
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 1

Earlier Patterns

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
2

Sharif University of Technology

Software Patterns

 Software Patterns support reuse of software architecture
and design.

 Patterns capture the static and dynamic structures and
collaborations of successful solutions to problems that arise
when building applications in a particular domain.

 Patterns represent solutions to problems that arise when
developing software within a particular context.

 i.e., “Pattern == problem/solution pair in a context”

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
3

Sharif University of Technology

Patterns: A Chronological Perspective

 1979: Christopher Alexander’s "Timeless Way of Building"

 Alexander studied ways to improve the process of designing
buildings and urban areas.

 1987: Cunningham and Beck use Alexander’s ideas to develop a
small pattern language for Smalltalk.

 1990: The Gang of Four (Gamma, Helm, Johnson and Vlissides)
begin work compiling a catalog of design patterns.

 1991: Bruce Anderson gives first Patterns Workshop at OOPSLA.

 1992: Peter Coad introduces his OO Patterns.

 1993: Kent Beck and Grady Booch sponsor the first meeting of what
is now known as the Hillside Group.

 1994: First Pattern Languages of Programs (PLoP) conference.

 1995: The Gang of Four (GoF) publish the Design Patterns book.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
4

Sharif University of Technology

Software Design Patterns

 “A design pattern names, abstracts, and identifies the
key aspects of a common design structure that make it
useful for creating a reusable object-oriented design.”

 Design Patterns capture the static and dynamic structure
and collaboration among key participants in software
designs.

 They are particularly useful for articulating how and why to
resolve non-functional forces.

 Patterns facilitate reuse of successful software architectures
and designs.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
5

Sharif University of Technology

Coad's OO Patterns

 Seven basic Patterns:

1. Item Description

2. Time Association

3. Event Logging

4. Roles Played

5. State over a Collection

6. Behavior over a Collection

7. Broadcast

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
6

Sharif University of Technology

Pattern 1: Item Description

 The item description pattern consists of an "item" object (i.e.,
an object of the class "item") and an "item description" object.

 An "item description" object has attribute values which may
apply to more than one "item" object; an "item" object has its
own individual assignment of attribute values.

 Use this pattern when some attribute values may apply to
more than one object in a class.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
7

Sharif University of Technology

Item Description

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
8

Sharif University of Technology

Pattern 2: Time Association

 If one needs to express attributes or services regarding an
association between two objects, then an object from "time
association" is needed.

 A "time association" object often sends messages to its
participating objects to get values or get a sub-calculation
done on its behalf.

 Note that the association connection:

 captures the association for future queries about these objects.

 captures (for the sender) "to whom to send a message."

 Use this pattern whenever the system is responsible to know
an association between two or more objects and to know or
do something about that association.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
9

Sharif University of Technology

Time Association

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
10

Sharif University of Technology

Pattern 3: Event Logging

 A "device" object monitors an external device; the object

 is responsible for detecting that an event has occurred;

 is responsible for initiating a response to the event.

 Part of the response may be to log the event's occurrence; when this
is the case, a "device" object sends the message "create" to the
"event remembered" class to create an object with historical values.

 A "device" object may know about some number of "event
remembered" objects; an "event remembered" object must know
about a corresponding "device" object.

 Use whenever an event is detected, and you need to log its
occurrence to support after-the-fact analysis or to meet legal
requirements.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
11

Sharif University of Technology

Event Logging

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
12

Sharif University of Technology

Pattern 4: Roles Played

 A "player" object has attribute values and services that apply over
time. A player object is always a player object.

 At times, a player object "wears different hats," playing one or more
roles.

 Often, starting and ending times are common to all such roles.

 Use this pattern:

 whenever you have a player object which remains the same old player
object, but has different attributes and services, depending on the
"hats" the player may wear.

 to model large numbers of roles, combinations of roles, and changes
in roles; this approach is more concise and flexible than attempting to
use multiple inheritance in this situation.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
13

Sharif University of Technology

Roles Played

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
14

Sharif University of Technology

Pattern 5: State over a Collection

 A "collection" object knows its state; this state applies to the
collection and may also apply to its parts, and each "member"
object has its own state, too.

 Use this pattern whenever there is whole-part in a business
domain or implementation domain, and one or more attributes
apply to the whole (the collection).

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
15

Sharif University of Technology

State over a Collection

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
16

Sharif University of Technology

Pattern 6: Behavior over a Collection

 A "collection" object has behavior that applies across an entire
collection of its "member" objects.

 Each "member" object performs actions, knowing (by means
of its attributes) how to perform, without needed coordination
with other "member" objects.

 Use this pattern whenever there is whole-part in a domain,
and a behavior (i.e., one or more services) applies across the
whole collection.

 Caution: make the member objects do as much as they can
with what they know; only put behavior that really applies
across the collection up in the "collection" object.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
17

Sharif University of Technology

Behavior over a Collection

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
18

Sharif University of Technology

Pattern 7: Broadcast

 This pattern is used to communicate complex changes between one
major section of an OOA/OOD model with another major section.

1. Whenever it changes, a "broadcasting item" object broadcasts a
change notification to the "receiving item" objects that it knows about.

2. A notified "receiving item" object then sends a message to the
"broadcasting item" to get the change.

3. Once it gets the change, a "receiving item" object takes whatever
action is necessary in light of the change.

 Use this pattern to establish interactions between major OOA/OOD
parts in a way that the two sections stay cleanly separated.

 Use this pattern to separate business domain classes from human-
interaction and data-management classes.

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
19

Sharif University of Technology

Broadcast

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
20

Sharif University of Technology

Coad Patterns: Example Model

Patterns in Software Engineering – Lecture 1

Department of Computer Engineering
21

Sharif University of Technology

Reference

 Coad, P., Object-oriented patterns, Communications of the
ACM 33, 9 (September), 152-159, 1992.

