Software Development
Methodologies

| ecturer: Raman Ramsin

Lecture 14
Process Antipatterns

Department of Computer Engineering Sharif University of Technology



Software Development Methodologies

Antipatterns

m Compiled and presented by Brown et al. in 1998.

m "An Antipattern describes a commonly occurring solution to a
problem that generates decidedly negative consequences."

m The Antipattern may be the result of a manager or developer:
not knowing any better,

not having sufficient knowledge or experience in solving a particular
type of problem, or

having applied a perfectly good pattern in the wrong context.

Department of Computer Engineering Sharif University of Technology



Antipatterns: Viewpoints

m Antipatterns are presented from three perspectives — developer,
architect, and manager:

Development Antipatterns: comprise technical problems and
solutions that are encountered by programmers.

Architectural Antipatterns: identify and resolve common problems
in how systems are structured.

Managerial Antipatterns: address common problems in software
processes and development organizations.

m Process Antipatterns deal with common problems in engineering
or enacting a development process, and can belong to any of the
above viewpoints.

Department of Computer Engineering Sharif University of Technology



-
Process Antipatterns: Development

m Lava Flow: Dead code and forgotten design information is frozen in an
ever-changing design.

m Ambiguous Viewpoint: Object-oriented analysis and design models
presented without clarifying the viewpoint represented by the model.

m Golden Hammer: A familiar technology or concept applied obsessively to
many software problems.

m Walking through a Minefield: Using today’s software technology is
analogous to walking through a high-tech mine field: bugs abound.

= Mushroom Management: Keeping system developers isolated from the
system’s end users.

Department of Computer Engineering Sharif University of Technology



Software Development Methodologies

Process Antipatterns: Development — Lava Flow

m Lava Flow: Dead code and forgotten design information is frozen in an ever-
changing design.

m Causes:
R&D code placed into production without configuration management.
Uncontrolled distribution of unfinished code.
Implementation of several trial approaches for implementing a function.
Single-developer (lone wolf) design or written code.
Lack of configuration management or process management policies.
Lack of architecture, or non-architecture-driven development.
Repetitive development process.
Architectural scars: Architectural mistakes not removed.

m To solve: include a configuration management process that eliminates dead code
and evolves or refactors design toward increasing quality.

m To avoid: ensure that sound architecture precedes code development.

Department of Computer Engineering Sharif University of Technology



Software Development Methodologies

Process Antipatterns: Development — Ambiguous Viewpoint

m Ambiguous Viewpoint: Object-oriented analysis and design (OOA&D)
models that are presented without clarifying the viewpoint represented by
the model.

m There are three fundamental viewpoints for OOA&D models:
Business viewpoint (Problem-Domain/Conceptual/Essential)
Specification viewpoint (System)

Implementation viewpoint (Software/Design)

m By default, OOA&D models denote an implementation viewpoint that is
potentially the least useful. Mixed viewpoints don‘t allow the fundamental
separation of interfaces from implementation details.

m Solution: Separate Viewpoints explicitly.

Department of Computer Engineering Sharif University of Technology



Software Development Methodologies

Process Antipatterns: Development — Golden Hammer

m Golden Hammer: A Golden Hammer is a familiar technology
or concept applied obsessively to many software problems.

m "When your only tool is a hammer, everything else is a nail."

m Solution:

expanding the knowledge of developers through education,
training, and book study groups to expose developers to
alternative technologies and approaches.

Department of Computer Engineering Sharif University of Technology



L] Software Development Methodologies

Process Antipatterns: Development — walking through a Minefield

s Walking through a Minefield: Using today’s software technology is
analogous to walking through a high-tech mine field: Numerous bugs
are found in released software products.

m Solution:

Proper investment in software testing is required to make systems
relatively bug-free. In some progressive companies, the size of testing
staff exceeds programming staff.

The most important change to make to testing procedures is
configuration control of test cases.

automation of test execution and test design.

Department of Computer Engineering Sharif University of Technology



L] Software Development Methodologies

Process Antipatterns: Development — Mushroom Management

= Mushroom Management: In some architecture and management circles,
there is an explicit policy to keep system developers isolated from the
system’s end users.

m Requirements are passed second-hand through intermediaries, including
architects, managers, or requirements analysts.

m Motto: “Keep your developers in the dark and feed them fertilizer.”

m Mushroom Management assumes that requirements are well understood by
both end users and the software project at project inception. It is assumed
that requirements are stable.

m Solution:

Risk-driven development: spiral development process based upon prototyping
and user feedback.

Department of Computer Engineering Sharif University of Technology



Software Development Methodologies

Process Antipatterns: Architectural

m Cover Your Assets: Document-driven software processes that
produce less-than-useful requirements and specifications because the
authors evade making important decisions.

m Architecture by Implication: the lack of architecture specifications
for a system under development.

m Design by Committee: Design by Committee creates overly
complex architectures that lack coherence.

m Reinvent the Wheel: The pervasive lack of experience transfer
between software projects leads to substantial reinvention.

m The Grand Old Duke of York: Egalitarian software processes often
ignore people’s talents to the detriment of the project: We need
abstractionists as well as implementationists.

Department of Computer Engineering Sharif University of Technology

10



L] Software Development Methodologies

Process Antipatterns: Architectural — Cover Your Assets

m Cover Your Assets: Document-driven software processes often produce

less-than-useful requirements and specifications because the authors evade
making important decisions.

In order to avoid making a mistake, the authors take a safer course and
elaborate upon alternatives.

m Solution:

Enforce the production of Architecture blueprints: abstractions of information
systems that facilitate communication of requirements and technical plans
between the users and developers.

= An architecture blueprint is a small set of diagrams and tables that

communicate the operational, technical, and systems architecture of current
and future extensions to information systems.

= A typical blueprint comprises no more than a dozen diagrams and tables,
and can be presented in an hour or less as a viewgraph presentation.

Department of Computer Engineering 11 Sharif University of Technology



L] Software Development Methodologies

Process Antipatterns: Architectural — Architecture by Implication

m Architecture by Implication: the lack of architecture
specifications for a system under development.

Usually, the architects responsible for the project have experience with
previous system construction, and therefore assume that documentation
IS unnecessary.

Management of risk in follow-on system development is often
overlooked due to overconfidence and recent system successes.

m Solution:

A general architecture definition approach that is tailored to each
application system can help identify unique requirements and risk areas.

Department of Computer Engineering Sharif University of Technology

12



L] Software Development Methodologies

Process Antipatterns: Architectural — Design By Committee

= Design by Committee: The classic Antipattern from standards bodies,
Deﬁlgn by Committee creates overly complex architectures that lack
coherence:

A complex software design that is the product of a committee process.

It has so many features and variations that it is infeasible for any group of
developers to realize the specifications in a reasonable time frame.

Even if the designs were possible, it would not be possible to test the full design
guig to excessive complexity, ambiguities, overconstraint, and other specification
efects.

The design would lack conceptual clarity because so many people contributed to
it and extended it during its creation.

m Solution:

Clarification of architectural roles and improved process facilitation can refactor
bad meeting processes into highly productive events.

Department of Computer Engineering 13 Sharif University of Technology



L] Software Development Methodologies

Process Antipatterns: Architectural — Reinvent the Wheel

m Reinvent the Wheel: The pervasive lack of experience
transfer between software projects leads to substantial
reinvention.

m "Our problem is unique.”

m Virtually all systems development is done in isolation of projects
and systems with overlapping functionality.

= Solution:

Design knowledge buried in legacy assets can be leveraged to reduce
time-to-market, cost, and risk.

Department of Computer Engineering Sharif University of Technology

14



L] Software Development Methodologies

Process Antipatterns: Architectural — Grand Old Duke of York

m The Grand Old Duke of York: E?alitarian software processes often ignore
people’s talents to the detriment of the project.

Programming skill does not equate to skill in defining abstractions. There appear
to be two distinct groups involved in software development: abstractionists
(Architects) and their counterparts the /implementationists.

According to experts, implementationists outnumber abstractionists
approximately 4 to 1. Thus, unfortunately, abstractionists are often outvoted.

Primary consequence: software designs with excessive complexity, which make
the system difficult to develop, modify, extend, document, and test.

Software usability and system maintenance are impacted by a failure to use
effective abstraction principles.

m Solution:

Identifying and differentiating among distinct development roles, and giving
architects control over architectural design.

Department of Computer Engineering Sharif University of Technology

15



Software Development Methodologies

Process Antipatterns: Management

m Analysis Paralysis: Striving for perfection and completeness
in the analysis phase leading to project gridlock and excessive
work on requirements/models.

m Death by Planning: Excessive planning for software projects
leading to complex schedules that cause downstream problems.

= Project Mismanagement: Inattention to the management of
software development processes causing directionlessness and
other symptoms. Proper monitoring and control of software
projects is necessary.

Department of Computer Engineering Sharif University of Technology

16



Software Development Methodologies

Process Antipatterns: Management — Analysis Paralysis

m Analysis Paralysis: Striving for perfection and completeness
in the analysis phase often leads to project gridlock and
excessive thrashing of requirements/models.

m Developers new to object-oriented methods do too much up-
front analysis and design, using analysis modeling as an
exercise to feel comfortable in the problem domain.

m A key indicator of Analysis Paralysis is that the analysis
documents no longer make sense to the domain experts.

= Solution:

Iterative-incremental development processes that defer detailed
analysis until the knowledge is needed.

Department of Computer Engineering Sharif University of Technology

17



Software Development Methodologies —

Process Antipatterns: Management — Death by Planning

m Death by Planning: Excessive planning for software projects leading to
complex schedules t \at cause downstream problems.

m Solution:

Deliverable-based planning, supplemented with validation milestones.
Plans should be reviewed and revised on a weekly basis.

Department of Computer Engineering Sharif University of Technology

18



L] Software Development Methodologies

Process Antipatterns: Management — Project Mismanagement

= Project Mismanagement: Inattention to the management of
software development processes can cause directionlessness and
other symptoms.

m Proper monitoring and control of software projects is necessary for
successful development activities.

m Often, key activities are overlooked or minimized. These include
technical planning (architecture) and quality-control activities
(inspection and test).

m Solution:

Proper risk management incorporated in the project management
process.

Department of Computer Engineering Sharif University of Technology

19



-
References

m Brown, W. J., Malveau, R. C., McCormick, H., Mowbray, T.,
Antipatterns. Refactoring Software, Architectures, and
Projects in Crisis. Wiley, 1998.

m Neill, C. 1., Laplante, P. A., Antipatterns. Identification,
Refactoring, and Management, CRC Press, 2005.

m Neill, C. J., Laplante, P. A., DeFranco, J. F., Antipatterns:
Managing Software Organizations and People. CRC Press,
2012.

Department of Computer Engineering Sharif University of Technology

20



