Patterns In
Software Engineering

| ecturer: Raman Ramsin

L_ecture 2

GoF Design Patterns — Creational

Department of Computer Engineering 1 Sharif University of Technology

E
GoF Design Patterns — Principles

m Emphasis on flexibility and reuse through decoupling of
classes.

m The underlying principles:
program to an interface, not to an implementation.
favor composition over class inheritance.

find what varies and encapsulate it.

Department of Computer Engineering Sharif University of Technology

E
GoF Design Patterns: General Categories

m 23 patterns are divided into three separate categories:

Creational patterns
m Deal with initializing and configuring classes and objects.
Structural patterns

= Deal with decoupling interface and implementation of classes
and objects.

Behavioral patterns

= Deal with dynamic interactions among societies of classes and
objects.

Department of Computer Engineering Sharif University of Technology

E
GoF Design Patterns: Purpose and Scope

Factory Method Adapter (class) Interpreter
Template Method

Abstract Factory Adapter (object) Chain of Responsibility

Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator
Facade Memento
Flyweight Observer
Proxy State
Strategy
Visitor
Department of Computer Engineering Sharif University of Technology

u
GoF Creational Patterns

m Class

Factory Method: Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory method lets a
class defer instantiation to subclasses.

m Object

Abstract Factory: Provide an interface for creating families of
related or dependent objects without specifying their concrete class.

Builder: Separate the construction of a complex object from its
representation so that the same construction process can create
different representations.

Prototype: Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.

Singleton: Ensure a class only has one instance, and provide a global
point of access to it.

Department of Computer Engineering Sharif University of Technology

E
Factory Method

m Intent:

Define an interface for creating an object, but let subclasses decide
which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

docs.Add(doc);

Document*® doc = CreateDocumenti();
doc—->0pen();

Document I.q_dm&:; Application
Openy() CreateDocumeny)
Ciose() NewDocument() o
Save() OpenDocument()
Revert()

MyDocument pat - -—---—-- MyApplication

CreateDocument() o

Department of Computer Engineering

return new MyDocument ‘1

Sharif University of Technology

)
Factory Method: Applicability

m Use the Factory Method pattern when

a class can't anticipate the class of objects it must create.

a class wants its subclasses to specify the objects it creates.

classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of which
helper subclass is the delegate.

Department of Computer Engineering Sharif University of Technology

u Patterns in Software Engineering — Lecture

Factory Method: Structure

Creator
Product
FactoryMethod() ~
AnOperation() P IR ?TOdum = FactoryMethod() 1
ConcreteProduct |‘ """"""" ConcreleCreator
FactoryMethod(} O-F---———1 returmn new OoncreteProductH

Department of Computer Engineering Sharif University of Technology

E
Factory Method: Consequences

v' It provides hooks for the subclasses.

v' It connects parallel class hierarchies.

Department of Computer Engineering Sharif University of Technology

E
Abstract Factory

m Intent:

Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

WidgetFactory | Client

CreateScroliGar] -
CraatsWindow(} Window |«

| |
l --:-| PMWindow MotifWindow bt - -

i

1

i

MotifWidgetFactory - PMWidgetFactory | ———______ : i
CreateScrollBar]) i CreateScrollBar() i |
CreateWindow() i CreateWindow() i ScroliBar i
| i \ i

\ i i

| : ' | |

: '--ad PMScrollBar MotifScrollBar . - -

i i
e e

Department of Computer Engineering Sharif University of Technology

E
Abstract Factory: Applicability

m Use the Abstract Factory pattern when

a system should be independent of how its products are
created, composed, and represented.

a system should be configured with one of multiple families of
products.

a family of related product objects is designed to be used
together, and you need to enforce this constraint.

you want to provide a class library of products, and you want
to reveal just their interfaces, not their implementations.

Department of Computer Engineering Sharif University of Technology

11

u Patterns in Software Engineering — Lecture

Abstract Factory: Structure

AbstraciFactory = Client
CreateProductA|)
AbstractProderct,
CrastaCroductS)) A -
| I
.--w ProductA2 ProductAi e --,
i i
ConcreteFactoryl |- Concretefactory2 | - —___i '
CreateProductA() CreateProductif) ' :
CreataProductB() GreateProductBl) AbstractProducts |= :
¥ A i

I
‘--m Product82 ProductB! |- -
1

Department of Computer Engineering Sharif University of Technology

12

B
Abstract Factory: Consequences

v’ Concrete classes are isolated. Clients manipulate
instances through their abstract interfaces.

v’ Exchanging product families is easy. Different product
configurations can be used simply by changing the
concrete factory.

v’ Consistency among products is promoted.

x Supporting new kinds of products is difficult. The
AbstractFacto(rjy interface fixes the set of products that
can be created.

Department of Computer Engineering Sharif University of Technology

13

u Patterns in Software Engineering — Lectu

Builder

m Intent:

Separate the construction of a complex object from its representation
so that the same construction process can create different

representations.

RTFReader

ParseRTF() ¢ .;_-:b"‘de'

1

while (1 = g‘?l the next token} | ™
tType |

switch

CHAR:
builder->ConveriCharacter{LChar)

FONT:

buIIer«—:-CuweﬂFonlChange{l Fom)
PARA:
bullder->ConvertParagraphi)

Department of Computer Engineering

TextConverter
ConvertCharacterjchar)
CaonvertFontChange(Font)
ConvertParagraphy)

I I I
ASClIConverter TeXConverter TextWidgetConverter
ComvenCharacter(char) ConvernCharacter{char) CorvenCharacter{char)
GetASClIText(} ConvertFontChangs(Font) ConvertFontChange(Font)

; ConvenParagraph() ConvertParagraphi)
: GetTeXText() GetTextWidget()

| T T

| | |

| |]

I | i

‘- -l ASCliText '--| TeXText '—-| TextWidget

14

Sharif University of Technology

E
Builder: Applicabllity

m Use the Builder pattern when

the algorithm for creating a complex object should
be independent of the parts that make up the object
and how they're assembled.

the construction 1:process must allow different
representations for the object that's constructed.

Department of Computer Engineering i5 Sharif University of Technology

u Patterns in Software Engineering — Lecture

Builder: Structure

builder
Director e~ - Builder

Construct(} o BuildPart()
|
I
I
:

A

for alllobiectg inl sguchiue {
builder—>BuildPart(PP R
} ConcreteBuilder -I Product
BuildPart{)
GetResult()

Department of Computer Engineering Sharif University of Technology

16

u
Builder: Collaborations

aClient aDirector aConcreteBuilder
1 I
1 _ i |
new ConcreteBuilder ! !
_____________________________ i__ e e
new Director{aConcreteBuilder) 1
Constructi)I BuildPartA() .
BuildPartB() =
BuildPartC{) -I

GetResult() T -E
T

Department of Computer Engineering Sharif University of Technology

17

E
Builder: Conseguences

v' It lets you vary a product’s internal representation.

v’ It /solates code for construction and representation.

v’ It gives you finer control over the construction process:
Since the Builder pattern constructs the product step by
step under the director's control.

Department of Computer Engineering Sharif University of Technology

18

R
Prototype

m Intent:

Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.

Tool > Graphic
Manipulate() Draw{Paosition)
A Clonef}
I | prototype | [
i]
RotateTool GraphicTool Staff rE——
Manipulate() Manipulate() 9 Draw{Position)
H Clone() A _____
’ I I
H
o rololper el WholeNote HalfNote
while (User kags mouss) | Draw(Position) Draw(Position)
p->Draw(new position) Clone() 9 Clone() ?
insert p into drawing E E

=
return copy of self return copy of self

Department of Computer Engineering 19 Sharif University of Technology

E
Prototype: Applicabllity

m Use the Prototype pattern when

the classes to instantiate are specified at run-time, for
example, by dynamic loading.

building a class hierarchy of factories that parallels the class
hierarchy of products should be avoided.

instances of a class can have one of only a few different
combinations of state.

= It may be more convenient to install a corresponding number of
prototyI es and clone them rather than instantiating the class
manually.

Department of Computer Engineering 20 Sharif University of Technology

u Patterns in Software Engineering — Lecture

Prototype: Structure

Cient prototype | Prototype
Operation{) ? Clonef}
5)
p= pmtmype—>CIone(}H
ConcretePrototype1 ConcretePrototype2
Clone() ? Clone() ?

retum copy of seltﬁ return copy of seifﬂ

Department of Computer Engineering Sharif University of Technology

21

-
Prototype: Consequences

v’ It hides the concrete product classes from the clients,
t/z)ereb y reducing the number of names clients know
about.

v It lets a client work with application-specific classes
without modification.

v It lets you add and remove products at run-time.

v’ It lets you specify new objects by varying values.

Department of Computer Engineering Sharif University of Technology

22

R
Singleton

m Intent:

Ensure a class only has one instance, and provide a global
point of access to it.

Singleton

static Instance{) CO---4---------- retum uniguelnstance H
SingletonOperation()
GetSingletonData()

static uniquelnstance
singletonData

Department of Computer Engineering 3 Sharif University of Technology

E
Singleton: Applicabllity

m Use the Singleton pattern when

there must be exactly one instance of a class, and it
must be accessible to clients from a well known
access point.

when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Department of Computer Engineering 24 Sharif University of Technology

E
Singleton: Consequences

v' It provides Controlled access to sole instance.
v’ It reduces the name space by avoiding global variables.

v' It permits refinement of operations and representation
through subclassing.

v' It permits a variable number of instances.

v' It Is more flexible than class operations.

Department of Computer Engineering Sharif University of Technology

25

u Patterns in Software Engineering — Lec

Reference

m Gamma, E., Helm, R., Johnson, R., and Vlissides, 1., Design
Patterns. Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

Department of Computer Engineering 2% Sharif University of Technology

