
Department of Computer Engineering
1

Sharif University of Technology

Patterns in 

Software Engineering 

Lecturer: Raman Ramsin

Lecture 2

GoF Design Patterns – Creational



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
2

Sharif University of Technology

GoF Design Patterns – Principles 

 Emphasis on flexibility and reuse through decoupling of 
classes.

 The underlying principles:

 program to an interface, not to an implementation.

 favor composition over class inheritance.

 find what varies and encapsulate it.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
3

Sharif University of Technology

GoF Design Patterns: General Categories

 23 patterns are divided into three separate categories:

 Creational patterns

 Deal with initializing and configuring classes and objects.

 Structural patterns

 Deal with decoupling interface and implementation of classes 
and objects.

 Behavioral patterns

 Deal with dynamic interactions among societies of classes and 
objects.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
4

Sharif University of Technology

GoF Design Patterns: Purpose and Scope



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
5

Sharif University of Technology

GoF Creational Patterns

 Class

 Factory Method: Define an interface for creating an object, but let 
subclasses decide which class to instantiate. Factory method lets a 
class defer instantiation to subclasses.

 Object

 Abstract Factory: Provide an interface for creating families of 
related or dependent objects without specifying their concrete class.

 Builder: Separate the construction of a complex object from its 
representation so that the same construction process can create 
different representations.

 Prototype: Specify the kinds of objects to create using a prototypical 
instance, and create new objects by copying this prototype.

 Singleton: Ensure a class only has one instance, and provide a global 
point of access to it.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
6

Sharif University of Technology

Factory Method

 Intent:
 Define an interface for creating an object, but let subclasses decide 

which class to instantiate. Factory Method lets a class defer 
instantiation to subclasses.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
7

Sharif University of Technology

Factory Method: Applicability

 Use the Factory Method pattern when

 a class can't anticipate the class of objects it must create.

 a class wants its subclasses to specify the objects it creates.

 classes delegate responsibility to one of several helper 
subclasses, and you want to localize the knowledge of which 
helper subclass is the delegate.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
8

Sharif University of Technology

Factory Method: Structure



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
9

Sharif University of Technology

Factory Method: Consequences

 It provides hooks for the subclasses. 

 It connects parallel class hierarchies. 



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
10

Sharif University of Technology

Abstract Factory

 Intent:
 Provide an interface for creating families of related or 

dependent objects without specifying their concrete classes.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
11

Sharif University of Technology

Abstract Factory: Applicability

 Use the Abstract Factory pattern when

 a system should be independent of how its products are 
created, composed, and represented.

 a system should be configured with one of multiple families of 
products.

 a family of related product objects is designed to be used 
together, and you need to enforce this constraint.

 you want to provide a class library of products, and you want 
to reveal just their interfaces, not their implementations.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
12

Sharif University of Technology

Abstract Factory: Structure



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
13

Sharif University of Technology

Abstract Factory: Consequences

 Concrete classes are isolated. Clients manipulate 
instances through their abstract interfaces. 

 Exchanging product families is easy. Different product 
configurations can be used simply by changing the 
concrete factory. 

 Consistency among products is promoted. 

 Supporting new kinds of products is difficult. The 
AbstractFactory interface fixes the set of products that 
can be created. 



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
14

Sharif University of Technology

Builder

 Intent:
 Separate the construction of a complex object from its representation 

so that the same construction process can create different 
representations.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
15

Sharif University of Technology

Builder: Applicability

 Use the Builder pattern when

 the algorithm for creating a complex object should 
be independent of the parts that make up the object 
and how they're assembled.

 the construction process must allow different 
representations for the object that's constructed.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
16

Sharif University of Technology

Builder: Structure



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
17

Sharif University of Technology

Builder: Collaborations



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
18

Sharif University of Technology

Builder: Consequences

 It lets you vary a product's internal representation. 

 It isolates code for construction and representation. 

 It gives you finer control over the construction process: 
Since the Builder pattern constructs the product step by 
step under the director's control. 



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
19

Sharif University of Technology

Prototype

 Intent:
 Specify the kinds of objects to create using a prototypical 

instance, and create new objects by copying this prototype.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
20

Sharif University of Technology

Prototype: Applicability

 Use the Prototype pattern when

 the classes to instantiate are specified at run-time, for 
example, by dynamic loading.

 building a class hierarchy of factories that parallels the class 
hierarchy of products should be avoided.

 instances of a class can have one of only a few different 
combinations of state. 

 It may be more convenient to install a corresponding number of 
prototypes and clone them rather than instantiating the class 
manually.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
21

Sharif University of Technology

Prototype: Structure



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
22

Sharif University of Technology

Prototype: Consequences

 It hides the concrete product classes from the clients, 
thereby reducing the number of names clients know 
about. 

 It lets a client work with application-specific classes 
without modification.

 It lets you add and remove products at run-time.

 It lets you specify new objects by varying values.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
23

Sharif University of Technology

Singleton

 Intent:
 Ensure a class only has one instance, and provide a global 

point of access to it.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
24

Sharif University of Technology

Singleton: Applicability

 Use the Singleton pattern when

 there must be exactly one instance of a class, and it 
must be accessible to clients from a well known 
access point.

 when the sole instance should be extensible by 
subclassing, and clients should be able to use an 
extended instance without modifying their code.



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
25

Sharif University of Technology

Singleton: Consequences

 It provides Controlled access to sole instance. 

 It reduces the name space by avoiding global variables. 

 It permits refinement of operations and representation 
through subclassing. 

 It permits a variable number of instances. 

 It is more flexible than class operations. 



Patterns in Software Engineering – Lecture 2

Department of Computer Engineering
26

Sharif University of Technology

Reference

 Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design 
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.


