Patterns In
Software Engineering

| ecturer: Raman Ramsin

Lecture 1

Earlier Patterns

Department of Computer Engineering Sharif University of Technology

u
Software Patterns

m Software Patterns support reuse of software architecture
and design.

Patterns capture the static and dynamic structures and
collaborations of successful solutions to problems that arise
when building applications in a particular domain.

m Patterns represent solutions to problems that arise when
developing software within a particular context.

i.e., “Pattern == problem/solution pair in a context”

Department of Computer Engineering Sharif University of Technology

E
Patterns: A Chronological Perspective

m 1979: Christopher Alexander’s "Timeless Way of Building"

Alexander studied ways to improve the process of designing
buildings and urban areas.

m 1987: Cunningham and Beck use Alexander’s ideas to develop a
small pattern language for Smalltalk.

m 1990: The Gang of Four (Gamma, Helm, Johnson and Vlissides)
begin work compiling a catalog of de5|gn patterns.

m 1991: Bruce Anderson gives first Patterns Workshop at OOPSLA.
m 1992: Peter Coad introduces his OO Patterns.

m 1993: Kent Beck and Grady Booch sponsor the first meeting of what
is now known as the Hillside Group.

m 1994: First Pattern Languages of Programs (PLoP) conference.
m 1995: The Gang of Four (GoF) publish the Design Patterns book.

Department of Computer Engineering Sharif University of Technology

E
Software Design Patterns

m A design pattern names, abstracts, and identifies the
key aspects of a common design structure that make it
useful for creating a reusable object-oriented design.”

m Design Patterns capture the static and dynamic structure

and collaboration among key participants in software
designs.

They are particularly useful for articulating how and why to
resolve non-functional forces.

Patterns facilitate reuse of successful software architectures
and designs.

Department of Computer Engineering Sharif University of Technology

u
Coad's OO Patterns

m Seven basic Patterns:
1. Item Description
2. Time Association
3. Event Logging
4, Roles Played
5. State over a Collection
6. Behavior over a Collection

7. Broadcast

Department of Computer Engineering Sharif University of Technology

E
Pattern 1: Iltem Description

m The item description pattern consists of an "item" object (i.e.,
an object of the class "item") and an "item description" object.

m An "item description" object has attribute values which may
apply to more than one "item" object; an "item" object has its
own individual assignment of attribute values.

m Use this pattern when some attribute va/ues may apply to
more than one object in a class.

Department of Computer Engineering Sharif University of Technology

E
ltem Description

l (ItemDescription
“ltem description” pattem t

\

AircraftDescription
Aircraft 1 manufacturar
An example tailNumber | o model
™I} standardCruisingRange
N\ 4
Department of Computer Engineering Sharif University of Technology

u
Pattern 2: Time Assoclation

m If one needs to express attributes or services regarding an
association between two objects, then an object from "time
association"” is needed.

m A "time association" object often sends messages to its
participating objects to get values or get a sub-calculation
done on its behalf.

m Note that the association connection:

captures the association for future queries about these objects.

captures (for the sender) "to whom to send a message."

m Use this pattern whenever the system is responsible to know
an association between two or more objects and to know or
do something about that association.

Department of Computer Engineering Sharif University of Technology

Time Association

(I ﬁmeAssociationw [Panici;;r:tZ]
dateTime _ t '
calculate

Participant1 W

Time association” paltern

=
Owner th (LegaIEvent] 1 Vehicle
name 1.m . 1.m|} number
An example I address dateTime I style
bssessTaxType calculateFee assassVehicleCatagory)
Department of Computer Engineering Sharif University of Technology

E
Pattern 3. Event Logging

m A "device" object monitors an external device; the object

is responsible for detecting that an event has occurred;

is responsible for initiating a response to the event.

m Part of the response mag be to log the event's occurrence; when this
IS the case, a "device" object sends the message "create” to the
"event remembered" class to create an object with historical values.

m A "device" object may know about some number of "event
remembered” objects; an "event remembered" object must know
about a corresponding "device" object.

m Use whenever an event is detected, and you need to log its
occurrence to support after-the-fact analysis or to meet legal
requirements.

Department of Computer Engineering Sharif University of Technology

10

E
Event Logging

EventRemembe red

) o dateTime
Event logging” pattern value

ThresholdViclation

TemperatureSensor

dateTime
measuredValue
monitoredThreshold

operationalState
threshold

monitorForThresholdViolation

An example

create _

Department of Computer Engineering Sharif University of Technology

11

E
Pattern 4: Roles Played

m A "player” object has attribute values and services that apply over
time. A player object is always a player object.

O AtI times, a player object "wears different hats," playing one or more
roles.

m Often, starting and ending times are common to all such roles.

m Use this pattern:

whenever you have a player object which remains the same old player
object, but has different attributes and services, depending on the
"hats" the player may wear.

to model large numbers of roles, combinations of roles, and changes
in roles; this approach is more concise and flexible than attempting to
use multiple inheritance in this situation.

Department of Computer Engineering 12 Sharif University of Technology

E
Roles Played

Video
Player
“Roles played” paltern An example name
copyNumber
L—~
1
_ N—
PlayerRole VideoRole
dateTimeStart dateTimeStart
dateTimeEnd dateTimeEnd
rPIayerRole11 PlayerRoI921 RentedVideoRole | ReturnedVideoRole
| | | duration | status
\) J watchForOverdue N -
Department of Computer Engineering Sharif University of Technology

13

u
Pattern 5: State over a Collection

m A "collection” object knows its state; this state applies to the
collection and may also apply to its parts, and each "member"
object has its own state, too.

m Use this pattern whenever there is whole-part in a business
domain or implementation domain, and one or more attributes
apply to the whole (the collection).

Department of Computer Engineering Sharif University of Technology

14

u
State over a Collection

“State across a collection” pattern An example

Aircraft

altitude

Collection

collectionAttribute

Member Engine

ratedPower

memberAttribute

Department of Computer Engineering {5 Sharif University of Technology

u
Pattern 6: Behavior over a Collection

m A "collection” object has behavior that applies across an entire
collection of its "member" objects.

m Each "member"” object performs actions, knowing (by means
of its attributes) how to perform, without needed coordination
with other "member" objects.

m Use this pattern whenever there is whole-part in a domain,
and a behavior (i.e., one or more services) applies across the
whole collection.

m Caution: make the member objects do as much as they can
with what the?/ know; only put behavior that really applies
across the collection up in the "collection" object.

Department of Computer Engineering Sharif University of Technology

16

Behavior over a Collection

“Behavior across a collection” pattern An example

Collection CallCalulation

selectNextCall

collectionService

Call

Member timeOfArrival
priority

originatingNumber

route
rateimportance

memberService

Department of Computer Engineering Sharif University of Technology

17

u
Pattern 7: Broadcast

m This pattern is used to communicate complex changes between one
major section of an OOA/OOD model with another major section.

1. Whenever it changes, a "broadcasting item" object broadcasts a
change notification to the "receiving item" objects that it knows about.

2. A notified "receiving item" object then sends a message to the
"broadcasting item” to get the change.

3. Once it gets the changfe, a "receiving item" object takes whatever
action is necessary in light of the change.

m Use this pattern to establish interactions between major OOA/OQOD
parts in @ way that the two sections stay cleanly separated.

m Use this pattern to separate business domain classes from human-
interaction and data-management classes.

Department of Computer Engineering Sharif University of Technology

18

.
Broadcast

“Broadcast” pattern
("

Receivingltem

Broadcastingltem

messageToGelChange

broadcastChangeNotification

recelveChangeNatification
sendMessageToGetChange

N\ 7’/

An example

(a =\ e)
HumaninteractionView I DatalnteractionView
messageTelnvokeAction 1 > 0m messageloGetChange
messageToGetChange f_ — MI odel] : —

oa

getUserinpul | | receiveChangeNolification
sendMessageTolnvokeAction sendMessageToGelChange

| broadcastChangeNotification l

update
save

receiveChangeNotification
sendMessageToGetlChange
updateDisplay

\ /)

Department of Computer Engineering Sharif University of Technology

19

E
Coad Patterns: Example Model

“Item description” pattern “State across a collection” pattern
Product description— Sales transaction— Person
sales transaction item sales transaction item | name
“Time association” pattern “Behavior across a collection” pattern
Customer—sales transaction— Sales transaction—
employee sales transaction item

“Event logging” pattern
Product description—-
reorder event

“Roles played” pattern f l :
Person—person role— SalesTransaction PersonRole
custemer, employee number 2
dateTime dateTime I
om)
calculateTotal J
1'm N J\
1 :
(—w SalesTransactionitem I Customer Employee
ProductDescription ||
quantity I discount number
g:;:ctiuctCode < mamms| | calculatetemTotal l calculateDiscountAmount
¢ s e——
description
numberinStock
reorderLevel
ReorderEvent]
getPrice
autoReorder [0.m_ dateTime
J) status

Department of Computer Engineering Sharif University of Technology

20

u Patterns in Software Engineering — Lect

Reference

m Coad, P., Object-oriented patterns, Communications of the
ACM 33, 9 (September), 152-159, 1992.

Department of Computer Engineering Sharif University of Technology

21

