o

Check for
updates

Model-Driven Development of Chatbot
Microservices

Adel Vahdati® and Raman Ramsin®

Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran,
Iran

{adel.vahdati97,ramsin}@sharif.edu

Abstract. Conversational agents and chatbots are gaining prominence in software
systems by providing functionalities beyond traditional GUIs. These intelligent
assistants facilitate software development tasks such as deployment, error han-
dling, and scheduling. However, chatbot development remains challenging due to
productivity, reusability, scalability, and maintainability issues.

We propose a model-driven methodology for chatbot development in
four phases: computation-independent model construction, platform-independent
model construction, platform-specific model construction, and code generation.
The methodology enhances productivity by automating code generation and
improves reusability through computation-independent and platform-independent
definitions. Additionally, it introduces a novel approach to categorizing, enumer-
ating, parameterizing, and representing user intents. We obtain data for training
natural language understanding services and leverage microservice architecture
and architectural design patterns to enhance scalability, maintainability, and inter-
operability. The methodology has been evaluated based on three groups of criteria:
criteria relevant to the generic software development lifecycle, criteria specific to
model-driven development, and criteria relevant to chatbots.

Keyword: Model-driven methodology - Chatbot microservice - Natural
Language processing

1 Introduction

Software systems are now adopting a new type of interface beyond the traditional GUI.
Conversational agents, intelligent assistants, and conversational user interfaces (CUI)
are becoming increasingly popular [1]. Additionally, conversational agents are already
aiding software development activities such as automating deployment tasks, assigning
errors and issues to team members, and scheduling tasks [2]. Their integration into
social networks as communication channels has enhanced stakeholder participation in
task automation and collaborative modeling [2, 3].

In conversational agents, user interaction occurs through text, voice messages, or
interactive images (as in Gesture Bots). The agent always has a dialogue mechanism,
with the only difference being the interface or medium through which this dialogue
happens [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
F. José Dominguez Mayo et al. (Eds.): MODELSWARD 2024, CCIS 2547, pp. 69-87, 2026.
https://doi.org/10.1007/978-3-031-96841-9_4

70 A. Vahdati and R. Ramsin

A chatbot mimics human conversation through two-way communication using nat-
ural language. To provide a useful conversation, a chatbot platform must offer the
following features [4]:

e Natural language processing (NLP) and natural language understanding (NLU):
understanding user input and extracting relevant information.

e Conversation flow management

e Performing necessary actions: such as searching a database or calling other services.

Leading companies like Google (Dialogflow), Microsoft (Microsoft Bot Frame-
work), Amazon (Amazon Lex), and IBM (Watson) have provided various tools and
frameworks to create conversational agents [5]. These tools offer a framework, cloud
environment, and GUI to define the conversation flow. Existing frameworks utilize
machine learning (ML) algorithms to identify the user’s intention based on the mes-
sage sent by the user; for instance, Amazon provides services such as Lex, Comprehend,
and Polly to help create intelligent assistants [6].

In model-driven development (MDD), a system is modeled at different levels of
abstraction. Model transformations are used to refine high-level abstract models into
lower-level models or code [7, 8]. In chatbot development, MDD can help reduce
accidental complexity [8], leading to higher productivity, performance, and reusability
[9].

We propose a model-driven methodology that guides the process of creating a
chatbot. This methodology encompasses four phases: construction at the computation-
independent modeling (CIM) level, construction at the platform-independent modeling
(PIM) level, construction at the platform-specific modeling (PSM) level, and construc-
tion at code level; sets of activities and products have been specified for each phase,
and metamodels have been defined at different levels of abstraction to describe the
problem/solution domains.

The CIM-level construction phase of our proposed methodology focuses on under-
standing the problem domain and user goals through natural language conversations.
This phase involves creating CIM models to analyze the problem domain and require-
ments, resulting in a requirements model. User goals are then extracted to form an intent
model. Our approach is generic and adaptable to various contexts, categorizing and enu-
merating user intents, identifying necessary parameters, and using a metamodel for intent
representation. We also introduce the CRAC method (Concept, Responsibilities, Asyn-
chronous Collaboration) for analyzing the problem domain and extracting the require-
ments, modeling domain concepts and system functions, and capturing asynchronous
system interactions through events.

The PIM-level construction phase focuses on designing the chatbot microservice and
its interactions with essential services, using PIM models that are platform-agnostic. This
phase involves identifying user intents, extracting necessary information, and employing
Al and ML algorithms for training. We leverage MDD techniques, including a domain-
specific language (DSL) for describing questions and model-to-text transformations
for seamless integration with the NLU microservice. The architecture of the chatbot
microservice is defined using patterns like CQRS and API Controller, with metamodels

Model-Driven Development of Chatbot Microservices 71

abstractly describing the design aspects. Additionally, we define a bidirectional conver-
sation flow between the chatbot and users, ensuring effective communication through a
proposed dialogue flow metamodel.

The PSM-level construction phase involves implementing solutions and generat-
ing code in C# within the.NET framework. This phase introduces two metamodels for
describing the solution domain using class and interface concepts, and the metamodel
for configuring software projects, including external services like NLU and Messaging
microservices.

The code-level construction phase introduces a metamodel to model project struc-
tures, folders, files, and their contents. PSM-level models are transformed into the
solution model using model-to-model (M2M) transformations, and solution code is
subsequently generated from this model by model-to-text (M2T) transformations.

This paper is structured as follows: Sect. 2 provides a review of the research back-
ground; the challenges of chatbot development are discussed in Sect. 3; in Sect. 4, the
proposed methodology and architecture are introduced; the proposed methodology is
evaluated in Sect. 5; and in Sect. 6, conclusions and directions for future work are
presented.

2 Related Works

Several frameworks have emerged to simplify the creation and deployment of chatbots.
Notably, Xatkit [10] is a chatbot development framework that leverages MDD and DSLs.
Designers define user intentions and behaviors, binding them to actions and responses.
The runtime engine deploys the chatbot, registers intents, establishes connections, and
launches external services.

Another web-based environment, CONGA [5], employs a DSL for modeling con-
versational agents. Specifications are analyzed and compiled into tools like Rasa or
Dialogflow. A recommendation component assists in selecting the most suitable tool for
chatbot creation.

Mahmood et al. [6] focus on dynamic user interfaces by utilizing microservice archi-
tecture and the flexibility of natural languages. User intentions are identified based
on requirements, and utterances are mapped to these intents. Open API specifications
orchestrate microservices according to their capabilities and availability.

Matic et al. [4] propose an architecture that allows using various natural language
understanding (NLU) services without vendor lock-in. They provide a general NLU
metamodel and specific metamodels for Dialogflow and Rasa NLU services, along with
mapping rules for automatic object creation.

Perez-Soler et al. [3] introduce an automated solution for modeling conversational
agents using natural language. Users can express incomplete or inaccurate ideas, and
the framework refines the model accordingly.

Ed-douibi et al. [11] suggest a chatbot interface for querying Open Data resources.
Users ask questions in natural language, and the chatbot converts them into API requests.
The annotated API model configures the chatbot for querying Web APIs, with Xatkit as
the generation tool.

72 A. Vahdati and R. Ramsin

Lastly, Perez-Soler et al. [2] demonstrate using a chatbot as an interface for query-
ing domain-specific models, catering to non-technical users. The chatbot model is
automatically generated based on the domain metamodel, implemented using Xatkit.

3 Challenges of Chatbot Development

Developing chatbots presents several significant challenges. First, reliance on proprietary
components and services during design and runtime creates dependency on service
providers [5]. Ensuring compatibility across platforms and different tool providers is
also a critical concern [9].

Model-driven development (MDD) can simplify the process of describing various
types of user interfaces (Uls) and creating rich UI experiences [1]. However, metamodel-
ing and language engineering remain complex tasks. Additionally, techniques are needed
to analyze model quality and tools that can reflect changes in requirements [9].

Current MDD methodologies often lack sufficient focus on requirements engineer-
ing [9]. To create chatbots using the MDD approach, employing design patterns and
quality metrics becomes essential [9]. Furthermore, chatbots must be maintained and
synchronized with evolving requirements, necessitating methods to enhance maintain-
ability, adaptability, and scalability [9]. Table 1 outlines some of the critical questions
that arise during chatbot development [12].

Table 1. Critical questions that arise during chatbot development [12].

How to find the most suitable tool for creating a chatbot based on its requirements?

How to design a chatbot independent of the development tool and platform?

How to analyze and evaluate a chatbot before implementation?

How to keep up with the rapid growth of the ecosystem and tools for developing chatbots?

How to support the migration process of chatbots to a new tool or platform?

How to integrate a chatbot with new NLU services provided by different vendors?

How to integrate chatbots with new communication channels provided by different vendors?

How to solve the coupling between a chatbot and a specific intent recognition service?

O | 0| | N || W N |-

How to obtain training phrases for ML algorithms to recognize user intents?

4 Proposed Chatbot Development Methodology

Our proposed methodology for chatbot development emphasizes modeling at various
abstraction levels, model transformations, and code generation. The abstraction lev-
els provide a structured way to represent chatbot-related concepts and behaviors. We
start with high-level conceptual models (CIM-level) that capture user intents, sys-
tem responses, and domain-specific knowledge. As we refine the models, we move

Model-Driven Development of Chatbot Microservices 73

to platform-independent models (PIM-level) that consider architectural patterns and
interaction flows. Then, we reach platform-specific models (PSM-level) that address
implementation details and technology choices. Finally, code artifacts are generated at
the lowest level of abstraction.

Model-to-model transformations play a crucial role in our methodology. They create
lower-level models from higher-level ones. For instance, transforming a CIM-level intent
model into a PIM-level interaction model bridges the gap between user requirements
and system behavior. These transformations ensure consistency and traceability across
abstraction levels.

Beyond models, we generate solution code using model-to-text transformations.
These transformations map models to actual implementation artifacts. Based on the
desired architecture and design patterns, we produce code snippets, service interfaces,
and communication protocols. Our overall solution architecture follows the microservice
paradigm. Figure 1 shows the overall solution based on the microservice architecture. It
includes three essential microservices:

1. Chatbot Microservice: Handles user interactions, natural language understanding
(NLU), and context management, and delegates request fulfillment to the relevant
Business services.

2. NLU Microservice: Focuses on intent recognition, entity extraction, and language
processing.

3. Messaging Microservice: Manages communication channels and message routing.

Chatbot
Microservice

Business
Services

Subscribe
NLU Messaging
Microservice Microservice
Publish Publish

*»{ Message Broker ’

Fig. 1. Overall solution architecture.

Building upon our previous methodology [12], we have tailored the process specifi-
cally for developing chatbot microservices. Figure 2 provides an overview of the method-
ology and the modeling process across different abstraction levels. As seen in this figure,
the methodology spans four phases: CIM-level construction, PIM-level construction,
PSM-level construction, and Code-level construction. While this paper primarily focuses
on the chatbot microservice, the same principles apply to developing the NLU and Mes-
saging microservices: at the CIM level, we create CRAC models specific to NLU and
Messaging; the PIM level involves designing CQRS and Controller models tailored for
each microservice; based on the desired platform and technology stack, we transform

74

these models to the PSM level; and finally, using model-to-text transformation, solu-
tion code is generated for both NLU and Messaging microservices. In summary, our
model-driven methodology provides a comprehensive framework for building intelli-
gent conversational agents, extending seamlessly to the auxiliary microservices critical

for chatbot functionality.

A. Vahdati and R. Ramsin

Intent | CRAC i
Metamode! | i Metamodel | Metamodel |
& : fraceseressgiesnersasnne s SRy r'“"'""""
I Conforms to Confoms to | Conforms to |
1 |
Intent Graph Model-to-Model Model-to-Model
Model Transformation (M2M) Intent Model Transformation (M2M) | CRAC Model
PIM e, T
{ Prompt | Dialog N C;QRSd | A:’AI tContrglller
i H i H etamodel etamodel
i Mela:nodel | { Metamodel | x : %
Corionrs o : Conforms to T Ccnfa"rms to Ccnfo:rms to
Prompt Refined " ! L
Model § Mw Intent Modei | | D'alog Model CQRS Model | | AP! Controller
3 ‘ Model
PSM —] o
R | Class & Interface
Project Settings : M2M | Metamodel
Metamodel saisaen
7777777 ¥ T‘——— e CONTONMS f0 - T ConfarmimJ 1%
J Conforms to 1 | ‘ | Conforms to
Conforms to L | | 3 | |
NLU Service Business Service Messaging Service Refined CQRS Model API Controller
Configuration Model Interaction Model Configuration Model Dialog Model Model
P —
y \
. Model-to-Text Chatbot
M2M Solution Model Transformation (M2T) Microservice /’
T '\ /
____________/

Code

Conforms to ‘I

e e e

| Project File & Folder

Metamodel

Fig. 2. MDD methodology for developing chatbot microservices.

4.1 CIM-Level Construction

This phase aims to explore the problem domain and understand user goals through
natural language conversations. Models are described at the highest level of abstraction,
known as the computation-independent model (CIM). Initially, the problem domain and
requirements undergo analysis, resulting in a requirements model. Subsequently, user
goals are extracted from this model using model transformations, leading to the creation

of the intent model.

Model-Driven Development of Chatbot Microservices 75

We propose a generic approach to automatically model user intents expressed through
natural language conversations with chatbots. Unlike domain-specific methods, our app-
roach is not tied to any particular problem domain. Instead, it can adapt to various con-
texts where users interact with chatbots to achieve specific tasks. The key steps in our
approach are as follows:

1. Intent Categorization

2. Intent Enumeration

3. Parameter Identification
4. Intent Representation

We begin by categorizing user intents based on the context of the conversation.
These intents represent high-level actions or requests that users express. For instance, in
the context of infrastructure provisioning, we identify categories such as “Provisioning
Resources,” “Configuration Management,” “Deployment Automation,” and “Orchestra-
tion.” Each category represents a distinct aspect of resource management. Table 2 shows
a prompt template for user intent categorization, instructing ChatGPT’s response format
based on the intent graph metamodel shown in Fig. 3.

Within each category, we enumerate the specific intents that users express. These
intents correspond to high-level tasks or actions that users want to perform. For example
in the “Provisioning Resources” category, we identify the list of intents as “Create Virtual
Machine (VM) (CreateVM)”, “Create Container Cluster (CreateCluster)”, “Create Load
Balancer (CreateLLB)”, and “Create Database Instance (CreateDB)”. Table 3 shows a
prompt template for user intent enumeration.

For each intent, we identify the necessary parameters. These parameters capture
the essential information required to fulfill the user’s request. For example, common
parameters of “Create Virtual Machine (VM) (CreateVM)” intent include “vmName”,
“vmSize”, “image”, “network”, and “storage”.

Table 4 shows a prompt template for intent parameters identification.

To capture the essence of user intents, we introduce an intent metamodel (Fig. 4).
This metamodel serves as a structured representation that encapsulates the intent, its
associated parameters, and their relationships. By leveraging this metamodel, we can
automatically generate intent models from conversational data.

We propose a method for analyzing problem domains and extracting the require-
ments that we call the CRAC method (Concept, Responsibilities, Asynchronous Collab-
oration); this method provides a structured approach to understanding domain-specific
concepts and their associated responsibilities [12].

76 A. Vahdati and R. Ramsin

Table 2. Categorizing user intents (intent categorization).

Template

Categorize user intents within a specific problem domain: {problem domain}. Provide your
answer in json format, including the problemDomain and list of catgories (the name and
description of each category).

Prompt

Categorize user intents within a specific problem domain: “Infrastructure as Code”. Provide
your answer in json format, including the problemDomain and list of catgories (the name
and description of each category).

Answer
“problemDomain”: “Infrastructure as Code”,
“categories™: [

“name”: “Provisioning Resources”,

“description”: “Creating, managing, and scaling infrastructure resources using code”
}s

“name”: “Configuration Management”,

“description”: “Defining and maintaining consistent configurations for infrastructure
components”

¥
{
“name”: “Deployment Automation”,
“description”: “Automating the deployment process for applications and services”
}s
{
“name”: “Orchestration”,

“description”: “Coordinating and managing complex workflows involving multiple
resources”

H
]
}
ProblemDomain | hasintentCategory | IntentCategory Intent
+ Name: string .|+ Name: string hasintent—->. Name: string
+ Description: string + Description: string

Fig. 3. Intent graph metamodel.

According to CRAC, domain concepts are modeled as instances of the Domain-
Concept class, representing fundamental elements. These concepts serve as building

Model-Driven Development of Chatbot Microservices 77

Table 3. Finding the intents related to a specific category (intent enumeration).

Template

Find the list of user intents in the {problem domain} problem domain related to {category}
category. Provide your answer in json format, including the problemDomain, category, and
list of intents (the name and description of each intent).

Prompt

Find the list of user intents in the “Infrastructure as Code” problem domain related to
“Provisioning Resources” category. Provide your answer in json format, including the
problemDomain, category, and list of intents (the name and description of each intent).
Answer
{
“problemDomain”: “Infrastructure as Code”,
“category”: “Provisioning Resources”,
“intents”: [
{
“name”: “Create Virtual Machine (VM) (CreateVM)”,
“description”: “Provision a virtual machine with specified configuration”
¥
{

“name”: “Create Container Cluster (CreateCluster)”,
“description”: “Provision a container cluster for deploying containerized applications”
¥
{
“name”: “Create Load Balancer (CreateLB)”,
“description”: “Provision a load balancer to distribute incoming traffic”
}s
{
“name”: “Create Database Instance (CreateDB)”,
“description”: “Provision a database instance with specified settings”
}
]
}

blocks for the problem domain. Additionally, high-level system functions are captured
as Commands. These commands are responsible for transitioning the system between
valid states. For example, a “Create Virtual Machine” command triggers the provisioning
process, resulting in an event that alters the system state.

78 A. Vahdati and R. Ramsin

Table 4. Identifying parameters required to fulfill the user’s request (parameter identification).

Template

Can you provide me with the required parameters for performing the {intent} intent in the
{problem domain} problem domain related to {category} category? Provide your answer in
json format, including the problemDomain, category, intent, and list of parameters (the
name and description of each parameter).

Prompt

Can you provide me with the required parameters for performing the “Create Virtual
Machine (VM) (CreateVM)” intent in the “Infrastructure as Code” problem domain related
to “Provisioning Resources” category? Provide your answer in json format, including the
problemDomain, category, intent, and list of parameters (the name and description of each
parameter).

Answer

{

“problemDomain”: “Infrastructure as Code”,

“category”: “Provisioning Resources”,
“intent”: “Create Virtual Machine (VM) (CreateVM)”,
“parameters”: [
“name”: “vmName”,
“description”: “The name of the virtual machine”
¥
“name”: “vmSize”,
“description”: “The desired size or configuration for the VM”
}s
99, ¢

“name”: “image”,

“description”: “The base operating system image for the VM”
}s
{

“name”: “network”,

“description”: “The network configuration for the VM”
3
{

“name”’: “storage”,
“description”: “The storage options for the VM”
}
]

Model-Driven Development of Chatbot Microservices 79

ParameterValue

B mm— >+ Name: string isMappedTo
i + Value: string
1
A 4
Intent IntentParemeter
Utterance expressedBy hasParameter
: P + Name: string —»{+ Name: string
+ Expression: string| = + Description: string + Type: string
+ Type: IntentType + Description: string
hasContext isMappedTo
«Enums 1
IntentType
. " Property
+ Command Emily hasp rty
asProperty——» - stri
+ Query + Name: string & N Nam(_e. strlng
+ Type: string

Fig. 4. Intent metamodel.

The CRAC method acknowledges that system interactions are often asynchronous.
Events play a crucial role in capturing these collaborations. When a command is executed,
it generates an Event that reflects the outcome of the action. These events provide a way
to track system changes, notify relevant components, and maintain consistency across
distributed systems.

Figure 5 shows the CRAC metamodel. To bridge the gap between user intents and
the CRAC model, model-to-model transformations (M2M) is executed. These trans-
formations map intent-related information to corresponding CRAC elements (Table 5).
By aligning the intent model with the CRAC representation, we ensure context-aware
responses and facilitate efficient system design.

4.2 PIM-Level Construction

In this phase, our objective is to design the chatbot microservice and establish its inter-
actions with essential services. The platform-independent models (PIM) created during
this stage remain agnostic to specific platforms and service providers.

We begin by identifying user intents and extracting the necessary information to
fulfill their requests. An Al model and machine learning (ML) algorithm are typically
employed for training. Tasks involve finding training phrases for each intent, identifying
key parameters, and mapping them to generic or custom entities. In our previous work
[12], we illustrated the approach, demonstrated prompt generation, and leveraged model-
driven development techniques. By describing questions using a DSL and converting
them via model-to-text transformations, we facilitate seamless integration with NLU
microservices. We’ve introduced a metamodel to describe these questions, as depicted
in Fig. 6.

80 A. Vahdati and R. Ramsin

Property |
hasProperty >+ Name: string
+ Type: string €
*
hasProperty
| <<enum>>
Command Multiplicity
—publishFact———
+ Name: string + AtlLeastOne ="1.™
h 4 X + AtMostOne ="0..1"
Event + ExactlyOne ="1"
] callForAction + Many =""
+ Name: siring isResponsibleFor
|
F
DomainConcept
isInterestedIn]
+ Name: string hasProperty
ProblemDomain x
+ Name: string Lol -
+ Description: string Lol
ry hasProperty
h A
Domain Query
Pl nnted + Name: string + Name: string I
+ Description: string + QueryResultMultiplicity: Multiplicity

Fig. 5. CRAC metamodel.

The second activity focuses on defining the chatbot microservice architecture. We
employ various architectural patterns, including the CQRS (Command Query Respon-
sibility Segregation) and API Controller patterns. The CQRS metamodel abstractly
describes design aspects related to CQRS, such as command handlers, query handlers,
events, and queries. Similarly, the API Controller metamodel provides an abstract syn-
tax for describing web request entry points and their distribution via controller patterns.
Table 6 and Table 7 show transformation rules for converting the CRAC model to CQRS
and API Controller models.

The third activity involves defining the bidirectional conversation flow between the
chatbot microservice and the user. For each intent in the model, we outline how the
chatbot interacts with users and specify actions to fulfill their requests. To achieve this,
we propose a metamodel for describing the dialogue flow, ensuring effective bidirectional
communication between the chatbot microservice and users, as shown in Fig. 7.

Model-Driven Development of Chatbot Microservices

Table 5. Intent-to-CRAC model transformation rules.

81

Intent Metamodel CRAC Metamodel
Entity DomainConcept
Intent {Intent.Type = Command} Command

Intent {Intent.Type = Query} Query

Property Property
IntentParameter Property

Entity =» Property: hasProperty

DomainConcept=?Property:
hasProperty

Intent {Intent.Type = Command }=¥IntentParameter:

hasParameter

Command=»Property: hasProperty

Intent {Intent.Type = Query }=»ntentParameter:
hasParameter

Query=?»Property: hasProperty

Intent {Intent.Type = Command } =»Entity:
hasContext

DomainConcept=*Command:
isResponsibleFor

Intent = Entity: hasContext

Query=*DomainConcept: return

ParameterValue FewShotExample 3 I Conversation ; l ChatMessage
+ Name: string 1 =
+ Value: string * T hasContent
hasExample 1
* 1
1 T lat Content
has[nput empiate hasAuthor
AE—— ——hasParameter + Type: string
hasTemplate i * + Value: string :
Prompt Parameter
Author

+ Name: string + Name: string

+ Role: AuthorRole
hasContext
Context
returnResponselnFormat FacPEraGior «Enums
0.1 0.1 |+ Text: string AuthorRole
Response + System

+ User

+ Format: string + Assistant
+ Tool

Fig. 6. Prompt metamodel.

4.3 PSM-Level Construction

At the PSM level, two metamodels have been provided for implementing solutions and
generating code in the C# language within the. NET framework. The goal of the “Class &
Interface” metamodel (a partial view of which is provided in Fig. 8) is to provide an

82 A. Vahdati and R. Ramsin

Table 6. CRAC-to-CQRS model transformation rules.

CRAC Metamodel CQRS Metamodel
Command CommandHandler=*Command: canHandle
Query QueryHandler=»Query: canHandle

DomainConcept=?Event: isInterestedIn

EventHandler=?Event: canHandle

Table 7. CRAC-to-APIController model transformation rules.

CRAC Metamodel

API Controller Metamodel

DomainConcept=*Command:

isResponsibleFor

APIController=*Command:
dispatchCommand

Query=*DomainConcept:

return

APIController=»Query: dispatchQuery

Event

——Trigger—»

+ Name: string

Dialog

Intent

—Interrupt—>

Participant

+ Name: string

«—hasDialog—
? + Name: string

From ConversationFlow Action

+ Name: string

To

CorrespondTo——>

System Tool User

SendRequest Activity

+ Message: string

+ Method: HTTPMethod
+ Uri: string

+ Header: string

+ Body: string

ParameterValue

DispatchQuery DispatchCommand

+ Name: string
+ Value: string

+ Name: string + Name: string
+ Values: List<ParameterValue> + Values: List<ParameterValue>

Fig. 7. Dialog metamodel.

abstract syntax that allows describing the solution domain using class and interface con-
cepts in the C# programming language. The purpose of the “Project Settings” metamodel

(Fig. 9) is to provide an abstract syntax for describing the settings and configuration of

a software project in the.NET framework, including external services such as NLU and
Messaging microservices.

By combining information from the Business Service Interaction Model, NLU Ser-
vice, and Messaging Service Configuration Models at the PSM level with the Refined
Intent Model and Dialog Model at the PIM level, we generate the Refined Dialog Model.
Additionally, the CQRS and API Controller models at the PIM level are transformed
into corresponding models at the PSM level using model-to-model transformation.

Model-Driven Development of Chatbot Microservices 83

<<Concept=> <<Enum=>
Interface Visibility
+ Public
x + Private
<<Concept=> realizelnterface + Protected
Property + Internal
+ PropertyName: string <
+ PropertyType: string hasProperty <<Concept>>
+ IsReadOnly: bool BaseClass <<Concept=>
+ SetPropertyVisibility: Visibility . Operation
+ Namespace: string hasOperation
+ IsAbstract: bool
<<Concept=> + Visibility: Visibility
Field [|+ IsStatic: bool
hasField

+ Extend : string
+ FieldName: string
+ FieldType: string

+ Visibility: Visibility —usePackage— hasConstructor
<<Concept>> <=<Concept=>
Package Constructor

+ PackageName : string

Fig. 8. Partial Class & Interface metamodel (from the ‘BaseClass’ perspective).

<=Concept=> <<Concept== <<Concept>>
AppSettings * Project PackageReference
“——hasSettings— —hasDependency—»|)
+ Environment - string + TypeOfProject : string + Packageld : string
* |+ Version : string

hasConfig hasReference
- <<Fpum==
<<%t;n|fggi>> v TypeOfValue
<=Concept=> -
+Key : string ProjectReference : gttr)ljggt
* kg =g + RelativePath - string + JsonObiject
+TypeQOiValue : TypeOfValue £ JsonAnay

Fig. 9. Project Settings metamodel.

4.4 Code-Level Construction

At the code level, a simple metamodel called the “Project File & Folder” metamodel has
been established to model project structure, folders, files, and their content, as shown
in Fig. 10. Through model-to-model transformation, PSM-level models are converted
into the “Solution Model,” which adheres to the “Project File & Folder” metamodel.
Subsequently, solution code is generated from the “Solution Model” using model-to-text
transformation.

84 A. Vahdati and R. Ramsin

<=Concept==
<=<Concept== ProjectFile
Project

hasFile——{+ FileName: siring

+ Extension : string

+ RelativePath : string
+ Content : siring

hasFolder <<Concept==
ProjectFolder

hasFile

y

+ FolderName : string
+ RelativePath : string

~

hasFolder

Fig. 10. Project File & Folder metamodel.

5 Evaluation

We have used a criteria-based approach to evaluate the effectiveness of our proposed
methodology. The evaluation criteria fall into three distinct categories: criteria related
to the generic software development lifecycle (SDLC), criteria specific to model-driven
development (MDD), and criteria directly applicable to chatbots. The results of evaluat-
ing the proposed methodology based on these three categories of criteria are presented
in Table 8.

For problem domain analysis, our approach fully supports understanding the domain-
specific requirements, facilitating effective solution design. Regarding the generic
SDLC, our methodology fully supports Requirements Engineering, Analysis, Design,
and Implementation phases. However, it does not provide complete coverage of the entire
lifecycle, as Test, Deployment, and Maintenance phases are not explicitly addressed. In
terms of umbrella activities, our methodology partially supports cross-cutting concerns,
which play a crucial role in software development.

Reusability is a key aspect, and our methodology leverages the model-driven develop-
ment (MDD) approach, promoting the creation of reusable artifacts. Specifically related
to MDD, our methodology supports modeling at different levels of abstraction (CIM,
PIM, PSM, and Code). It also enables seamless Model-to-Model transformation across
these levels and model-to-text transformation at the Code level.

In the context of chatbots, our methodology addresses domain knowledge modeling,
user intent modeling, and conversation flow modeling. Additionally, it covers essen-
tial tasks for setting up Natural Language Understanding (NLU) services and archi-
tectural design, and satisfies essential quality attributes such as scalability, flexibility,
and interoperability. Furthermore, it excels in handling conversation aspects, including
understanding user queries and providing relevant responses.

Model-Driven Development of Chatbot Microservices

Table 8. Criteria-based evaluation results.

85

Category Criteria Level
Coverage of Generic Requirements Engineering [
Lifecycle Analysis O
Design &
Implementation [

. Test o
Generic Deployment g
SDLC -

Criteria Maintenance
Coverage of Umbrella Project Management
Activities Quality Assurance 8
Risk Management
Reusability @
Adaptability [))
CIM / PIM / PSM Creation [)
Model Transformation [
MDD- Metadata Management O
related Verification & Validation 5
Criteria Automatic Testing 8
Traceability between Models
Tool Support O
Chatbot Input / Output Text
Domain Closed-Domain
Approaches Al-based
Knowledge Data Structures (Semi)Structured
Domain Knowledge Modeling o
User Intent Modeling O
Conversation Flow Modeling @
Training Phrase Elicitation / Annotation O
NLU Service Providers Vendor-Independent
Communication Channels Vendor-Independent
Architectural Design .
Chatbot- | Quality Attributes Scalability ©
related Flexibility o
Criteria Maintainability <@
Interoperability o
Usability [))
Availability ©
Performance o
Security c
Conversational Aspects | Understanding O
Answering D
Navigation D
Error handling
Relevance
Consistency [))

Legend:

Full support. ; Partial suppoﬂo ; No Supporto

86 A. Vahdati and R. Ramsin
6 Conclusions

We have introduced a model-driven methodology for chatbot development, addressing
challenges related to productivity, reusability, scalability, and maintainability. By lever-
aging computation-independent models (CIMs), platform-independent models (PIMs),
and platform-specific models (PSMs), our approach guides developers through the
chatbot creation process. We emphasize seamless transitions between these levels of
abstraction, enabling efficient model-to-model and model-to-text transformations.

Our methodology not only automates code generation but also introduces a novel app-
roach to user intent representation. By categorizing, enumerating, parameterizing, and
representing user intents, we enhance the effectiveness of natural language understand-
ing (NLU) services. Additionally, we adopt microservice architecture and architectural
design patterns to improve scalability, maintainability, and interoperability. As chatbots
continue to evolve, our model-driven approach offers a valuable framework for building
intelligent conversational agents.

Future research will focus on providing tool support for our methodology and
defining metamodels for common communication platforms and NLU services.

References

1. Planas, E., Daniel, G., Brambilla, M., Cabot, J.: Towards a model-driven approach for mul-
tiexperience Al-based user interfaces. Softw. Syst. Model. 20(4), 997-1009 (2021). https://
doi.org/10.1007/s10270-021-00904-y

2. Perez-Soler, S., Daniel, G., Cabot, J., Guerra, E., de Lara, J.: Towards automating the synthesis
of chatbots for conversational model query. In: Enterprise, Business-Process and Information
Systems Modeling, (pp. 257-265) (2020). https://doi.org/10.1007/978-3-030-49418-6_17

3. Perez-Soler, S., Guerra, E., de Lara, J.: Flexible modelling using conversational agents. In:
2019 ACM/IEEE 22" International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), 478-482 (2019). https://doi.org/10.1109/MODELS-
C.2019.00076

4. Matic, R., Kabiljo, M., Zivkovic, M., Cabarkapa, M.: Extensible chatbot architecture using
metamodels of natural language understanding. Electronics 10(18), 2300 (2021). https://doi.
org/10.3390/electronics 10182300

5. Perez-Soler, S., Guerra, E., de Lara, J.: Creating and Migrating Chatbots with Conga.
2021 IEEE/ACM 43" International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), 37-40 (2021). https://doi.org/10.1109/ICSE-Companion
52605.2021.00030

6. Mahmood, R., Joshi, A., Lele, A., Pennington, J.: Dynamic Natural Language User Interfaces
Using Microservices. HAI-GEN+ User2agent @ IUI (2020). https://ceur-ws.org/Vol-2848/use
r2agent-paper-1.pdf

7. Rodrigues da Silva, A.: Model-driven engineering: a survey supported by the unified con-
ceptual model. Comput. Lang., Syst. Struct. 43, 139—-155 (2015). https://doi.org/10.1016/j.cl.
2015.06.001

8. Alam, O., Corley, J., Masson, C., Syriani, E.: Challenges for reuse in collaborative modeling
environments. MODELS Workshops, pp. 277-283 (2018)

9. Martinez-Gérate, A.A., Aguilar-Calderén, J.A., Tripp-Barba, C., Zaldivar-Colado, A.: Model-
driven approaches for conversational agents development: a systematic mapping study. IEEE
Access 11, 73088-73103 (2023). https://doi.org/10.1109/ACCESS.2023.3293849

Model-Driven Development of Chatbot Microservices 87

10. Daniel, G., Cabot, J., Deruelle, L., Derras, M.: Xatkit: a multimodal low-code chatbot devel-
opment framework. IEEE Access 8, 15332-15346 (2020). https://doi.org/10.1109/ACCESS.
2020.2966919

11. Ed-douibi, H., Canovas Izquierdo, J.L., Daniel, G., Cabot, J.:. A model-based chatbot gen-
eration approach to converse with open data sources. In: Web Engineering (Vol. 12706,
pp. 440-455) (2021). https://doi.org/10.1007/978-3-030-74296-6_33

12. Vahdati, A., Ramsin, R.: “Model-driven methodology for developing chatbots based on
microservice architecture”. In: Proceedings of the 12" International Conference on Model-
Based Software and Systems Engineering (MODELSWARD’24), 2024, pp. 247-254 (2024)

