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Abstract

ABSTRACT. A mathematical discussion is made on obtaining the clas-
sical Black-Scholes equation of computational finance using a martingale-
based analysis of arbitrage-free market.

1 Introduction

First we recall the definition of martingale. For ¢ > 0 let I; be the set of all
information available up to time ¢, so I; C I for t < s. Let the random process
{ X¢: t >0 } satisfy the following:

(1) { Xt : t >0} is I;-adapted; that is, for every ¢t > 0, given I, the random
variable X; is completely known. In other words, for every ¢ > 0, the
conditional variable (X;|I}) is deterministic.

(2) For every t > 0, the expected value of | X| is finite:

E |Xt| < o0.

Then, with respect to the probability measure P, the random process { Xy : ¢t >0 }
is called a

e martingale if Ep (X;y,|I;) = X; for all ¢ > 0 and all u > 0; in other
words, if given all information about present value and past history of X,
we still cannot predict how X; will change in the future.

e submartingale if Ep (X;y,|l;) > X; for all t > 0 and all u > 0; in other
words, if we “expect” X; to increase as time passes.

e supermartingale if Ep (X;y|I;) < X; for all ¢ > 0 and all w > 0; in
other words, if we “expect” X; to decrease as time passes.
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In the above, the notation Ep stands for expectation computed with respect
to the probability measure P:

+o0
EPY = / Y dFy,p(y);

oo

with Fy p the cumulative distribution function of the random variable ¥ un-
der probability measure P; that is, for every y € R (R stands for the set of
real numbers), Fy p(y) is the probability of the event Y < y under probability
measure P.

2 Arbitrage-Free Markets

A fundamental assumption made in financial mathematics is ‘arbitrage-free
markets”. It is the hypothesis that no opportunities for making a risk-free
profit exist in the markets. This is a reasonable assumption since any such
opportunities become quickly known and are grasped by the market players, re-
sulting in sharp increase in demand for such opportunities and causing the price
of such opportunities to rise, thereby making them cease to be opportunities,
and moving the market back to the balanced “arbitrage-free” status.

In addition, many financial theories assume that asset prices are martingales;
that is, future movements of the asset prices are completely unpredictable. This,
of course, does not represent the real world accurately. In the real world, people
who invests in the market usually do so with the expectation that prices of
financial instruments will rise to bring profit. In other words, with S; the asset
price at time ¢, and I; the set of all market information available up to time ¢,
the market is expected to behave in such a way that for all ¢t > 0 and all w > 0

EP (67T(t+u)st+u|lt) Z eirtSt.

We have multiplied the asset price S; by the discount factor e~ to get the
present value of the asset price (value at time ¢ = 0). Here, P is the true prob-
ability measure of the states of the world.

In other words, investors invest in the market with the belief that the dis-
counted asset price behaves as a submartingale under the true probabilities of
the states of the world. It would be desirable to work with a martingale process
so that one can use the rich results and techniques of martingale theory. Fortu-
nately, this is possible by a very elegant result of financial mathematics:

The Arbitrage Theorem. If the probability measure P of the true states
of the world is strictly positive; that is, if we exclude all impossible states of the
world, then markets are arbitrage-free if and only if there exists a probability
measure P with respect to which the discounted asset price is a martingale; that
is, for all t >0 and all u >0

B (e_T(t+“)St+u|It) = e "S,.



The probability measures P and P are related by dpP = & dP, with the function
& the Radon-Nykodym derivative of P with respect to P.

See [3] for details. Probability measures P and P are equivalent in the sense
that they have the same domain (set of all possible states of the world). The
advantage of P over P is that discounted asset price is a martingale under P.
However, one should note that P is a “synthetic” probability not representing
the real world probabilities.

It is important to note that asset prices in the real world can change in
quite complicated ways. Some assets display even fractal-like highly stochastic
behavior, requiring results of chaos theory for their analysis; see [4].

3 Risk-Adjusted Probabilities

The important probability measure P is called the risk-adjusted synthetic
probability measure of the states of the world. The reason why it is called
“risk-adjusted” is the following important property:

Theorem. The synthetic probability measure 15, which converts the dis-
counted asset price into a martingale, switches the drift parameter of the asset
price to the risk-free interest rate.

In other words, with respect to synthetic probabilities, all assets have the
same expected value of return equal to the return under risk free interest rates
(this is the important “equalization of rates of return” result; see [3]). We
demonstrate this important result in the case of asset price being a “geometric
Wiener process”:

S¢ = Sp €%

with { Y2 : ¢ >0 } a Wiener process with drift 4 and variance o; that is
(1) Yo =0.

(2) {Y:: t >0} has the independent increments property; that is, for every
two disjoint time intervals (s,t) and (u,v), the random variables Y; — Y
and Y, — Y, are independent.

(3) {Y:: t >0} has the stationary increments property; that is, for every
time interval (s,t), the random variable Y; — Y; has the same probability
distribution as the random variable Y;_;.

(4) For every t > 0,
Yi~N (,ut,a2t) ;

that is, for every t > 0, Y; is a normal random variable with mean ut and
variance ot, so with standard deviation proportional to v/¢, not t.



So here P, the true probability measure of states of the world, is the normal
distribution with mean pt and variance o2t at time t. Now for every ¢ > 0
and uw > 0, the quantity S; is fully determined given I;, the set of all market
information up to time ¢. Hence it can be taken inside the expectation operator
conditioned on I;:

S,
Ep (Serully) = Si Ep < ;tu |It>
= St Ep (exp (Yipu — Y2) |1r) -
Since Yi4y — Y and Y{;4)—¢ = Y, have the same distribution, we get

Ep (St+ullt) = St Ep (exp (Yu) [I¢) .

Next We use the fact that the moment generating function of the normal
random variable X with mean p and variance o2 is

1
E (e’\X) = exp <u)\ + 502/\2> .
S0

E(eX) =exp <u+ %02> .

Noting that the conditional random variable Y,|I; has normal distribution
with mean pu and variance o%u, by the above corollary we have

Ep (exp (Vi) 1) = exp [(u ¥ éa) u} |

1
Ep (St4ullt) = exp [(M + §U2> U} St

Discounting both sides by e "**%) we get

1
Ep (e*T(H")SHth) =exp [(u —r+ §o2> u] e S,

Now e~ "%S; is a submartingale under the true probability measure P:
EP (e_r(t+“)5t+u|ft) 2 e_”St.

The above relations give the clue on how to synthesize a probability measure
P under which e 7S, is a martingale. Noting that the parameter that makes
asset price predictable is the drift not the variance, we assume that at time
t, the probability measure P is a normal distribution like P, with the same
variance o2t but a different unknown drift (that is, mean) pt to be determined.

Exactly similar arguments as above lead to

1
Ex (e*T(H")SHth) = exp [(p —r+ §a2> u] e S,
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Since we want the discounted asset price e "'S; to be a martingale under 15,
we should have

E}; (e_r(t+“)5t+u|lt) = e_”St.
The two equalities imply

1 1
exp{(p—r-%;ﬂ)u]:l for all u >0 BN p:r_502'

making P fully known. It is of interest to note that the drift parameter p
does not appear in the result; the synthetic probability P depends only on
the variance (also called diffusion parameter) of the true probability P, not its
drift. Now Y; ~ N(ut,0%t) implies that Y; is governed by the stochastic
differential equation

dYy = p dt + o dWy;

with TW; a standard Wiener Process; that is, W; ~ N(0,t). The term u dt
models the deterministic change in Y;, and the term o dW; models the
stochastic change in Y;.

4 Derivation of Black-Scholes Equation

From this we can obtain the stochastic differential equation governing the dy-
namics of the asset price. The differential of the asset price is

0S; 0S;
= _— Y _
dSy Y, dY, + - dt
10%S, ., 105, ., O°S,

In deterministic calculus, one would retain only the first two terms on the
righthand side and would ignore all other terms by their being of smaller orders
of magnitude. With the objective that we only retain terms of order dt and
ignore all o(dt) terms, we cannot ignore the third term on the righthand side.
To see this, from the stochastic differential equation for Y; we have

dY? = (udt+o dW,)*
= p?dt* + 0% dW}? + 2uo dt dW;.
By the important property
dW? = dt
of the Wiener process { W;: ¢t >0} (see [3]), this leads to
dY? = o?dt + o(dt).

Plugging in o?dt for dY;? in the expression for dS;, we arrive at the “Itd’s
formula” for the asset price:

1 2
dstz%dm+%dt+—a2 05

oY, o U 37 Fyz At




Now by S; = exp (V7),

8St 82575 aSt
= ayp =S ot

So
1
dSt = St (/,L dt+o th) + 50’25,5 dt.

In summary, under the true probability measure P, dynamics of the asset price
is governed by the stochastic differential equation

dSt = |:</j, + %0’2> St:| dt + (O'St) th

Unlike the stochastic differential equation for Y; which is constant-coefficient,
the stochastic differential equation for S; is variable-coefficient, with drift and
diffusion coefficients functions of S; itself.

By the same argument, under the synthetic probability measure 15, dynamics
of the asset price is governed by the stochastic differential equation

dSt = |:<p+ %U2> St:| dt + (O'St) th

Note that the stochastic part of this equation is governed by a standard Wiener
process Wy, which is different from W;. In simulations, values for both of these
are drawn from the normal distribution with zero mean and variance ¢, but they
generally take different values. By a martingale analysis, we found p = r — o2 /2.
Substituting this, we obtain the stochastic differential equation

dS; = (rS;) dt + (6S;) dW,.

As we see, the synthetic probability measure P has “risk-adjusted” the asset
price; the drift parameter is now rS;, the risk-free interest rate as coefficient
instead of p.

In their breakthrough analysis that led to the well known Black-Scholes par-
tial differential equation (see [1] or [5]), Black and Scholes assumed the stochastic
differential equation .

dSt = (T‘St) dt + (USt) th

as dynamics of the asset price, as the starting point and derived their partial
differential equation by an arbitrage argument.

Generally, the price of an option is a function of asset price S; and time t,
80 we can represent its price at time ¢ by F(S,t). The current value of this
option is then e " F(S;,t), for which, by similar arguments, we have the It&’s
formula
oF OF 10%F
de) |

—rt _ .t —rt [ YL v o0
d[e F(St,t)]— re  "F dt+e <8t dt+8St dSt+285t2
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Again in a deterministic environment, one would ignore the term 2557 dS;.
¢

However, here we have
dS? =282 dt* + 02 S2dW? + 2raS? dt dW? = 025? dt + o(dt)
again by de = dt. Hence, ignoring all o(dt) terms, we have

oF 1 0’F OF
—rt _ —rt - .2Q2 _
dle ""F(S,t)] = {e <_8t +50 S; 757 +rSt—aSt rF)] dt

+ (e_rtO'St) d’th

The discounted option price is a martingale under 15, hence we cannot make any
forecasts on how it will change. In other words, the discounted option price is a
“purely” stochastic process with no deterministic behavior. Translated into the
stochastic differential equation , this implies that the drift term in the above
equation must be zero:

OF 1 , ,0°F oF .
8t+205t85t2+TStaSt rF =0.

This is the fundamental Black-Scholes equation.

5 Conclusion

Financial instruments and derivative securities can be analyzed in a variety
of ways and by a variety of techniques, which are theoretically equivalent but
practically different. Martingale arguments are generally more complex than
arbitrage arguments, but are generally more useful and of wider applicability.
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