber(:|). Let

us define random variable S = 25:1 I(Y,, = 1). Then random variable S is

distributed as Binomial distribution denoted by:

Bin(s|N, 6) 2 ({Z) 6°(1 — 6N~

Sajjad Amini IML-S02 Sample PMF and Cla,



Bernoulli Distribution for Binary Classification

sification Using Bernoulli Distribution

Suppose we want to predict a binary variable y € {0,1} given some inputs
x € X. We can use Bernoulli Distribution to model conditional probability
distribution as:

p(ylz,0) = Ber(y|f(z;0))

where 0 < f(x;0) < 1 is some function that predicts the mean parameter of
the output distribution.

o
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Sigmoid (Logistic) Function [4]

Sigmoid (Logistic) Function

1

Sigmoid (logistic) function, denoted o : R + [0, 1], is defined as:o(a) = =

v

Sigmoid Function vs. Heaviside Step Function

The sigmoid function can be thought of as a soft version of the heaviside step
function, defined by: H(a) £ I(a > 0)

v

1.0 1.0
0.8 0.8
<061 < 061
® 0.4 T 044
0.2 0.2
UVOA T T T T UVOA T
10 -5 0 5 10 10 -5 0 5 10
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Bernoulli Distribution for Binary Classification

Classification Using Bernoulli Distribution

Suppose we want to predict a binary variable y € {0,1} given some inputs
x € X. We can use Bernoulli Distribution to model conditional probability
distribution as:

p(y|x,0) = Ber(y|f(z;0))

To avoid 0 < f(x;60) < 1 constraints, we can use the following conditional
probability distribution:

p(yle,8) = Ber(ylo(f(x;0)))

Now f(x;0) is an arbitrary function.
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Bernoulli Distribution for Binary Classification

From Sigmoid to Logit

Assume a = f(x;0). Based on classification model p(y|x, 8) = Ber(y|f(x;0)),
we have:

1
:1 ’0 =S =
ply = 1jz;8) = === = o(a)
1
Py = 0le;6) =1 - - = o(~a)

Also if we define p £ p(y = 1|x; ), we can calculate a as:

a=0""(p) =log <%)

Value a and function o~1(-) are known as log odds and logit function, respec-
tively.
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Iris Classification
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Figure: Iris classification using sigmoid function
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Categorical Distribution

Categorical Distribution

Consider a distribution over a finite set of labels, Y = {1,...,C}. Let Y denote
the label in one trial. Then random variable Y is distributed as Categorical
distribution denoted by:

Y ~ Cat(0)

The PMF of this distribution is:

C
Cat(y|0) = [ ] 6=

c=1

where 0 < 0. < 1 and chzl 0,=1.
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Categorical Distribution Using one-hot Vector

One-hot encoding

1 — (1
2 — [0,

Categorical Distribution (Revisited)

If we define the one-hot coded vector y we have Categorical Distribution as:

C
Cat(y|6) 2 [ o2

c=1

where 0 < 0, <1and Y, 6. = 1.
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Multinomial Distribution

Multinomial Distribution

Consider observing a set of N Categorical trials, denoted Y;, ~ Cat(:|0). Let

us define random vector S = anzl Y,,- Then random vector S is distributed
as Multinomial distribution denoted by:

N C
Mu(s|N,8) £ (Sl SC) 116
vn80) 1A

Multinomial Distribution
For a multinomial distribution we have:
(o]
® Zc:l e = N

o If N =1 then multinomial distribution becomes the categorical
distribution.

o If C' = 2 then multinomial distribution becomes the bmomlal dlstrlbutlon
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Categorical Distribution for Multiclass Classification

Classification Using Categorical Distribution

Suppose we want to predict one-hot coded vecotr of multiclass label y €
{1,...,C}, denoted y, given some inputs € X. We can use Categorical
Distribution to model conditional probability distribution as:

p(ylz,0) = Cat(y|f(x;0))

where 0 < fe(z;0) <1, ¢c=1,...,C and Zle fe(x;0) = 1. This function
predicts the parameter of the output distribution.

v
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Softmax Function [5]

Softmax function, denoted S : R® + [0,1]¢, is defined as:

ay ac
@ e
A
S(a) = o R e p
Zc/:le ¢ Zc’:le ¢
a S(a)
4 0.6
0.51
31 =
= 2 Z 03
< 31
= S
N S_: 0.2
I I 01
0 * 0.0 4 L] * T
o 1 2 3 4 5 0 1 2 3 1 5
Index Index

Figure: Softmax
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Categorical Distribution for Multiclass Classification

Classification Using Categorical Distribution

Suppose we want to predict a variable y € {1,...,C} given some inputs & € X.
We can use Categorical Distribution to model conditional probability distribu-
tion as:

p(y|z,0) = Cat(y|f(z;0))

To avoid 0 < f.(x;0) <1, c=1,...,C and ZCC=1 fe(x; 0) = 1 constraints, we
can use the following conditional probability distribution:

p(yle,0) = Cat(y|S(f(;0)))

Now f(x;0) is an arbitrary function.
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Gaussian Distribution [6]

Gaussian (Normal) Distribution
o The PDF for Gaussian (normal) distribution is:
2ya 1 w2
Nylp,0%) = == 27"

V2mo?

where 1 and 02 are mean and variance, respectively.

049 p=0,02=10 — 4=0.02=10
— p=4,02=10 0.8 — 4=0,02=02
034~ n=-30"=10 Py — p=0,02=20
Nb '\\b 064
< .24 Y
502 S04
= 0.1 = 0.2
040‘ T T T T 004 T T T T T
—10 =5 0 5 10 —10 -5 0 5 10
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2 1 (7 Iy;ul)

Lap(y|u, b) P

where 1 and b > 0 are location and scale, respectively.

057 — =0b=10 2.5 — u=0,b=10
— u=4,b=10 — 4=0b=02
049 — p=-30=10 2.0 — 4=0,b=20
= =
=03 < 1.5
= =
% 0.2 % 1.04
— —
0.1 0.5
0.0 0.04
—10 -5 0 5 10 —10 =5 0 5 10
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Robust Distributions

Heavy-tailed distribution

Assume random variable X. The right tail distribution function is defined as

f(z) = Pr(X > z). Random variable X is sain to be right heavy tailed if:

2 tx £ _
xlgroloe f(z) =0

Heavy-tailed Distribution

Random variables with Student t and Laplace distributions are heavy-tailed
while Gaussian random variable is light-tailed.

o
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Robust Distributions

0.60 4

0.454
£ 0.301
B
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(a) Data without outlier
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0.60 4
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B
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(b) Data with outlier
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