
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/270508787

Methodologies	for	Agile	Product	Line
Engineering:	A	Survey	and	Evaluation

CONFERENCE	PAPER	·	SEPTEMBER	2014

DOI:	10.3233/978-1-61499-434-3-545

READS

74

2	AUTHORS,	INCLUDING:

Farima	Farmahini	Farahani

Sharif	University	of	Technology

1	PUBLICATION			0	CITATIONS			

SEE	PROFILE

Available	from:	Farima	Farmahini	Farahani

Retrieved	on:	27	October	2015

http://www.researchgate.net/publication/270508787_Methodologies_for_Agile_Product_Line_Engineering_A_Survey_and_Evaluation?enrichId=rgreq-e3294fd0-ac08-4ca4-add0-f52592eb0b06&enrichSource=Y292ZXJQYWdlOzI3MDUwODc4NztBUzoxODI2NzY1MDE4MzU3NzdAMTQyMDU2NDg4MDgyOA%3D%3D&el=1_x_2
http://www.researchgate.net/publication/270508787_Methodologies_for_Agile_Product_Line_Engineering_A_Survey_and_Evaluation?enrichId=rgreq-e3294fd0-ac08-4ca4-add0-f52592eb0b06&enrichSource=Y292ZXJQYWdlOzI3MDUwODc4NztBUzoxODI2NzY1MDE4MzU3NzdAMTQyMDU2NDg4MDgyOA%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-e3294fd0-ac08-4ca4-add0-f52592eb0b06&enrichSource=Y292ZXJQYWdlOzI3MDUwODc4NztBUzoxODI2NzY1MDE4MzU3NzdAMTQyMDU2NDg4MDgyOA%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Farima_Farmahini_Farahani?enrichId=rgreq-e3294fd0-ac08-4ca4-add0-f52592eb0b06&enrichSource=Y292ZXJQYWdlOzI3MDUwODc4NztBUzoxODI2NzY1MDE4MzU3NzdAMTQyMDU2NDg4MDgyOA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Farima_Farmahini_Farahani?enrichId=rgreq-e3294fd0-ac08-4ca4-add0-f52592eb0b06&enrichSource=Y292ZXJQYWdlOzI3MDUwODc4NztBUzoxODI2NzY1MDE4MzU3NzdAMTQyMDU2NDg4MDgyOA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Sharif_University_of_Technology?enrichId=rgreq-e3294fd0-ac08-4ca4-add0-f52592eb0b06&enrichSource=Y292ZXJQYWdlOzI3MDUwODc4NztBUzoxODI2NzY1MDE4MzU3NzdAMTQyMDU2NDg4MDgyOA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Farima_Farmahini_Farahani?enrichId=rgreq-e3294fd0-ac08-4ca4-add0-f52592eb0b06&enrichSource=Y292ZXJQYWdlOzI3MDUwODc4NztBUzoxODI2NzY1MDE4MzU3NzdAMTQyMDU2NDg4MDgyOA%3D%3D&el=1_x_7

Methodologies for Agile Product Line
Engineering: A Survey and Evaluation

Farima Farmahini FARAHANI1 and Raman RAMSIN
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Abstract. Agile Product Line Engineering (APLE) is a relatively new approach
which has emerged as the result of combining two successful approaches:
Software Product Line Engineering and Agile Software Development. The goal of
this combined approach is to cover the weaknesses of each of the two approaches
while maximizing the advantages of both. Several methodologies exist which
provide a practical process for applying APLE in organizations. In this paper,
these APLE methodologies will be evaluated using a criteria-based approach.
Results of this evaluation show each methodology’s strengths and weaknesses, and
can be helpful in selecting, comparing, and modifying APLE methodologies. The
evaluation framework and the results can also be used for developing bespoke
APLE methodologies, tailored to fit the specific needs of organizations and
individual projects.

Keywords. Software development methodology, product line engineering, agile
software development, criteria-based evaluation

Introduction

The software industry has always been seeking for ways to accelerate the delivery of
high quality products while reducing development costs. To achieve these goals,
several methods and approaches have been proposed by researchers and practitioners.
Among the most successful approaches are “Agile Software Development” and
“Product Line Engineering (PLE)”. Both of these approaches fulfill the mentioned
goals, albeit through different strategies, and this has resulted in their popularity among
software developers. The successful results of applying these approaches have
motivated researchers to find ways for merging them; the approach which has emerged
as the result of this merger is called “Agile Product Line Engineering (APLE)”.

The ultimate goal in APLE is to maximize the benefits of each of the individual
approaches and to fulfill their common goals. These common goals are: Managing
changes in requirements, promoting product quality, decreasing development costs, and
reducing time to market. Another significant advantage in combining the agile and PLE
approaches is synergy: Each approach has the capacity to address the weaknesses of the
other. Although there are many advantages in combining the two approaches, certain
difficulties also exist, mainly due to the inherent differences of the two approaches.
These differences include: Different strategies for handling changing requirements,

1 Corresponding Author: Farima Farmahini Farahani, Department of Computer Engineering, Sharif

University of Technology, Azadi Ave., Tehran, Iran; E-mail: farimafarahani@ce.sharif.edu

difference in the degree of focus on documentation, disagreement as to the level of user
involvement required, and different development roles involved [1].

Several methods have so far been proposed to address these challenges and to
effectively merge the two approaches. From among these methods, only a relatively
small number have proposed a process for this combined approach, and can hence be
referred to as APLE methodologies. As frameworks for organizing software
development activities and practices, software development methodologies consist of
two integral parts: A modeling language and a process [2]. The modeling language part
provides the syntax and semantics used for expressing the products, whereas the
process prescribes the flow of activities that should be performed and explains how the
products should be produced, enhanced and exchanged along this flow. The agility
feature of APLE methods has deemphasized the role of modeling, and hence the
modeling language, in such methods; therefore, the main distinctive feature which
distinguishes an APLE methodology from the simple methods used in this context is
that a methodology incorporates a distinct process.

This paper focuses on studying and evaluating the APLE methodologies which
have been introduced so far. Several APLE methods have already been surveyed in [3],
but our intention has been to survey and analyze APLE methodologies in a more
precise and systematic manner through using criteria-based evaluation. As the first step
of this research, current APLE methodologies were identified and studied; the first
version of evaluation criteria was then developed based on the characteristics elicited
from the studied methodologies. The main stage of the evaluation process was then
carried out by iterative evaluation of the methodologies based on the criterion set. The
results of the evaluation performed in each iteration provide a deeper insight into the
features of the methodologies, and can thus draw attention to their more subtle
characteristics; the results are therefore used for identifying new criteria, thus enriching
the criterion set.

The results of this evaluation highlight the strengths and weaknesses of each
methodology and specify the features expected of APLE methodologies; thus, criteria-
based evaluation provides a valuable framework for comparing the methodologies and
selecting them according to specific project situations. Moreover, since the evaluation
results pinpoint the shortcomings of methodologies, the evaluation framework can be
used for improving current and future APLE methodologies [2], [4].

Another potential benefit of criteria-based evaluation is the applicability of the
evaluation results in “Methodology Engineering”: The results can be used as the basis
for selecting and assembling reusable method chunks, instantiating abstract process
frameworks, and extending existing methodologies in order to produce bespoke
methodologies. This has been our ultimate intention in this research: We intend to
develop a new APLE methodology by using methodology engineering methods; the
target APLE methodology should make use of current APLE methodologies’ desirable
features while addressing their weaknesses. This requires identifying the various
aspects of existing methodologies, which will be attained using the criteria-based
evaluation results. It should be noted that in our research, we have studied and analyzed
all of the existing APLE methodologies, but due to lack of space, only the most
significant and well-documented methodologies will be focused upon in this paper.

The rest of this paper is organized as follows: Section 1 provides a brief review on
eleven prominent APLE methods; Section 2 introduces the proposed evaluation criteria,
based on which the evaluation results are presented and discussed in Section 3; and
Section 4 provides the conclusions and suggests ways for furthering this research.

1. Review of APLE Methodologies

In this section, brief process-centered descriptions [5] are presented for the eleven
APLE methodologies which are evaluated in later sections. The review focuses on the
process, and the products/roles involved are mentioned as secondary to the process.

1.1. CDD (Component-Driven Development)

CDD utilizes the Feature-Driven Development (FDD) methodology [5] in order to
combine PLE and agility. The reason for naming the methodology as CDD is that it
shifts the focus from features to components [6]. CDD is not a full lifecycle
methodology since it only encompasses Domain Engineering (DE), and even in this
sub-process, it is only concerned with developing the Product Line (PL) architecture
and core assets. This methodology consists of seven phases (as shown in Figure 1):

 Develop an Overall Model: Overall knowledge is acquired about the domain.
Based on this knowledge, an informal list of features (and optionally, an
object model) is developed, specifying the commonalities and variabilities.

 Build a Features List: PL features which manifest the functional and non-
functional requirements are elicited and documented in a features list.

 Design SPL Architecture: The PL architecture is developed and evaluated.

Figure 1. CDD process

Develop an overall
model

Build a feature list

Design SPL
architecture

Dynamic model

Memo from domain
walkthrough & document

study

To-do list for design
inspection

Features List (informal)

Component
communication model

SPL architecture
Build a component list

Plan by components

Design by components

Build by components

Prologue of ports,
interfaces, &

components methods

Object model (class
diagram)

Notes on design
decisions, alternatives,

references

SPL architecture
evaluation

Architecture, components
list, components

development plan
Detailed component

communication
diagram

SPL scope

Features list

Components list

Components &
subsystems

development plan
Components
assignment to

developers

Legend:

Production/
Revision

Work flow Essential work-product

Optional work-product
Phase

Existing documents

Relevant references

Components
implementation

 Build a Components List: A prioritized list is produced of the components
identified while developing the architecture, as well as the components which
are the result of decomposing the sub-systems. This list also shows the
relationships among the components.

 Plan by Components: Based on the priorities, a development sequence is
defined for the components, and components are assigned to the developers.

 Design by Components: After conducting a domain walkthrough and studying
the available documents, detailed component communication diagrams are
produced. This activity may result in a need to update the architecture,
components list, and component development plan. Lastly, the ports,
interfaces and method prologues of the components are produced.

 Build by Components: Components are implemented based on the design
produced in the previous phase.

1.2. de Souza & Vilain

This method extends the Framework of Agile Practices (FAP) to propose an APLE
process [7]. It encompasses both Domain Engineering (DE) (Figure 2) and Application
Engineering (AE) (Figure 3); these sub-processes can be performed in tandem. The
sub-processes and their constituent phases are as follows:

DE Sub-Process:

 Domain Analysis: PL applications’ requirements are elicited and the PL
feature model, demonstrating common and variable features, is developed.

 Domain Design: Considering the elicited features, the components and PL
architecture are identified and designed.

 Iteration Definition: Components and their requirements are assigned to the
iteration. Also, implementation tasks are identified and assigned to developers.

 Develop System Increment: Design and implementation is done for the
components assigned to the current iteration.

 Validate Increment: Developers inspect the code for defects.

AE Sub-Process:
 Definition of Requirements: Product requirements are elicited and prioritized.

Utilizing the domain feature model, the required components are selected
from among the core assets. Also, the overall application model (an instance
of the domain feature model with the product requirements added) is produced.

 Assign Requirements to Iterations: Considering the priorities, requirements
are assigned to iterations and also to developers.

 Develop System Increment: Design, implementation, and integration are done
for the requirements assigned to the current iteration.

 Validate Increment: Developers inspect each other’s code for defects
 Integrate Increment: The implemented increment is integrated and reviewed to

check the satisfaction of iteration requirements.
 Validate System: In addition to the usual validation activities, a concise

document of the system is produced; the system is then delivered to the
customer along with this document.

Figure 2. de Souza & Vilain’s DE sub-process

Figure 3. de Souza & Vilain’s AE sub-process

1.3. RiPLE-SC

RiPLE-SC proposes an agile approach to PL scoping [8]. This process is a sub-process
of a full-coverage PLE process called RiPLE (RiSE Process for Product Line
Engineering). It encourages face-to-face conversation and meetings to enhance
communication among developers. Phases are as follows (Figure 4):

 Pre-Scoping: Project vision, stakeholders, business goals, and organizational
and operational context of the organization are identified, and the relevant
markets are analyzed.

 Domain Scoping: Domains and sub-domains are analyzed, and the most
relevant ones are identified.

 Product Scoping: Features of the domains are specified, based on which the
relevant products are identified and documented in a product-map.

 Assets Scoping: Through the use of special metrics, the product-map is
prioritized. Based on this prioritized product-map, the features which are most
appropriate for reuse are identified and earmarked as assets.

1.4. A-Pro-PD

This methodology proposes an agile approach to product derivation (i.e. AE) in PLE
[9]. The authors consider their proposed approach as a generic agile process model for
product derivation in PLE. Phases are as follows (Figure 5):

 Preparing for Derivation: Product requirements are elicited, prioritized, and
assigned to iterations.

 Product Configuration: According to product requirements and through
reusing the available assets, a partial product configuration is developed.

 Product Development and Testing: The product parts which belong to the
current iteration and which cannot be satisfied by reusing the core assets are
developed and tested. The deployment of the product into the user
environment is also carried out in this phase.

Domain
analysis

Domain
design

Validate
increment

Iteration
definition

Develop
system

increment

Products list
SPL products’
requirements

Feature model

Estimation &
documentation

of features,
costs, & risks

Domain
architecture

Components’
design

Iteration plan

Implemented
Increment

Increment
Design

Acceptance &
unit tests

Definition of
requirements

 Assign
requirements to

increments

Integrate
increment

Develop system
increment

Validate
increment

Domain feature
model

List of
requirements

Selected
components

Overall
application

model

Components in
core artefacts

Acceptance &
unit tests

Implemented
Increment

User stories

Use cases

Brief product
documentation Validate system

Initial product
documentation

Iteration plan Design for
increment

Product

Figure 4. Process of RiPLE-SC

Figure 5. A-Pro-PD process

1.5. Díaz et al.

In the definition of this methodology, the three concepts of “Working Architecture”,
“Plastic Partial Components (PPCs)”, and “Reflexive Reuse” are first introduced; based
on these concepts and the process of the Scrum methodology [5], the proposed APLE
process is defined [10]. The phases are as follows (Figure 6):

 Pregame: PL requirements are elicited and recorded in the SPL Backlog.
These requirements are then translated into common and variable features, and
are documented in the feature model.

 SPL Release Definition: Common and variable features are prioritized and
divided into sprints (iterations), considering their priorities.

 Sprint Planning: Planning and estimation is performed for the features to be
implemented in the current sprint. This information, which shows the sprint
goal, is documented in the sprint backlog.

 Sprint-Domain Engineering: Parts of the feature model, core assets (using
PPCs), and PL-architecture that belong to the current sprint are implemented.

 Sprint-Application Engineering: Parts of the product that belong to the current
sprint are implemented by reconfiguring the PL-architecture and completing
the partial implementations of PPCs.

 Review and Retrospective: Review meetings are held, and the collected
feedback is relegated to the next sprint.

1.6. Ghanam & Maurer-2008

This methodology is targeted at agile organizations that aim to integrate PLE into their
development processes [11]. In this methodology, acceptance tests (ATs) have a pivotal
role, and the core assets are mined from products. It is assumed that the organization is
an agile one which uses Test-Driven Development (TDD) techniques, and which has
previously developed two separate systems in the same domain; the organization has
now received requests for building a third system in the same domain. It has therefore
decided to migrate to PLE. The proposed process is executed when the development of
the third system is initiated (Figure 7), and is repeated for the development of each new
system in the domain; the core assets are thus completed gradually. The phases of this
methodology are as follows:

Pre-scoping

Domain
scoping

Product
scoping

Assets
scoping

Stakeholders’
information

Domains &
sub-domains

list

SPL vision

User stories

Domains list

Stakeholders’
knowledge

Potential SPL
products

Products
features

Business plan

Reusable
features

Product map

Market
experts’

knowledge

Preparing for
derivation

 Product
configuration

 Product
development &

testing

Product scope

New platform
interface from

DE

Partial product
configuration

Available assets

Product
requirementsCustomer

requirements

Project plan

Iteration plan

New product
componentsProduct

Guidance for
decision makers

Role & task
structutres

 Core Assets Team: A team, consisting of the senior developers of all of the
three systems, is formed in order to mine the reusable modules.

 Evaluation and Extraction: Requirements for the third system are elicited and
translated into ATs. These tests are compared to the ATs of previous systems.
The output of this phase is a test model consisting of two layers: A generic
layer encompassing the common parts among the compared tests, and a
variability layer comprising the variable parts among these tests.

 Refactoring: The core-assets team refactors existing code to implement a
module corresponding to the generic layer of the test model; development
teams implement the modules corresponding to the test model’s variable layer.

 Managing Core Assets: The refactored module is added to the core assets
repository (referenced by its corresponding ATs) along with its variants.

 Core Asset Incorporation: The developed module is sent to the development
team in order to be incorporated into the system under development.

 Architecture Evolution: While the core assets are being completed over time,
the architecture is also evolved in a bottom-up fashion.

Figure 6. Diaz et al.’s process

Figure 7. Process of Ghanam & Maurer-2008

1.7. Ghanam & Maurer-2009

This methodology proposes a PL instantiation process which is based on acceptance
tests (ATs) [12]. It assumes that ATs and their corresponding code are available in the
repository prior to running the process. The phases are as follows (Figure 8):

 Select ATs: Available ATs are presented to the customer, who selects a subset
according to his/her requirements.

 Execute ATs: Selected ATs are executed using a test coverage tool so that the
parts of the code that correspond to these tests can be identified.

 Extract Code: Based on the test coverage report, units of code that correspond
to the selected ATs are extracted and formed into a new instance of the PL.

 Verify and Build: The instantiated software system is compiled, and the
selected ATs are run against it to verify the satisfaction of user requirements.

Pregame

SPL release
definition

Sprint planning

Sprint-domain
engineering

Core assets

Prioritized
feature
model

SPL backlog

SPL backlog

Feedback about
changes &

adjustments

Working
product

Sprint
backlog

Feature
model

Feature
model

Working
product

architecture
Working PL-
architecture

Sprint-
application
engineering

Review &
retrospective

Core assets team

Evaluation &
extraction

Refactoring

Acceptance
test model

Product user
stories

Existing
acceptance

tests

Modules’
code

Product

 Managing core
assets

Core asset
incorporation

Architecture
evolution

Figure 8. Process of Ghanam & Maurer-2009

After development, two extra activities are performed: 1) New customer requirements
which could not be satisfied through reusing the core assets are identified, and for each
new requirement, the corresponding AT and code are produced; and 2) PL maintenance
is performed, typically resulting in changes to the code; when change occurs, all the
instances which include the changed code unit should be re-instantiated and tested.

1.8. da Silva

The methodology proposed by da Silva is an agile method for PL scoping [13]. The
phases of this process are as follows (Figure 9):

 Define Pre-Scoping: Candidate products or sub-domains are evaluated.
 Define Features: Features are elicited based on the previous phase’s results.
 Analyze Commonality and Variability: The commonalities and variabilities

among the pre-scoping results are analyzed and reflected onto the features.
 Release Scope: Features are prioritized and the effort required for their

development is estimated; a subset of the features is then marked for release.
 Select Features for Implementation: Implementation iterations are defined and

acceptance tests are produced.

1.9. Carbon et al.
The methodology proposed by Carbon et al. utilizes PuLSE-I (PuLSE-Instantiation),
which is the product development part of the PuLSE methodology, and incorporates
agility into it [14]. The phases are as follows (Figure 10):

 Plan for a Product Line Instance: Product requirements and PL scope are
compared; if there is a requirement which is out of the PL scope, a request is
sent to the family engineering (i.e. DE) team to extend the PL scope if
advisable; otherwise, the requirement will be considered as a product-specific
one. A project plan is produced containing effort estimates for the activities.

 Instantiate and Validate Product Line Model: The product specification
(which shows the requirements) is built by instantiation from the product line
model.

 Instantiate and Validate Reference Architecture: The product architecture is
built through instantiation from the reference architecture.

 Construct Product: Detailed design, implementation, and testing are performed.
This is done by developing the product-specific parts and also through reusing
the components in the PL’s assets base.

 Deliver System: The constructed system is deployed into the user environment.

Select ATs

Execute ATs

Extract code

Test
coverage

report

Compiled &
verified
system

Matched ATsATs
available in
core system

New system

New test
suiteVerify & build

Figure 9. Process proposed by da Silva

Figure 10. Process proposed by Carbon et al.

1.10. Noor et al.

This methodology proposes an agile approach to PL scoping [15], aimed at
organizations that, after producing several similar products, have decided to construct a
product line to improve efficiency. It promotes strong stakeholder collaboration by
utilizing Collaboration Engineering (CE) patterns. Phases are as follows (Figure 11):

 Identify and Agree on Relevant Domains: Stakeholders review existing
relevant domains, and agree on a list of domains to work on.

 Define Features for Each Domain: Stakeholders identify features for each
domain; they could be new features, or features elicited from existing products.

 Discuss, Analyze, and Agree on Products: Considering the results of previous
phases, stakeholders define PL products.

 Define Products in Terms of Features: Identified features and products are
related and documented in the product map.

 Prioritize Product Map: The product map is prioritized based on the business
value and feasibility of the features.

Figure 11. Process proposed by Noor et al.

Define pre-
scoping

Define features

Analyze
commonality &

variability

Refined
features list

Effort
estimates

Prioritized
reusable assets

list

Product map
(error-free)

Feature model
(error-free)

Release scope

Select features for
implementation

Release
features list

Acceptance
tests

Plan for a
product line

instance

 Instantiate &
validate product

line model

 Instantiate &
validate

reference
architecture

Product
requirements

Product-
specific parts

Product line
scope

Project plan

Product
specification

Construct
product

Deliver system

Product line
model

Product

Product
architecture

Reference
architecture

Components in
product line
assets base

Detailed
design of
product

Features to
determine PL-

scope
extension

Identify & agree on
relevant domains

Define features for
each domain

 Discuss, analyze,
 and agree on

products

Initial list of
features

Initial product
map

Initial list of
domains

List of agreed
domains

Domains & their
features

Define products in
terms of features

Prioritize product
map

Initial products
list

Prioritized
product map

List of agreed
products

Business plan

Market survey

Competitor
analysis

Brief high-level
description of

products

1.11. Ghanam et al.

The methodology proposed by Ghanam et al. provides a method for variability
management in agile organizations which intend to apply PLE to their development
processes [16]. The proposed process will be executed when a new requirement arises.
Phases are as follows (Figure 12):

 Eliciting New Requirements: New customer requirements are elicited and
assigned to the iterations.

 Variability Analysis: Requirements are analyzed to determine commonalities
and variation points among new and existing requirements.

 Updating the Variability Profile: Information gained during the previous phase
is applied to the variability profile.

 Refactoring the Architecture: According to the changes that have been made
to the variability profile, the architecture is refactored so that the new
functionality can be implemented.

 Running the Tests: To make sure that the refactoring process has not had any
adverse side effects, all the available tests are run.

 Realizing the New Requirements: New requirements that have caused the
architecture to be refactored are implemented.

 Running the Tests (again): All tests (for new requirements and older ones) are
run to make sure that requirements have been implemented properly and
without negative consequences.

Figure 12. Process proposed by Ghanam et al.

2. Proposed Evaluation Criteria

As mentioned before, the evaluation presented herein is based on evaluation criteria.
For the purpose of this evaluation, we have proposed a special set of criteria, using a

Eliciting new
requirements

Variability
analysis

 Updating the
variability profile

Variation
points and

their variants

Acceptance &
unit tests

Tests

Available set
of product

requirements

Variability
profile

Architecture

Refactoring the
architecture

Running the tests

Realizing the
new

requirements

 Running the
tests (again)

Production
code

Existing
requirements

method similar to the approach introduced in [17]. Our criteria are divided into three
categories according to the type of evaluation results obtained through applying them:

 Simple form (SM): The evaluation results for the criteria in this group are of
the “Yes/No” type.

 Scale form (SC): The evaluation results for these criteria are enumerations, in
that their value is chosen from among a limited and predefined set of
categories (discrete values or levels).

 Descriptive form (D): The evaluation results for the criteria in this group are
descriptive (narrative) statements.

In order to further manage the complexity of the criteria, we have also defined a
separate, orthogonal categorization for the proposed criteria according to their
semantics. To this aim, the proposed criteria have been divided into five separate
groups: 1) General criteria for evaluating methodologies; 2) Criteria related to the
characteristics of agile methods; 3) Criteria related to PLE characteristics; 4) Criteria
related to the common goals of agile and PLE; and 5) Criteria related to issues arising
due to the combination of the two approaches.
It is essential to demonstrate that the proposed criteria are valid. We have therefore
strived to ensure that our proposed evaluation criteria satisfy the four validity meta-
criteria of [18]. As a result, the proposed criteria are general enough to be applied to all
APLE methodologies, precise enough to help discern the similarities and differences
among APLE methodologies, comprehensive enough to cover all the important
characteristics of APLE methodologies, and they are also balanced, in that they cover
all the major types of features in a methodology: Technical, Managerial and Usage.
The proposed criteria are explained in the following subsections.

2.1. General criteria for evaluating methodologies

There are certain characteristics that should be addressed by all software development
methodologies, regardless of paradigm and context. The criteria used for evaluating
these characteristics have been categorized under “general criteria”, and are introduced
in this subsection. The general criteria for evaluating software development
methodologies have been divided into two categories: Criteria for evaluating the
modeling language (Table 1) and criteria for evaluating the process (Table 2). This
division is due to the fact that each of the two constituents of a methodology, the
process and the modeling language, has its own specific set of concerns and features.
Hence, each part is evaluated separately and according to its own characteristics.

Table 1. General criteria for evaluating methodologies – Modeling language group

Name Description Type Possible values

Specific Modeling Language
(ML)

Is a specific ML prescribed or enforced? SC 1: Not prescribed/enforced;
2: Prescribed; 3: Enforced.

Simplicity to learn and use [19] Is the ML simple to learn and use? SM Yes / No

Power of language [19] Is the ML powerful enough (e.g., in support for
various views and granularity levels)?

SM Yes / No

Complexity management [19] Does the ML support complexity management? SM Yes / No

Management of inconsistencies
[19]

Does the ML provide mechanisms for handling
inconsistencies in models?

SM Yes / No

Table 2. General criteria for evaluating methodologies – Process group

Name Description Type Possible values

Lifecycle
Generic lifecycle
coverage

Which phases of the generic development
lifecycle are covered by the process?

SC “D”: Definition; “C”: Construction;
“M”: Maintenance

Seamless transition [20] Is the transition between phases seamless? SC 1: No; 2: Potentially; 3: Yes

Smooth transition [20] Is the transition between phases smooth? SC 1: No; 2: Potentially; 3: Yes

Type of lifecycle What is the type of the process lifecycle? D (e.g., waterfall, iterative-incremental)

Attention to design Are design activities covered by the process? SM Yes/No

Integration with other
methodologies [19]

Can the methodology be integrated with other
methodologies (to address deficiencies)?

SC Integration strategy: 1: Not required;
2: required but not provided; 3: provided.

Work-Products
Adequacy [4] Are the products related to each phase of the

development process produced?
SC Relevant products in: 1: No phases;

2: Some phases; 3: All phases.

Consistency [4] Do the products complement each other with
minimum overlap?

SC 1: Products overlap;
2: Products do not overlap.

Supported views [4] Which views are supported by the work-
products?

SC “S”: Structural; “F”: Functional;
“B”: Behavioral

Granularity levels Which granularity levels are supported by the
work-products?

SC “S”: System; “P”: Package;
“C”: Component; “O”: Object Or
“D”: Domain; “SD”: Sub-Domain;
“PR”: Product; “F”: Features

Abstraction levels [4] Which abstraction levels are supported by the
work-products?

SC “A”: Analysis; “D”: Design;
“I”: Implementation

Testability [20] Are the products testable? The satisfying
parameters include: Low number of products,
understandability of products, and clarity of
dependencies among products.

SC Testability is: 1: weak (none of the
parameters are satisfied); 2: average
(some parameters are not satisfied);
3: strong (all parameters are satisfied).

Tangibility Are the products tangible -clearly
understandable- to their intended audience
(customer and/or development team)? Products
tangible to the customer include: requirements,
analysis documents, and implemented system.

SC 1: Some products are not tangible to their
intended audience; 2: Some products are
not tangible to team members; 3: Some
products are not tangible to the customer;
4: All products are tangible.

Traceability to reqs. Are the products traceable to requirements? SM Yes/No

People

Definition of roles Are the involved roles defined along with their
responsibilities?

SC 1: Roles not defined; 2: Roles defined,
but without responsibilities; 3: Both roles
and responsibilit ies defined.

Team knowledge &
experience [19]

Is a specific type of knowledge, skill or
experience required for team members?

SM Yes/No

Team motivation
mechanisms

Do any people management mechanisms exist
to motivate team members?

SM Yes/No

Usability

W
el

l-d
ef

in
ed

ne
ss

Expressiveness Is the description of the methodology
understandable and unambiguous?

SC 1: No; 2: To some extent; 3: Yes

Completeness
[19]

Which of the required definitions are provided
by the methodology?

SC “L”: Lifecycle; “A”: Activit ies;
“TP”: Techniques/Practices; “R”: Roles;
“P”: Products; “U”: Umbrella Activities;
“RL”: Rules; “ML”: Modeling Language.

Table 2. General criteria for evaluating methodologies – Process group (Contd.)
Name Description Type Possible values

W
el

l-d
ef

in
ed

ne
ss

 (C
on

td
.)

Rationality and
consistency

Are the defined activities consistent with each
other? Is their rationality evident?

SC 1: Problems in consistency & rationality;
2: Problems in consistency; 3: Problems
in rationality; 4: No problems.

Complexity
management

Has the complexity of definition been managed
(through hierarchical definition at phase-,
stage-, and task levels)?

SM Yes/No

Attention to detail How detailed are the definitions of tasks and
phases?

SC Details are provided for: 1: none of the
phases; 2: some of the tasks or phases;
3: all the phases and their internal tasks.

Definition of
phase inputs and
outputs (I/O)

Are the input- and output work-products (I/O)
defined for the phases?

SC 1: I/O has not been defined; 2: I/O has
been defined implicitly; 3: I/O has been
explicitly defined for all phases.

A
va

ila
bl

e
re

so
ur

ce
s

Available
information [4]

Is there enough documentation and information
available on the methodology?

SM Yes/No

Tool support [4] Is there a CASE tool that supports this process? SM Yes/No

Pr
ac

tic
al

ity

Ease of use Is the proposed process easy to use? SC 1: Weak; 2: Average; 3: Good.

Accounts of
practical use [19]

Is there any evidence on the practical use of the
methodology?

SM Yes/No

Pr
oc

es
s

m
an

ip
ul

at
io

n

Configurability Is the process configurable at the start of the
project?

SC 1: No; 2: Possible, but not addressed
explicitly; 3: Explicitly addressed

Flexibility Is the process reconfigurable while running the
project?

SC 1: No; 2: Possible, but not addressed
explicitly; 3: Explicitly addressed

Su
pp

or
t f

or
 d

iff
er

en
t p

ro
je

ct
 ty

pe
s

Criticality level What Criticality Level (CL) can be addressed
when using this methodology?

SC CL: 1: has been defined explicitly (as
specified); 2: has not been defined
explicitly, but can be inferred (as
specified); 3: has not been defined and
cannot be inferred.

Platform-
adaptivity [4]

Is it possible to adjust the resources (existing
tools and libraries) for a specific project?

SM Yes/No

Formalism Are formal aspects supported in the process? SM Yes/No

Scalability Which sizes of projects are addressed? SC 1: Small; 2: Medium; 3: Large.

Maintainability
Modularity [4] Is the product produced in a modular form? SM Yes/No

Requirements
Reqs. elicitation How are the requirements elicited? D

Reqs. specification [19] What is the format for documenting the reqs.? D

Reqs.-based process [20] Are the requirements elicited at the start of the
process and used as a basis for development?

SM Yes/No

Reqs. prioritization Are the requirements prioritized? SM Yes/No

Application Constraints
Constraints and/or
assumptions

Are there any specific constraints/assumptions
that should be observed (e.g., legal, technical,
managerial, or geographical)?

SC 1: Constraints/Assumptions exist
2: Constraints/Assumptions prescribed
3: There are no constraints/assumptions

2.2. Criteria related to characteristics of agile methods

Since an APLE methodology should fulfill the goals and features common to all agile
methods, we have defined specialized criteria to evaluate the degree of realization of
these goals and features in APLE methodologies. These criteria are listed in Table 3.

Table 3. Criteria related to agility characteristics

Name Description Type Possible values

Attention to Customer
Early and continuous delivery
of working software

Is the first version of software delivered early?
Are further releases delivered continuously?

SC Product is delivered: 1: neither early
nor continuously; 2: continuously but
not early; 3: early and continuously.

Active user involvement Is the user directly involved in the process? SM Yes/No

Continuous customer feedback Is customer feedback provided continuously? SM Yes/No

Teams
Self-organizing teams Are the teams self-organizing? SC Self-organization is: 1: Not discussed;

2: Addressed; 3: Ignored.

Face-to-face conversation Has face-to-face communication of
information been addressed?

SM Yes/No

Velocity monitoring & control Is the teams’ velocity monitored so that they
proceed at a sustainable pace?

SM Yes/No

Attention to team behavior/
efficiency

Is the teams’ performance and behavior
monitored and tuned at regular intervals?

SM Yes/No

Task assignment method How are the tasks assigned in the process? D

Product
Continuous integration Is the software integrated continuously (at the

end of iterations)?
SM Yes/No

Modeling coverage Are models included in the work-products? SM Yes/No

Standards Is there any standard for producing the work-
products (such as coding standard in XP [5])?

SM Yes/No

Process
Iterative-Incremental process Is the software developed in an iterative -

incremental fashion?
SM Yes/No

Specific agile techniques Are common agile techniques prescribed? SM Yes/No

D
eg

re
e

of
 a

gi
lit

y
(B

as
ed

 o
n

th
e

pa
ra

m
et

er
s

in
tro

du
ce

d
in

 [2
1]

)

Flexibility Are expected and unexpected changes in
requirements accommodated? NB: This is
equivalent to the criteria in “Management of
Changes in Reqs.” subgroup of the criteria
related to common goals of agile and PLE; so
the evaluation will be done under that section.

SM Yes/No

Speed Are the products produced rapidly? SC 1: No; 2: To some extent; 3: Yes.
Leanness Are leanness factors addressed (short time

spans, and the use of economical, simple, and
high-quality tools)?

SM Yes/No

Learning Is learning from previous iterations or
previous projects addressed?

SC 1: Not addressed; 2: Addressed
implicitly; 3: Addressed explicitly.

Responsiveness Is feedback provided by the methodology? SM Yes/No

2.3. Criteria related to PLE characteristics

In addition to agile features, PLE characteristics should also be addressed by APLE
methodologies. Thus, we have defined a specialized set of criteria to evaluate the
degree of realization of PLE characteristics in APLE methodologies (Table 4).

Table 4. Criteria related to PLE characteristics

Name Description Type Possible values

Presence of PL-Specific Activit ies
 DE activities Which DE-specific activities are addressed in

the process?
SC “S”: Scoping; “A”: Reference

architecture; “CA”: Core assets
development.

AE activit ies Which AE-specific activities are addressed in
the process?

SC “R”: Matching product requirements &
core requirements; “A”: Reference
architecture instantiation; “CA”: Core
assets selection; “V”: Binding of
variation points to variants; “P”: product-
specific parts development.

Product Line Characteristics
Extensibility of PL scope Is it possible to extend the scope of the PL? SM Yes/No

Reference architecture Is the reference architecture produced and
adhered to?

SC 1: Not produced; 2: Produced but not
adhered to; 3: Produced and adhered to.

Techniques for Performing PL-Specific Activit ies
Core assets identification Is a method prescribed for identifying core

assets & commonalities/variabilities (C/V)?
SM Yes/No

Documenting C/V Is a method prescribed for documenting C/V? SM Yes/No

Core assets selection Is a method prescribed for selecting assets? SM Yes/No

Development of product-
specific parts

Is a method prescribed for developing
product-specific parts?

SM Yes/No

Management
Organization management Is there any mechanism for organization

management in PL?
SM Yes/No

Core assets configuration
management

Is a mechanism prescribed for configuration
management of core assets?

SM Yes/No

2.4. Criteria related to the common goals of agile development and PLE

This subsection will introduce the criteria that can evaluate the degree to which the
common goals of PLE and agile development are fulfilled by APLE methodologies.
This category has been defined because these goals are followed by both of the
approaches which comprise agile product line engineering, and can hence be
considered as the ultimate goals of APLE; therefore, the criteria that can evaluate the
fulfillment of these goals in APLE methodologies have been grouped separately. These
criteria have been explained in Table 5.

Table 5. Criteria related to the common goals of agile development and PLE

Name Description Type Possible values

Increasing Customer Satisfaction
On-time software delivery Is reducing time-to-market addressed? SM Yes/No

So
ftw

ar
e

qu
al

ity

Core assets and software
technical quality

Has attention been paid to technical
quality (e.g., for design or code)?

SC 1: Not addressed; 2: Only for core assets; 3:
Only for products; 4: For core assets & products.

Continuous
review/revision of
DE/AE work-products

Are the work-products of DE and AE
reviewed and revised continuously?

SC 1: Not addressed; 2: Only for DE work-products;
3: Only for AE work-products; 4: For both DE
and AE work-products.

Continuous testing of
core assets and software

Are the core assets and the product
tested continuously?

SC 1: Not addressed; 2: For core assets; 3: For
product; 4: For both core assets and product.

Efficiency
Management of human
resources

Has management of human resources
(efficient employment of human
assets) been addressed?

SM Yes/No

Increasing temporal
efficiency

Is a mechanism prescribed for
increasing temporal efficiency?

SM Yes/No

Management of Changes in Requirements
Expected changes Are expected changes in requirements

accommodated?
SM Yes/No

Unexpected changes Are unexpected changes in
requirements accommodated?

SM Yes/No

2.5. Criteria related to the combination of agile development and PLE

These criteria are related to the issues that arise as the result of combining agile
development and PLE (Table 6). It should be noted that these criteria are different from
the criteria presented in Section 2.4, in that the criteria in Section 2.4 are intended to
evaluate the fulfillment of the goals that are pursued by both agile and PLE
methodologies, whereas the criteria in this section are related to the concerns that arise
when agility and PLE are combined; for instance, the reuse approach might well be
changed when agility is fused into a PLE approach.

Table 6. Criteria related to the issues arising when combining agile development and PLE

Name Description Type Possible values

Basis of the methodology What is the basis of the proposed process? SC PL; or Agile

Reuse approach What is the reuse approach after combination? SC “P”: Proactive; “R”: Reactive;
“RX”: Reflexive [10]

3. Evaluation Results

In this section, we provide the results of evaluating the reviewed methodologies based
on the proposed criteria. It should be noted that in the evaluation tables, “N/A“ denotes
“Not relevant to the context or properties of the methodology”, and “N/D” signifies
“Not defined in the methodology”. The results of evaluating the methodologies based
on the general criteria are given in Table 7 (Modeling Language) and Table 8 (Process).

Table 7. Evaluation results for general evaluation criteria – Modeling language group

 Methodologies

Criteria C

D
D

 [6
]

de
 S

ou
za

 &

V
ila

in
 [7

]

Ri
PL

E-
SC

[8

]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D

[9
]

G
ha

na
m

 &

M
au

re
r

20
08

 [1
1]

G
ha

na
m

 &

M
au

re
r

20
09

 [1
2]

G
ha

na
m

 e
t

al
. [

16
]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

Specific Modeling Language 2 2 1 1 1 1 1 1 1 1 1

Simplicity to learn and use Yes Yes N/A N/A N/A N/A N/A N/A N/A N/A N/A

Power of language Yes Yes N/A N/A N/A N/A N/A N/A N/A N/A N/A

Complexity management Yes No N/A N/A N/A N/A N/A N/A N/A N/A N/A

Management of inconsistencies No No N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 8. Evaluation results for general evaluation criteria – Process group

 Methodologies

Criteria C

D
D

 [6
]

de
 S

ou
za

 &

V
ila

in
 [7

]

R
iP

LE
-S

C

[8
]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D

[9
]

G
ha

na
m

 &

M
au

re
r

20
08

 [1
1]

G
ha

na
m

 &

M
au

re
r

20
09

 [1
2]

G
ha

na
m

 e
t

al
. [

16
]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

Lifecycle
Generic lifecycle coverage D-C D-C D D-C D-C D-C D-C D-C D C D

Seamless transition 3 2 3 1 1 1 1 1 3 2 3

Smooth transition 3 3 3 3 3 1 3 3 3 3 3

Type of lifecycle Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Iter.-
Incr.

Attention to design Yes Yes N/A Yes No No No No N/A Yes N/A

Integration with other
methodologies 2 1 3 1 2 1 2 1 2 3 2

Work-Products
Adequacy 3 3 3 2 2 2 3 2 3 3 3

Consistency 2 1 2 1 2 2 2 1 2 2 2

Supported views S-F-B DE: S-F,
AE: F F S-F F F F F F S-F F

Granularity levels S-P-
C-O

DE: S-
P-C-O,

AE: N/D

D-SD-
PR-F S-P-C N/A N/A N/A N/A SD-

PR-F S-P-C D-
PR-F

Abstraction levels A-D-I A-D-I A A-D-I A-I A-I A-I A-I A D-I A

Testability 2 3 3 3 3 3 3 3 2 2 2

Tangibility 4 2 4 4 4 2 4 2 4 4 4

Traceability to requirements Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

People
Definition of roles 3 1 3 1 1 1 1 1 1 1 3

Team knowledge & experience Yes No Yes No No Yes Yes No No No Yes

Team motivation mechanisms 2 2 2 1 1 1 1 1 1 1 2

A
va

ila
bl

e
re

so
ur

ce
s

Available information Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tool support No No No No No No No No No No No

Pr
ac

tic
al

ity

Ease of use 3 2 2 2 2 2 2 2 2 3 2

Accounts of practical use Yes Yes Yes Yes No No Yes Yes No Yes Yes

Pr
oc

es
s

m
an

ip
ul

at
io

n

Configurability
2 2 1 1 2 1 1 1 1 2 2

Flexibility 2 2 1 1 1 1 1 1 1 1 2

D
if

fe
re

nt
 p

ro
je

ct

ty
pe

s

Criticality level 3 3 3 3 3 3 3 3 3 3 3

Platform-adaptivity N/A N/A N/A Yes N/A N/A N/A N/A N/A N/A Yes

Formalism No No No No No No No No No No No
Scalability 3,2 3,2,1 2 1 1 1 1 1 2,1 3,2,1 2,1

Maintainability
Modularity Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Requirements
Requirements elicitation

Fr
om

 d
om

ai
n

ex
pe

rts
,

st
ud

yi
ng

 d
oc

um
en

ts

D
E:

 A
na

ly
si

s
of

 p
as

t,
cu

rr
en

t,
an

d
to

-b
e

sy
st

em
s,

A

E:
 T

hr
ou

gh
 u

se
r s

to
rie

s

A
na

ly
si

s
of

 p
as

t s
ys

te
m

s,
Th

ro
ug

h
us

er
 st

or
ie

s

Th
ro

ug
h

us
er

 st
or

ie
s

Ta
lk

 to
 u

se
rs

 a
nd

 c
or

e
as

se
ts

 te
am

Th
ro

ug
h

us
er

 st
or

ie
s

Th
ro

ug
h

se
le

ct
io

n
of

ac

ce
pt

an
ce

 te
st

s

Th
ro

ug
h

us
er

 st
or

ie
s

In
te

rv
ie

w
 w

ith
 d

om
ai

n
ex

pe
rt,

 e
xp

lo
rin

g
pa

st

do
cu

m
en

ts

N
/D

B
ra

in
 st

or
m

in
g

se
ss

io
ns

am

on
g

st
ak

eh
ol

de
rs

Requirements specification

Fe
at

ur
es

 L
is

t

D
E:

 N
/D

 ,
A

E:

U
se

r s
to

rie
s

or

us
e

ca
se

s

U
se

r s
to

rie
s,

Fe

at
ur

es

U
se

r s
to

rie
s,

Fe

at
ur

e
M

od
el

N
/D

U
se

r S
to

rie
s,

A
cc

ep
ta

nc
e

Te
st

s

A
cc

ep
ta

nc
e

Te
st

s

U
se

r S
to

rie
s

Fe
at

ur
e

M
od

el

Pr
od

uc
t

Sp
ec

ifi
ca

tio
n

Fe
at

ur
es

 L
is

t

Requirements-based process Yes Yes N/A Yes Yes Yes Yes Yes N/A Yes N/A

Requirements prioritization Yes Yes Yes Yes Yes No No No Yes Yes Yes

Application Constraints
Constraints and/or assumptions 1 2 1 1 1 1 1 1 1 1 1

Table 8. Evaluation results for general evaluation criteria – Process group (Contd.)

 Methodologies

Criteria C

D
D

 [6
]

de
 S

ou
za

 &

V
ila

in
 [7

]

R
iP

LE
-S

C

[8
]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D

[9
]

G
ha

na
m

 &

M
au

re
r

20
08

 [1
1]

G
ha

na
m

 &

M
au

re
r

20
09

 [1
2]

G
ha

na
m

 e
t

al
. [

16
]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

 Usability

W
el

l-d
ef

in
ed

ne
ss

Expressiveness 3 2 2 2 2 3 2 3 2 2 2

Completeness
L-

A
-T

P-
R

-P
-

U
-R

L-
M

L

L-
A

 (P
ar

tia
l)-

PT
-P

-U

(P
ar

tia
l)-

R
L

L-
A

-P
T-

R
-P

-
U

 (P
ar

tia
l)

-
R

L

L-
A

-P
-U

(P

ar
tia

l)

L-
A

-P
T-

U

(P
ar

tia
l)-

P

L-
A

-P
T-

P

L-
A

-P
T-

P

L-
A

-P
T-

P

L-
A

-P
T-

U

(P
ar

tia
l)-

P

L-
A

-P
T-

U

(P
ar

tia
l)-

P

L-
A

-P
T-

R
-U

(P

ar
tia

l)-
P

Rationality & consistency 4 4 4 4 3 4 4 4 4 4 4

Complexity management Yes Yes Yes No No No No No No No No

Attention to detail 3 2 3 1 1 2 3 3 2 2 3

Definition of phase I/O 3 2 2 2 2 2 2 2 3 2 3

The results of evaluating the reviewed methodologies by applying the criteria
related to agile characteristics are presented in Table 9, and the results of evaluating the
methodologies based on the criteria related to PLE characteristics are shown in Table
10.

Table 9. Evaluation results for criteria related to agility characteristics

 Methodologies

Criteria

C
D

D
 [6

]

de
 S

ou
za

 &
 V

ila
in

[7

]

R
iP

LE
-S

C
 [8

]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D
 [

9]

G
ha

na
m

 &
 M

au
re

r
20

08
 [1

1]

G
ha

na
m

 &
 M

au
re

r
20

09
 [1

2]

G
ha

na
m

 e
t a

l.
[1

6]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

Attention to Customer
Early and continuous delivery N/A 1 N/A 3 3 1 1 N/A N/A 3 N/A

Active user involvement Yes No Yes Yes Yes No Yes Yes Yes Yes Yes

Continuous customer feedback No No Yes Yes Yes No Yes Yes No Yes No

Teams
Self-organizing teams 2 3 1 1 1 1 1 1 1 1 3

Face-to-face conversation No Yes Yes Yes No Yes No No Yes Yes Yes

Velocity monitoring & control No No No No No No No No Yes No No

Attention to team
behavior/efficiency No No Yes No No No No No No No Yes

Task assignment method

C
om

po
ne

nt
s

as
si

gn
ed

by

 c
hi

ef
 p

ro
gr

am
m

er
s

R
eq

s.
 a

ss
ig

ne
d

at
 th

e
st

ar
t o

f i
te

ra
tio

ns

Pr
of

ile
 a

na
ly

si
s

N
/D

N
/D

N
/D

N
/D

N
/D

N
/D

N
/D

N
/D

Product
Continuous integration Yes Yes N/A No Yes No Yes Yes N/A Yes N/A

Modeling coverage Yes Yes Yes Yes No Yes No Yes Yes Yes Yes

Standards Yes No Yes No No No No No No No No

Process
Iterative-Incremental Process Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Specific agile techniques Yes Yes No No Yes Yes Yes Yes Yes Yes Yes

D
eg

re
e

of
 a

gi
lit

y

Speed 2 3 2 3 3 2 3 3 2 2 2

Leanness Yes Yes No Yes No No No Yes No No Yes

Learning 2 3 1 1 1 1 1 1 2 2 1

Responsiveness Yes Yes Yes Yes Yes No No Yes Yes Yes Yes

Table 10. Evaluation results for criteria related to PLE characteristics

 Methodologies

Criteria C

D
D

 [6
]

de
 S

ou
za

 &

V
ila

in
 [7

]

R
iP

LE
-S

C
 [8

]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D
 [

9]

G
ha

na
m

 &

M
au

re
r 2

00
8

[1
1]

G
ha

na
m

 &

M
au

re
r 2

00
9

[1
2]

G
ha

na
m

 e
t a

l.
[1

6]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

Presence of PL- Specific Activities
DE activit ies A-CA A-CA S A-

CA N/A A-CA N/A A-CA S N/A S

AE activit ies
N/A R-CA N/A

A-
CA
-V

CA-P R-CA R-CA-P N/A N/A
R-A-
CA-
V-P

N/A

Product Line Characteristics
Extensibility of PL scope N/A Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Reference architecture 2 2 N/A 3 1 1 1 3 N/A 3 N/A

Techniques for Performing PL-Specific Activit ies
Core assets identification No No Yes No N/A Yes N/A Yes Yes N/A Yes

Documenting
commonalities/variabilities Yes Yes Yes Yes N/A Yes N/A Yes Yes N/A No

Core assets selection N/A Yes N/A No No Yes Yes N/A N/A Yes N/A

Development of product-specific parts N/A Yes N/A No No No Yes N/A N/A No N/A

Management
Organization management No No Yes No Yes No No No Yes No Yes

Core assets configuration management Yes Yes N/A Yes N/A Yes Yes Yes N/A N/A N/A

Table 11 shows the results of evaluation based on the criteria related to common

goals of agile development and PLE, and Table 12 contains the results of evaluation
based on the criteria related to issues that arise when combining agility and PLE.

Table 11. Evaluation results for criteria related to the common goals of agile development and PLE

 Methodologies

Criteria C

D
D

 [6
]

de
 S

ou
za

 &

V
ila

in
 [7

]

R
iP

LE
-S

C
 [8

]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D
 [

9]

G
ha

na
m

 &

M
au

re
r 2

00
8

[1
1]

G
ha

na
m

 &

M
au

re
r 2

00
9

[1
2]

G
ha

na
m

 e
t a

l.
[1

6]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

Increasing Customer Satisfaction
On-time delivery of software N/A Yes N/A Yes Yes Yes Yes N/A N/A Yes N/A

So
ft

w
ar

e
qu

al
ity

Core assets and software
technical quality 2 4 N/A 1 4 1 1 1 N/A 1 N/A

Continuous review/revision
of DE/AE work-products 2 4 2 4 3 4 3 2 2 3 2

Continuous testing of core
assets and software 1 4 N/A 1 3 4 3 2 N/A 3 N/A

Efficiency
Management of human resources Yes No Yes No No No No No No No Yes

Increasing temporal efficiency No Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Table 11. Evaluation results for criteria related to the common goals of agile development and PLE (Contd.)
 Methodologies

Criteria C

D
D

 [6
]

de
 S

ou
za

 &

V
ila

in
 [7

]

R
iP

LE
-S

C
 [8

]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D
 [

9]

G
ha

na
m

 &

M
au

re
r 2

00
8

[1
1]

G
ha

na
m

 &

M
au

re
r 2

00
9

[1
2]

G
ha

na
m

 e
t a

l.
[1

6]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

Management of Changes in Requirements
Expected changes Yes Yes Yes Yes N/A Yes N/A Yes Yes N/A No
Unexpected changes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 12. Evaluation results for criteria related to the issues arising when combining agility and PLE

 Methodologies

Criteria C

D
D

 [6
]

de
 S

ou
za

 &

V
ila

in
 [7

]

R
iP

LE
-S

C
 [8

]

D
ía

z
et

 a
l.

[1
0]

A
-P

ro
-P

D
 [

9]

G
ha

na
m

 &

M
au

re
r 2

00
8

[1
1]

G

ha
na

m
 &

M

au
re

r 2
00

9
[1

2]

G
ha

na
m

 e
t a

l.
[1

6]

da
 S

ilv
a

[1
3]

C
ar

bo
n

et
 a

l.
[1

4]

N
oo

r e
t a

l.
[1

5]

Basis of the methodology Agile PL PL Agile PL Agile Agile Agile PL PL PL

Reuse approach N/A P-R N/A RX P-R R R R N/A R N/A

4. Conclusions and Future Work

The development of a proper APLE methodology which combines agility with PLE
effectively, and which embodies the features of both of these successful approaches,
would be considered a significant achievement in software engineering. This is due to
the fact that without a well-defined methodology, it will not be possible to effectively
apply APLE to real projects. This has been our ultimate goal in this research: To
propose an effective and practical APLE methodology which significantly improves on
the status quo. As the first step to this goal, we have analyzed and evaluated existing
APLE methodologies using a criteria-based approach, the main results of which have
been reported in this paper. The evaluation results reveal that there is no single
methodology which covers all of the following APLE features (which are considered
desirable, or even essential, in APLE methodologies): Full coverage of the generic
software development lifecycle, comprehensive and precise definition of the
methodology, sufficient attention to umbrella activities, prescription of a specific
modeling language, provision of model examples, attention to learning (at project- and
portfolio levels), attention to active user involvement, and management of expected and
unexpected changes.

We aim to further this research by engineering an APLE methodology based on the
evaluation results reported herein. This methodology will address the deficiencies
identified in current methodologies, while making use of their merits. The methodology
will be continuously validated against the proposed criteria to ensure that all the
features expected to be present in APLE methodologies are indeed implemented in the
methodology produced. The target methodology will also be validated through
enactment in an industrial-scale APLE project to demonstrate its practical efficacy.

References

[1] G. K. Hanssen, and T. E. Fægri, Process fusion: An industrial case study on agile software product line
engineering, Journal of Systems and Software, vol. 81, no. 6, 2008, pp. 843–854.

[2] M. Asadi, and R. Ramsin, MDA-Based Methodologies: An Analytical Survey, in Proceedings of
European Conference on Model Driven Architecture – Foundations and Applications, 2008, pp. 419–
431.

[3] J. Díaz, J. Pérez, P. P. Alarcón, and J. Garbajosa, Agile product line engineering—A systematic
literature review, Software: Practice and Experience, vol. 41, no. 8, 2011, pp. 921–941.

[4] S. Hesari, H. Mashayekhi, and R. Ramsin, Towards a General Framework for Evaluating Software
Development Methodologies, in Proceedings of Computer Software and Applications Conference, 2010,
pp. 208–217.

[5] R. Ramsin, and R. F. Paige, Process-centered Review of Object Oriented Software Development
Methodologies, ACM Computing Surveys, vol. 40, no. 1, 2008, pp. 3:1–3:89.

[6] X. Wang, Towards an Agile Method for Building Software Product Lines, M.Sc. Thesis, University of
York, UK, 2005.

[7] D. S. de Souza, and P. Vilain, Selecting Agile Practices for Developing Software Product Lines, in
Proceedings of International Conference on Software Engineering & Knowledge Engineering, 2013, pp.
220–225.

[8] M. Balbino, E. S. de Almeida, and S. R. de Lemos Meira, An Agile Scoping Process for Software
Product Lines, in Proceedings of International Conference on Software Engineering & Knowledge
Engineering, 2011, pp. 717–722.

[9] P. O’Leary, F. McCaffery, S. Thiel, and I. Richardson, An Agile Process Model for Product Derivation
in Software Product Line Engineering, Journal of Software: Evolution and Process, vol. 24, no. 5, 2012,
pp. 561–571.

[10] J. Díaz Fernández, J. Pérez Benedí, A. Yagüe Panadero, and J. Garbajosa Sopeña, Tailoring the Scrum
Development Process to Address Agile Product Line Engineering, in Proceedings of Jornadas de
Ingeniería del Software y base de Datos, 2011.

[11] Y. Ghanam, and F. Maurer, An Iterative Model for Agile Product Line Engineering, in Proceedings of
International Software Product Line Conference Doctoral Symposium, 2008, pp. 377–384.

[12] Y. Ghanam, and F. Maurer, Extreme Product Line Engineering: Managing Variability and Traceability
via Executable Specifications, in Proceedings of Agile Conference, 2009, pp. 41–48.

[13] I. F. da Silva, An Agile Approach for Software Product Lines Scoping, in Proceedings of International
Software Product Line Conference, 2012, pp. 225–228.

[14] R. Carbon, M. Lindvall, D. Muthig, and P. Costa, Integrating Product Line Engineering and Agile
Methods: Flexible Design Up-front vs. Incremental Design, in Proceedings of International Workshop
on Agile Product Line Engineering, collocated with International Software Product Line Conference,
2006, pp. 1–8.

[15] M. A. Noor, R. Rabiser, and P. Grünbacher, Agile product line planning: A collaborative approach and
a case study, Journal of Systems and Software, vol. 81, no. 6, 2008, pp. 868–882.

[16] Y. Ghanam, D. Andreychuk, and F. Maurer, Reactive Variability Management in Agile Software
Development, in Proceedings of Agile Conference, 2010, pp. 27–34.

[17] B. Kitchenham, S. Linkman, and D. Law, DESMET: a methodology for evaluating software
engineering methods and tools, Computing & Control Engineering Journal, vol. 8, no. 3, 1997, pp. 120–
126.

[18] G. M. Karam, and R. S. Casselman, A Cataloging Framework for Software Development Methods,
Computer, vol. 26, no. 2, 1993, pp. 34–45.

[19] M. Taromirad, and R. Ramsin, CEFAM: Comprehensive Evaluation Framework for Agile
Methodologies, in Proceedings of Annual IEEE Software Engineering Workshop, 2008, pp. 195–204.

[20] R. Ramsin, and R. F. Paige, Iterative criteria-based approach to engineering the requirements of
software development methodologies, IET Software, vol. 4, no. 2, 2010, pp. 91–104.

[21] A. Qumer, and B. Henderson-Sellers, Comparative evaluation of XP and Scrum using the 4D
Analytical Tool (4-DAT), in Proceedings of the European and Mediterranean Conference on
Information Systems, 2006, pp. 1–8.

