
Department of Computer Engineering
1

Sharif University of Technology

Software Development 

Methodologies

Lecturer: Raman Ramsin

Lecture 14 

Process Antipatterns



Software Development Methodologies – Lecture 14

Department of Computer Engineering
2

Sharif University of Technology

Antipatterns

 Compiled and presented by Brown et al. in 1998.

 "An Antipattern describes a commonly occurring solution to a 
problem that generates decidedly negative consequences." 

 The Antipattern may be the result of a manager or developer: 

 not knowing any better, 

 not having sufficient knowledge or experience in solving a particular 
type of problem, or 

 having applied a perfectly good pattern in the wrong context. 



Software Development Methodologies – Lecture 14

Department of Computer Engineering
3

Sharif University of Technology

Antipatterns: Viewpoints

 Antipatterns are presented from three perspectives – developer, 
architect, and manager:

 Development Antipatterns: comprise technical problems and 
solutions that are encountered by programmers.

 Architectural Antipatterns: identify and resolve common problems 
in how systems are structured.

 Managerial Antipatterns: address common problems in software 
processes and development organizations.

 Process Antipatterns deal with common problems in engineering 
or enacting a development process, and can belong to any of the 
above viewpoints.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
4

Sharif University of Technology

Process Antipatterns: Development

 Lava Flow: Dead code and forgotten design information is frozen in an 
ever-changing design. 

 Ambiguous Viewpoint: Object-oriented analysis and design models 
presented without clarifying the viewpoint represented by the model. 

 Golden Hammer: A familiar technology or concept applied obsessively to 
many software problems. 

 Walking through a Minefield: Using today’s software technology is 
analogous to walking through a high-tech mine field: bugs abound.

 Mushroom Management: Keeping system developers isolated from the 
system’s end users. 



Software Development Methodologies – Lecture 14

Department of Computer Engineering
5

Sharif University of Technology

Process Antipatterns: Development – Lava Flow

 Lava Flow: Dead code and forgotten design information is frozen in an ever-
changing design. 

 Causes:

 R&D code placed into production without configuration management. 

 Uncontrolled distribution of unfinished code. 

 Implementation of several trial approaches for implementing a function. 

 Single-developer (lone wolf) design or written code. 

 Lack of configuration management or process management policies. 

 Lack of architecture, or non-architecture-driven development. 

 Repetitive development process. 

 Architectural scars: Architectural mistakes not removed.

 To solve: include a configuration management process that eliminates dead code 
and evolves or refactors design toward increasing quality. 

 To avoid: ensure that sound architecture precedes code development.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
6

Sharif University of Technology

Process Antipatterns: Development – Ambiguous Viewpoint

 Ambiguous Viewpoint: Object-oriented analysis and design (OOA&D) 
models that are presented without clarifying the viewpoint represented by 
the model. 

 There are three fundamental viewpoints for OOA&D models: 

 Business viewpoint (Problem-Domain/Conceptual/Essential)

 Specification viewpoint (System)

 Implementation viewpoint (Software/Design)

 By default, OOA&D models denote an implementation viewpoint that is 
potentially the least useful. Mixed viewpoints don’t allow the fundamental 
separation of interfaces from implementation details.

 Solution: Separate Viewpoints explicitly.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
7

Sharif University of Technology

Process Antipatterns: Development – Golden Hammer

 Golden Hammer: A Golden Hammer is a familiar technology 
or concept applied obsessively to many software problems. 

 "When your only tool is a hammer, everything else is a nail."

 Solution:

 expanding the knowledge of developers through education, 
training, and book study groups to expose developers to 
alternative technologies and approaches.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
8

Sharif University of Technology

Process Antipatterns: Development – Walking through a Minefield

 Walking through a Minefield: Using today’s software technology is 
analogous to walking through a high-tech mine field: Numerous bugs 
are found in released software products.

 Solution:

 Proper investment in software testing is required to make systems 
relatively bug-free. In some progressive companies, the size of testing 
staff exceeds programming staff. 

 The most important change to make to testing procedures is 
configuration control of test cases. 

 automation of test execution and test design.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
9

Sharif University of Technology

Process Antipatterns: Development – Mushroom Management

 Mushroom Management: In some architecture and management circles, 
there is an explicit policy to keep system developers isolated from the 
system’s end users. 

 Requirements are passed second-hand through intermediaries, including 
architects, managers, or requirements analysts.

 Motto: “Keep your developers in the dark and feed them fertilizer.”

 Mushroom Management assumes that requirements are well understood by 
both end users and the software project at project inception. It is assumed 
that requirements are stable.

 Solution:

 Risk-driven development: spiral development process based upon prototyping 
and user feedback.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
10

Sharif University of Technology

Process Antipatterns: Architectural

 Cover Your Assets: Document-driven software processes that 
produce less-than-useful requirements and specifications because the 
authors evade making important decisions. 

 Architecture by Implication: the lack of architecture specifications 
for a system under development. 

 Design by Committee: Design by Committee creates overly 
complex architectures that lack coherence. 

 Reinvent the Wheel: The pervasive lack of experience transfer 
between software projects leads to substantial reinvention. 

 The Grand Old Duke of York: Egalitarian software processes often 
ignore people’s talents to the detriment of the project: We need 
abstractionists as well as implementationists.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
11

Sharif University of Technology

Process Antipatterns: Architectural – Cover Your Assets

 Cover Your Assets: Document-driven software processes often produce 
less-than-useful requirements and specifications because the authors evade 
making important decisions. 

 In order to avoid making a mistake, the authors take a safer course and 
elaborate upon alternatives.

 Solution:

 Enforce the production of Architecture blueprints: abstractions of information 
systems that facilitate communication of requirements and technical plans 
between the users and developers. 

 An architecture blueprint is a small set of diagrams and tables that 
communicate the operational, technical, and systems architecture of current 
and future extensions to information systems.

 A typical blueprint comprises no more than a dozen diagrams and tables, 
and can be presented in an hour or less as a viewgraph presentation.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
12

Sharif University of Technology

Process Antipatterns: Architectural – Architecture by Implication

 Architecture by Implication: the lack of architecture 
specifications for a system under development. 

 Usually, the architects responsible for the project have experience with 
previous system construction, and therefore assume that documentation 
is unnecessary. 

 Management of risk in follow-on system development is often 
overlooked due to overconfidence and recent system successes. 

 Solution:

 A general architecture definition approach that is tailored to each 
application system can help identify unique requirements and risk areas.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
13

Sharif University of Technology

Process Antipatterns: Architectural – Design By Committee

 Design by Committee: The classic Antipattern from standards bodies, 
Design by Committee creates overly complex architectures that lack 
coherence: 

 A complex software design that is the product of a committee process. 

 It has so many features and variations that it is infeasible for any group of 
developers to realize the specifications in a reasonable time frame. 

 Even if the designs were possible, it would not be possible to test the full design 
due to excessive complexity, ambiguities, overconstraint, and other specification 
defects. 

 The design would lack conceptual clarity because so many people contributed to 
it and extended it during its creation.

 Solution:

 Clarification of architectural roles and improved process facilitation can refactor 
bad meeting processes into highly productive events.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
14

Sharif University of Technology

Process Antipatterns: Architectural – Reinvent the Wheel

 Reinvent the Wheel: The pervasive lack of experience 
transfer between software projects leads to substantial 
reinvention. 

 “Our problem is unique.”

 Virtually all systems development is done in isolation of projects 
and systems with overlapping functionality.

 Solution:

 Design knowledge buried in legacy assets can be leveraged to reduce 
time-to-market, cost, and risk.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
15

Sharif University of Technology

Process Antipatterns: Architectural – Grand Old Duke of York

 The Grand Old Duke of York: Egalitarian software processes often ignore 
people’s talents to the detriment of the project. 

 Programming skill does not equate to skill in defining abstractions. There appear 
to be two distinct groups involved in software development: abstractionists 
(Architects) and their counterparts the implementationists.

 According to experts, implementationists outnumber abstractionists 
approximately 4 to 1. Thus, unfortunately, abstractionists are often outvoted. 

 Primary consequence: software designs with excessive complexity, which make 
the system difficult to develop, modify, extend, document, and test. 

 Software usability and system maintenance are impacted by a failure to use 
effective abstraction principles.

 Solution:

 Identifying and differentiating among distinct development roles, and giving 
architects control over architectural design.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
16

Sharif University of Technology

Process Antipatterns: Management

 Analysis Paralysis: Striving for perfection and completeness 
in the analysis phase leading to project gridlock and excessive 
work on requirements/models. 

 Death by Planning: Excessive planning for software projects 
leading to complex schedules that cause downstream problems. 

 Project Mismanagement: Inattention to the management of 
software development processes causing directionlessness and 
other symptoms. Proper monitoring and control of software 
projects is necessary.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
17

Sharif University of Technology

Process Antipatterns: Management – Analysis Paralysis

 Analysis Paralysis: Striving for perfection and completeness 
in the analysis phase often leads to project gridlock and 
excessive thrashing of requirements/models. 

 Developers new to object-oriented methods do too much up-
front analysis and design, using analysis modeling as an 
exercise to feel comfortable in the problem domain.

 A key indicator of Analysis Paralysis is that the analysis 
documents no longer make sense to the domain experts.

 Solution:

 Iterative-incremental development processes that defer detailed 
analysis until the knowledge is needed.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
18

Sharif University of Technology

Process Antipatterns: Management – Death by Planning

 Death by Planning: Excessive planning for software projects leading to 
complex schedules that cause downstream problems. 

 Solution:

 Deliverable-based planning, supplemented with validation milestones. 
Plans should be reviewed and revised on a weekly basis.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
19

Sharif University of Technology

Process Antipatterns: Management – Project Mismanagement

 Project Mismanagement: Inattention to the management of 
software development processes can cause directionlessness and 
other symptoms. 

 Proper monitoring and control of software projects is necessary for 
successful development activities. 

 Often, key activities are overlooked or minimized. These include 
technical planning (architecture) and quality-control activities 
(inspection and test).

 Solution:

 Proper risk management incorporated in the project management 
process.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
20

Sharif University of Technology

References

 Brown, W. J., Malveau, R. C., McCormick, H., Mowbray, T., 
Antipatterns: Refactoring Software, Architectures, and 
Projects in Crisis. Wiley, 1998.

 Neill, C. J., Laplante, P. A., Antipatterns: Identification, 
Refactoring, and Management. CRC Press, 2005.

 Neill, C. J., Laplante, P. A., DeFranco, J. F., Antipatterns: 
Managing Software Organizations and People. CRC Press, 
2012.


