
Department of Computer Engineering
1

Sharif University of Technology

Software Development 

Methodologies

Lecturer: Raman Ramsin

Lecture 14 

Process Antipatterns



Software Development Methodologies – Lecture 14

Department of Computer Engineering
2

Sharif University of Technology

Antipatterns

 Compiled and presented by Brown et al. in 1998.

 "An Antipattern describes a commonly occurring solution to a 
problem that generates decidedly negative consequences." 

 The Antipattern may be the result of a manager or developer: 

 not knowing any better, 

 not having sufficient knowledge or experience in solving a particular 
type of problem, or 

 having applied a perfectly good pattern in the wrong context. 



Software Development Methodologies – Lecture 14

Department of Computer Engineering
3

Sharif University of Technology

Antipatterns: Viewpoints

 Antipatterns are presented from three perspectives – developer, 
architect, and manager:

 Development Antipatterns: comprise technical problems and 
solutions that are encountered by programmers.

 Architectural Antipatterns: identify and resolve common problems 
in how systems are structured.

 Managerial Antipatterns: address common problems in software 
processes and development organizations.

 Process Antipatterns deal with common problems in engineering 
or enacting a development process, and can belong to any of the 
above viewpoints.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
4

Sharif University of Technology

Process Antipatterns: Development

 Lava Flow: Dead code and forgotten design information is frozen in an 
ever-changing design. 

 Ambiguous Viewpoint: Object-oriented analysis and design models 
presented without clarifying the viewpoint represented by the model. 

 Golden Hammer: A familiar technology or concept applied obsessively to 
many software problems. 

 Walking through a Minefield: Using today’s software technology is 
analogous to walking through a high-tech mine field: bugs abound.

 Mushroom Management: Keeping system developers isolated from the 
system’s end users. 



Software Development Methodologies – Lecture 14

Department of Computer Engineering
5

Sharif University of Technology

Process Antipatterns: Development – Lava Flow

 Lava Flow: Dead code and forgotten design information is frozen in an ever-
changing design. 

 Causes:

 R&D code placed into production without configuration management. 

 Uncontrolled distribution of unfinished code. 

 Implementation of several trial approaches for implementing a function. 

 Single-developer (lone wolf) design or written code. 

 Lack of configuration management or process management policies. 

 Lack of architecture, or non-architecture-driven development. 

 Repetitive development process. 

 Architectural scars: Architectural mistakes not removed.

 To solve: include a configuration management process that eliminates dead code 
and evolves or refactors design toward increasing quality. 

 To avoid: ensure that sound architecture precedes code development.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
6

Sharif University of Technology

Process Antipatterns: Development – Ambiguous Viewpoint

 Ambiguous Viewpoint: Object-oriented analysis and design (OOA&D) 
models that are presented without clarifying the viewpoint represented by 
the model. 

 There are three fundamental viewpoints for OOA&D models: 

 Business viewpoint (Problem-Domain/Conceptual/Essential)

 Specification viewpoint (System)

 Implementation viewpoint (Software/Design)

 By default, OOA&D models denote an implementation viewpoint that is 
potentially the least useful. Mixed viewpoints don’t allow the fundamental 
separation of interfaces from implementation details.

 Solution: Separate Viewpoints explicitly.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
7

Sharif University of Technology

Process Antipatterns: Development – Golden Hammer

 Golden Hammer: A Golden Hammer is a familiar technology 
or concept applied obsessively to many software problems. 

 "When your only tool is a hammer, everything else is a nail."

 Solution:

 expanding the knowledge of developers through education, 
training, and book study groups to expose developers to 
alternative technologies and approaches.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
8

Sharif University of Technology

Process Antipatterns: Development – Walking through a Minefield

 Walking through a Minefield: Using today’s software technology is 
analogous to walking through a high-tech mine field: Numerous bugs 
are found in released software products.

 Solution:

 Proper investment in software testing is required to make systems 
relatively bug-free. In some progressive companies, the size of testing 
staff exceeds programming staff. 

 The most important change to make to testing procedures is 
configuration control of test cases. 

 automation of test execution and test design.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
9

Sharif University of Technology

Process Antipatterns: Development – Mushroom Management

 Mushroom Management: In some architecture and management circles, 
there is an explicit policy to keep system developers isolated from the 
system’s end users. 

 Requirements are passed second-hand through intermediaries, including 
architects, managers, or requirements analysts.

 Motto: “Keep your developers in the dark and feed them fertilizer.”

 Mushroom Management assumes that requirements are well understood by 
both end users and the software project at project inception. It is assumed 
that requirements are stable.

 Solution:

 Risk-driven development: spiral development process based upon prototyping 
and user feedback.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
10

Sharif University of Technology

Process Antipatterns: Architectural

 Cover Your Assets: Document-driven software processes that 
produce less-than-useful requirements and specifications because the 
authors evade making important decisions. 

 Architecture by Implication: the lack of architecture specifications 
for a system under development. 

 Design by Committee: Design by Committee creates overly 
complex architectures that lack coherence. 

 Reinvent the Wheel: The pervasive lack of experience transfer 
between software projects leads to substantial reinvention. 

 The Grand Old Duke of York: Egalitarian software processes often 
ignore people’s talents to the detriment of the project: We need 
abstractionists as well as implementationists.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
11

Sharif University of Technology

Process Antipatterns: Architectural – Cover Your Assets

 Cover Your Assets: Document-driven software processes often produce 
less-than-useful requirements and specifications because the authors evade 
making important decisions. 

 In order to avoid making a mistake, the authors take a safer course and 
elaborate upon alternatives.

 Solution:

 Enforce the production of Architecture blueprints: abstractions of information 
systems that facilitate communication of requirements and technical plans 
between the users and developers. 

 An architecture blueprint is a small set of diagrams and tables that 
communicate the operational, technical, and systems architecture of current 
and future extensions to information systems.

 A typical blueprint comprises no more than a dozen diagrams and tables, 
and can be presented in an hour or less as a viewgraph presentation.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
12

Sharif University of Technology

Process Antipatterns: Architectural – Architecture by Implication

 Architecture by Implication: the lack of architecture 
specifications for a system under development. 

 Usually, the architects responsible for the project have experience with 
previous system construction, and therefore assume that documentation 
is unnecessary. 

 Management of risk in follow-on system development is often 
overlooked due to overconfidence and recent system successes. 

 Solution:

 A general architecture definition approach that is tailored to each 
application system can help identify unique requirements and risk areas.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
13

Sharif University of Technology

Process Antipatterns: Architectural – Design By Committee

 Design by Committee: The classic Antipattern from standards bodies, 
Design by Committee creates overly complex architectures that lack 
coherence: 

 A complex software design that is the product of a committee process. 

 It has so many features and variations that it is infeasible for any group of 
developers to realize the specifications in a reasonable time frame. 

 Even if the designs were possible, it would not be possible to test the full design 
due to excessive complexity, ambiguities, overconstraint, and other specification 
defects. 

 The design would lack conceptual clarity because so many people contributed to 
it and extended it during its creation.

 Solution:

 Clarification of architectural roles and improved process facilitation can refactor 
bad meeting processes into highly productive events.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
14

Sharif University of Technology

Process Antipatterns: Architectural – Reinvent the Wheel

 Reinvent the Wheel: The pervasive lack of experience 
transfer between software projects leads to substantial 
reinvention. 

 “Our problem is unique.”

 Virtually all systems development is done in isolation of projects 
and systems with overlapping functionality.

 Solution:

 Design knowledge buried in legacy assets can be leveraged to reduce 
time-to-market, cost, and risk.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
15

Sharif University of Technology

Process Antipatterns: Architectural – Grand Old Duke of York

 The Grand Old Duke of York: Egalitarian software processes often ignore 
people’s talents to the detriment of the project. 

 Programming skill does not equate to skill in defining abstractions. There appear 
to be two distinct groups involved in software development: abstractionists 
(Architects) and their counterparts the implementationists.

 According to experts, implementationists outnumber abstractionists 
approximately 4 to 1. Thus, unfortunately, abstractionists are often outvoted. 

 Primary consequence: software designs with excessive complexity, which make 
the system difficult to develop, modify, extend, document, and test. 

 Software usability and system maintenance are impacted by a failure to use 
effective abstraction principles.

 Solution:

 Identifying and differentiating among distinct development roles, and giving 
architects control over architectural design.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
16

Sharif University of Technology

Process Antipatterns: Management

 Analysis Paralysis: Striving for perfection and completeness 
in the analysis phase leading to project gridlock and excessive 
work on requirements/models. 

 Death by Planning: Excessive planning for software projects 
leading to complex schedules that cause downstream problems. 

 Project Mismanagement: Inattention to the management of 
software development processes causing directionlessness and 
other symptoms. Proper monitoring and control of software 
projects is necessary.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
17

Sharif University of Technology

Process Antipatterns: Management – Analysis Paralysis

 Analysis Paralysis: Striving for perfection and completeness 
in the analysis phase often leads to project gridlock and 
excessive thrashing of requirements/models. 

 Developers new to object-oriented methods do too much up-
front analysis and design, using analysis modeling as an 
exercise to feel comfortable in the problem domain.

 A key indicator of Analysis Paralysis is that the analysis 
documents no longer make sense to the domain experts.

 Solution:

 Iterative-incremental development processes that defer detailed 
analysis until the knowledge is needed.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
18

Sharif University of Technology

Process Antipatterns: Management – Death by Planning

 Death by Planning: Excessive planning for software projects leading to 
complex schedules that cause downstream problems. 

 Solution:

 Deliverable-based planning, supplemented with validation milestones. 
Plans should be reviewed and revised on a weekly basis.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
19

Sharif University of Technology

Process Antipatterns: Management – Project Mismanagement

 Project Mismanagement: Inattention to the management of 
software development processes can cause directionlessness and 
other symptoms. 

 Proper monitoring and control of software projects is necessary for 
successful development activities. 

 Often, key activities are overlooked or minimized. These include 
technical planning (architecture) and quality-control activities 
(inspection and test).

 Solution:

 Proper risk management incorporated in the project management 
process.



Software Development Methodologies – Lecture 14

Department of Computer Engineering
20

Sharif University of Technology

References

 Brown, W. J., Malveau, R. C., McCormick, H., Mowbray, T., 
Antipatterns: Refactoring Software, Architectures, and 
Projects in Crisis. Wiley, 1998.

 Neill, C. J., Laplante, P. A., Antipatterns: Identification, 
Refactoring, and Management. CRC Press, 2005.

 Neill, C. J., Laplante, P. A., DeFranco, J. F., Antipatterns: 
Managing Software Organizations and People. CRC Press, 
2012.


