
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 1

Earlier Patterns

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
2

Sharif University of Technology

Software Patterns

 Software Patterns support reuse of software architecture
and design.

 Patterns capture the static and dynamic structures and
collaborations of successful solutions to problems that arise
when building applications in a particular domain.

 Patterns represent solutions to problems that arise when
developing software within a particular context.

 i.e., “Pattern == problem/solution pair in a context”

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
3

Sharif University of Technology

Patterns: A Chronological Perspective

 1979: Christopher Alexander’s "Timeless Way of Building"

 Alexander studied ways to improve the process of designing
buildings and urban areas.

 1987: Cunningham and Beck use Alexander’s ideas to develop a
small pattern language for Smalltalk.

 1990: The Gang of Four (Gamma, Helm, Johnson and Vlissides)
begin work compiling a catalog of design patterns.

 1991: Bruce Anderson gives first Patterns Workshop at OOPSLA.

 1992: Peter Coad introduces his OO Patterns.

 1993: Kent Beck and Grady Booch sponsor the first meeting of what
is now known as the Hillside Group.

 1994: First Pattern Languages of Programs (PLoP) conference.

 1995: The Gang of Four (GoF) publish the Design Patterns book.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
4

Sharif University of Technology

Software Design Patterns

 “A design pattern names, abstracts, and identifies the
key aspects of a common design structure that make it
useful for creating a reusable object-oriented design.”

 Design Patterns capture the static and dynamic structure
and collaboration among key participants in software
designs.

 They are particularly useful for articulating how and why to
resolve non-functional forces.

 Patterns facilitate reuse of successful software architectures
and designs.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
5

Sharif University of Technology

Coad's OO Patterns

 Seven basic Patterns:

1. Item Description

2. Time Association

3. Event Logging

4. Roles Played

5. State over a Collection

6. Behavior over a Collection

7. Broadcast

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
6

Sharif University of Technology

Pattern 1: Item Description

 The item description pattern consists of an "item" object (i.e.,
an object of the class "item") and an "item description" object.

 An "item description" object has attribute values which may
apply to more than one "item" object; an "item" object has its
own individual assignment of attribute values.

 Use this pattern when some attribute values may apply to
more than one object in a class.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
7

Sharif University of Technology

Item Description

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
8

Sharif University of Technology

Pattern 2: Time Association

 If one needs to express attributes or services regarding an
association between two objects, then an object from "time
association" is needed.

 A "time association" object often sends messages to its
participating objects to get values or get a sub-calculation
done on its behalf.

 Note that the association connection:

 captures the association for future queries about these objects.

 captures (for the sender) "to whom to send a message."

 Use this pattern whenever the system is responsible to know
an association between two or more objects and to know or
do something about that association.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
9

Sharif University of Technology

Time Association

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
10

Sharif University of Technology

Pattern 3: Event Logging

 A "device" object monitors an external device; the object

 is responsible for detecting that an event has occurred;

 is responsible for initiating a response to the event.

 Part of the response may be to log the event's occurrence; when this
is the case, a "device" object sends the message "create" to the
"event remembered" class to create an object with historical values.

 A "device" object may know about some number of "event
remembered" objects; an "event remembered" object must know
about a corresponding "device" object.

 Use whenever an event is detected, and you need to log its
occurrence to support after-the-fact analysis or to meet legal
requirements.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
11

Sharif University of Technology

Event Logging

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
12

Sharif University of Technology

Pattern 4: Roles Played

 A "player" object has attribute values and services that apply over
time. A player object is always a player object.

 At times, a player object "wears different hats," playing one or more
roles.

 Often, starting and ending times are common to all such roles.

 Use this pattern:

 whenever you have a player object which remains the same old player
object, but has different attributes and services, depending on the
"hats" the player may wear.

 to model large numbers of roles, combinations of roles, and changes
in roles; this approach is more concise and flexible than attempting to
use multiple inheritance in this situation.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
13

Sharif University of Technology

Roles Played

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
14

Sharif University of Technology

Pattern 5: State over a Collection

 A "collection" object knows its state; this state applies to the
collection and may also apply to its parts, and each "member"
object has its own state, too.

 Use this pattern whenever there is whole-part in a business
domain or implementation domain, and one or more attributes
apply to the whole (the collection).

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
15

Sharif University of Technology

State over a Collection

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
16

Sharif University of Technology

Pattern 6: Behavior over a Collection

 A "collection" object has behavior that applies across an entire
collection of its "member" objects.

 Each "member" object performs actions, knowing (by means
of its attributes) how to perform, without needed coordination
with other "member" objects.

 Use this pattern whenever there is whole-part in a domain,
and a behavior (i.e., one or more services) applies across the
whole collection.

 Caution: make the member objects do as much as they can
with what they know; only put behavior that really applies
across the collection up in the "collection" object.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
17

Sharif University of Technology

Behavior over a Collection

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
18

Sharif University of Technology

Pattern 7: Broadcast

 This pattern is used to communicate complex changes between one
major section of an OOA/OOD model with another major section.

1. Whenever it changes, a "broadcasting item" object broadcasts a
change notification to the "receiving item" objects that it knows about.

2. A notified "receiving item" object then sends a message to the
"broadcasting item" to get the change.

3. Once it gets the change, a "receiving item" object takes whatever
action is necessary in light of the change.

 Use this pattern to establish interactions between major OOA/OOD
parts in a way that the two sections stay cleanly separated.

 Use this pattern to separate business domain classes from human-
interaction and data-management classes.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
19

Sharif University of Technology

Broadcast

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
20

Sharif University of Technology

Coad Patterns: Example Model

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
21

Sharif University of Technology

Reference

 Coad, P., Object-oriented patterns, Communications of the
ACM 33, 9 (September), 152-159, 1992.

