

Modular Servo System
(MSS)

MATLAB 7 (R14 SP2/SP3)

MATLAB R2006a/b, R2007a, R2008a/b, R2009a
PCI version

User’s Manual

www.inteco.com.pl

Modular Servo System - User’s Manual 2

COPYRIGHT NOTICE

© Inteco Sp. z o.o.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of Inteco Sp. z o.o.

ACKNOWLEDGEMENTS

Inteco acknowledges all trademarks.
MICROSOFT, WINDOWS are registered trademarks of Microsoft Corporation.
MATLAB, Simulink, RTWT and RTW are registered trademarks of Mathworks Inc.

Modular Servo System - User’s Manual 3

Contents

1. INTRODUCTION AND GENERAL DESCRIPTION 5

1.1. Product overview... 5
1.2. Equipment and requirements ... 6
1.3. Hardware installation... 7
1.4. Software installation .. 7

2. STARTING, TESTING AND STOPPING PROCEDURES ... 8

2.1. Starting procedure..8
2.2. Testing and troubleshooting.. 8

3. SERVO CONTROL WINDOW ... 13

3.1. Basic test.. 13
3.2. Manual setup..13
3.3. RTWT Driver .. 17
3.4. Simulation Models... 18
3.5. Identification.. 20
3.6. Demo Controllers... 20

4. MATHEMATICAL MODEL OF THE SERVO SYSTEM.......... ... 22

4.1. Linear Model ... 22
4.2. Nonlinear model .. 24

5. RTWT MODEL... 26

5.1. Creating a model.. 26
5.2. Code generation and the build process .. 28

6. BASIC ASSIGNMENTS... 31

6.1. Basic measurements... 31
6.2. Steady state characteristics of the DC servo .. 33
6.3. Identification in time domain... 35

6.3.1. Identification task by the surface method... 35
6.3.2. Time domain identification experiment.. 36

7. ADVANCED ASSIGNMENTS .. 38

7.1. PID position control... 38
7.2. PID Velocity control.. 48
7.3. Multivariable control design... 51

7.3.1. Pole-placement method.. 51
7.3.2. Deadbeat controller ... 54

7.4. Optimal design method: LQ controller .. 58
7.4.1. The continuous case... 59
7.4.2. The discrete case.. 63

8. DESCRIPTION OF THE MODULAR SERVO CLASS PROPERTIE S... 66

8.1. BaseAddress .. 67
8.2. BitstreamVersion ... 67
8.3. Encoder.. 67
8.4. Angle ... 68
8.5. AngleScaleCoeff.. 68
8.6. PWM.. 68
8.7. PWMPrescaler ... 69
8.8. Stop.. 69
8.9. ResetEncoder ... 69
8.10. Voltage... 70
8.11. Therm .. 70
8.12. ThermFlag ... 70
8.13. Time... 71
8.14. Quick reference table... 71

Modular Servo System - User’s Manual 4

8.15. CServo Example .. 71

9. SOME TECHNICAL DATA.. 75

Modular Servo System - User’s Manual 5

Modular Servo System

1. Introduction and general description
The Modular Servo System (MSS) consists of the Inteco digital servomechanism and

open-architecture software environment for real-time control experiments. The main concept
of the MSS is to create a rapid and direct path from the control system design to hardware
implementation. The MSS supports the real-time design and implementation of advanced
control methods using MATLAB and Simulink tools and extends the MATLAB
environment in the solution of digital servomechanism control problems.

The integrated software supports all phases of a control system development:
• on-line process identification,
• control system modelling, design and simulation,
• real-time implementation of control algorithms.

The Modular Servo System uses standard PC hardware platforms and Microsoft Windows

operating systems. Besides the hardware and the related software you obtain the User’s
Manual. The manual:
• shows step-by-step how to design and generate your own real-time controller in

MATLAB/Simulink environment,
• contains the library of ready to use real-time controllers and
• includes the set of preprogrammed experiments.

1.1. Product overview

The MSS setup (Fig. 1.1) consists of several modules mounted at the metal rail and
coupled with small clutches. The modules are arranged in the chain. The DC motor together
with tachogenerator opens the chain. The gearbox with the output disk closes the chain. The
potentiometer module is located outside the chain.
For example the DC motor can drive activates the following modules: inertia, backlash,
encoder module, magnetic brake and the gearbox with the output disk. The rotation angle of
the DC motor shaft is measured using an incremental encoder. Anywhere the rotational angle
measurement is required we can place the encoder. A tachogenerator is connected directly to
the DC motor and generates a voltage signal proportional to the angular velocity.

Tachogenerator DC motor

5

 Inertia load Backlash

Modular Servo System - User’s Manual 6

 Encoder Magnetic
brake

Gearbox with
output disk

N

Fig. 1.1 The MSS setup

The servomechanism is connected to a computer where a control algorithm is realized
based on measurements of angle and angular velocity. The system has no inner feedback for
dead zone compensation. The accuracy of measurement of velocity is 5% while the accuracy
of angle measurement is 0.1%. The armature voltage of the DC motor is controlled by PWM
signal. For this reason the dimensionless control signal is the scaled input voltage,

max/)()(vtvtu = The admissible controls satisfy 1|)(| ≤tu and 12max =v [V].

The measurement system is based on RTDAC/PCI acquisition board equipped with A/D
converters.

The I/O board communicates with the power interface unit. The whole logic necessary to
activate and read the encoder signals and to generate the appropriate sequence of PWM pulses
to control the DC motor is configured in the Xilinx chip of the RT-DAC/PCI board. All
functions of the board are accessed from the Modular Servo Toolbox which operates directly
in the MATLAB/Simulink environment.

Features
• The set-up is fully integrated with MATLAB/Simulink and operates in real-time in

MS Windows 2000/XP.
• Real-time control algorithms can be rapidly prototyped. No C code programming is

required.
• The software includes complete dynamic models.
• The User’s Manual contains a number of pre-programmed experiments familiarising

the user with the system in a fast way.

1.2. Equipment and requirements

The following minimum configuration is required:

Hardware:
• MSS including the following modules: Input Potentiometer, DC Motor with

Tachogenerator, Gearbox with output disk, Magnetic Brake, Inertia Load, Digital
Encoder, Backlash module.

• Computer system based on INTEL or AMD processor.
• Specialised RT-DAC/PCI-D I/O board.
• Power Interface unit.

Software:

Modular Servo System - User’s Manual 7

• MS Windows 2000/XP, MATLAB 7 (R14 SP2/SP3), R2006a/b, R2007a, R2008a/b
or R2009a appropriate Simulink, Real Time Workshop and Real Time Windows
Target toolboxes, MSS Control/Simulation Toolbox.

�

The Modular Servo Toolbox supports Matlab 7 (R14 SP2, SP3), MATLAB
R2006a/b, R2007a and R2008a/b and R2009a.

Manuals:
• Installation Manual
• User’s Manual

�

The experiments and corresponding to them measurements have been
conducted by the use of the standard INTECO system. Every new system
manufactured and developed by INTECO can be slightly different to the
standard. It explains why a user can obtain results that are not identical to
these given in the manual.

1.3. Hardware installation

Hardware installation is described in the Installation Manual.

1.4. Software installation

Insert the installation CD and proceed step by step following displayed commands.
Software installation is described in the Installation Manual.

Modular Servo System - User’s Manual 8

2. Starting, testing and stopping procedures

2.1. Starting procedure

Invoke MATLAB by double clicking on the MATLAB icon. The MATLAB command
window opens. Then simply type:

 Servo
Servo Control Window opens (see Fig. 2.1). The pushbuttons indicate actions that execute

callback routines when the user selects a menu item.

Fig. 2.1 The Servo Control Window

The Servo Control Window contains: testing tools, drivers, models and demo applications.
See section 3 for a detailed description.

2.2. Testing and troubleshooting

This section explains how to perform the tests. These tests allow checking if mechanical
assembling and wiring has been done correctly. The tests have to be performed obligatorily
after assembling the system. They are also necessary if an incorrect operation of the system
takes place. The tests are helpful to look for reasons of errors when the system fails. The tests
have been designed to validate the existence and sequence of measurements and controls.
They do not relate to accuracy of the signals.

First, you have to be aware that all signals are transferred in a proper way. Five testing

steps are applied.

Modular Servo System - User’s Manual 9

• Double click the Basic Tests button. The following window appears (Fig. 2.2):

Fig. 2.2 The Basic Tests window

The first step in testing of the MSS is to check if the RT-DAC/PCI I/O board is installed
properly.

• Double click the Detect RTDAC/PCI board button. One of the messages shown in Fig. 2.3

opens. If the board has been correctly installed, the base address, and number of logic
version of the board are displayed.

Fig. 2.3 Result of the step 1

If the board is not detected check if the board is put into the slot properly. The boards are
tested very precisely before sending to a customer and only wrong assembly procedure
invokes errors.

In the next step one can reset encoders. One sets the initial position of the servo system.
• Double click the Reset Angle Encoders button. When the window (Fig. 2.4) opens

click the Yes option. The encoders are reset and zero position of the servo system are
stored.

Modular Servo System - User’s Manual 10

Fig. 2.4 The Reset Encoders window

The next step of the testing procedure refers to the angle measurement.
• Double click the Check Angles button, next click the Yes button and rotate the inertia

load by hand. The rotational angle of the inertia is measured and displayed (Fig. 2.5).

Fig. 2.5 Angle measurement test

• To check whether the potentiometer works correctly double click the Check Reference
Pot button. Next click the Yes and turn the potentiometer right and left.

Fig. 2.6 shows an example of the proper measurements of the potentiometer position.

Modular Servo System - User’s Manual 11

Fig. 2.6 Position of the reference potentiometer

In the next step of the basic tests one can check whether the control and measurements of

the angle and velocity in MSS are correct. This experiment is not performed in real-time
mode.

• Double click the Control Impulse Response button and start experiment clicking the
Yes button.

The results of experiments are shown in Fig. 2.7. The control impulse has a square wave
form. The first part of the control signal is positive, and the second one is negative. Note that
angle and velocity signals are positive at the beginning and next fall down to the negative
values. It means that the measurements are correct.

Modular Servo System - User’s Manual 12

Fig. 2.7 The response of the system

Modular Servo System - User’s Manual 13

3. Servo Control Window

The user has a quick access to all basic functions of the modular servo control system from

the Servo Control Window. It includes tests, drivers, models and application examples.
Type at the Matlab prompt servo command and Servo Control Window shown in Fig. 2.1

opens. Simultaneously start.m m-file is executed which set the default values of the
coefficients of the MSS: 186=sK [rad/s] and 04.1=sT [s]. Also the sampling time 0T is set

equal to 0.002 [s].

The window contains four groups of the menu items:

• Tools - Basic Test, Manual Setup, Reset Encoders and Stop Experiment,
• Drivers - RTWT Device Driver,
• Simulation Models: linear and nonlinear,
• Identification - Basic Measurements, Steady-State Characteristics and Time Domain

Identification,
• Demo Controllers –PID Controller and State Feedback Controller applied to a

position control and PID controller applied to a velocity control.

3.1. Basic test

The Basic Test tool was described in the previous section.

3.2. Manual setup

The Servo Manual Setup program gives access to the basic parameters of the laboratory
modular servo setup. The most important data transferred from the RT-DAC/PCI board and
the measurements of the servo may be visualised. Moreover, the control signals can be set.
Double click the Manual Setup button and the screen shown in Fig. 3.1 opens.

The application contains four frames:
• RT-DAC/PCI board,
• Encoders,
• Control and
• Analog inputs.

All data presented by the Servo Manual Setup program are updated 10 times per second.

• RT-DAC/PCI board frame

The RT-DAC/PCI board frame presents the main parameters of the RT-DAC/PCI I/O

board.

No of detected boards
Presents the number of detected RT-DAC/PCI boards. If the number is equal to zero it

means that the software has not detect any RT-DAC/PCI board. When more then one board is
detected the Board list must be used to select the board that communicates with the MSS
control program.

Modular Servo System - User’s Manual 14

Board
Contains the list applied to select the board currently used by the program. The list

contains a single entry for each RT-DAC/PCI board installed in the computer. A new
selection at the list automatically changes values of the remaining parameters.

Fig. 3.1 View of the Servo Manual Setup window

Bus number
Displays the number of the PCI bus where the current RT-DAC/PCI board is plugged-in.

The parameter may be useful to distinguish boards, when more then one board is used.

Slot number
The number of the PCI slot where the current RT-DAC/PCI board is plugged-in. The

parameter may be useful to distinguish boards, when more then one board is used.

Base address
The base address of the selected RT-DAC/PCI board. The RT-DAC/PCI board occupies

256 bytes of the I/O address space of the microprocessor. The base address is equal to the
beginning of the occupied I/O range. The I/O space is assigned to the board by the computer
operating system and may differ from one computer to another.

The base address is given in the decimal and hexadecimal forms.

Logic version
The number of the configuration logic of the on-board FPGA chip. A logic version

corresponds to the configuration of the RT-DAC/PCI boards defined by this logic.

Application

Modular Servo System - User’s Manual 15

The name of the application the board is dedicated for. The name contains four characters.
In the case of the MSS it has to be SERV string.

I/O driver status
The status of the driver that allows the access to the I/O address space of the

microprocessor. The status displayed has to be OK string. In other case the driver HAS TO
BE INSTALLED.

• Encoders frame

The state of the encoder channels is given in the Encoder frame.

Channel 0, Channel 1
The values of the encoder counters, the angles expressed in radians and the encoder reset

flags are displayed in the Channel 0 and Channel 1 row. In this version MSS may use a single
encoder module. In such a case only one channel presents the current data.

Value
The values of the encoder counters are given in the respective columns. The values are 24-

bit integer numbers. When an encoder remains in the reset state the corresponding value is
equal to zero.

Angle [rad]
The angular positions of the encoders expressed in radians are given in the respective

columns. When the encoder remains in the reset state the corresponding angle is equal to zero.

Reset
When the checkbox is selected the corresponding encoder remains in the reset state. The

checkbox has to be unchecked to allow the encoder to count the position.

• Control frame

The Control frame allows to change the control signal.

Edit field, slider
The control edit box and the slider are applied to set a new control value. The control value

may vary from –1.0 to 1.0.

STOP
The pushbutton is applied to switch off the control signal. When pressed the control value

is set to zero.

PWM prescaler
The divider of the PWM reference signal. The frequency of the PWM control is equal to:

][
)1(

40
KHz

erPWMprescal
f pwm +

=

Thermal flag / status

Modular Servo System - User’s Manual 16

The thermal flag and the thermal status of the power amplifier. If the thermal status box is
checked the power interface is overheated. If the thermal flag is set and the power interface is
overheated the RT-DAC/PCI board automatically switches off the PWM control signal.

• Analog inputs frame

The Analog inputs frame displays two measured analog signals.

Potentiometer
Presents the voltage at the output of the potentiometer block.

Tacho
Presents the voltage at the output of the tachogenerator.

Modular Servo System - User’s Manual 17

3.3. RTWT Driver

The main driver is located in the RTWT Device Driver column. The driver is a software
“go-between” for the real-time MATLAB environment and the RT-DAC/PCI I/O board. This
driver serves the control and measurement signals. Click the Modular Servo Device Driver
button and the driver window opens (Fig. 3.2).

Fig. 3.2 RTWT Device Driver

When one wants to build his own application he has to copy this driver to a new Simulink
diagram.

�

Do not introduce changes inside the original driver. They can be done only
inside its copy!

The device driver has two inputs: control []11)(+−⊂tu and signal Reset. If the Reset

signal changes to one the encoders are reset and do not work. If the Reset signal is equal to
zero encoders work in the standard way. It means when switching occurs, encoders reset and
start measure when the switch returns to the zero (normal) position. It is important that the
Reset switch works only when the real-time code is executed.

Modular Servo System - User’s Manual 18

The mask of the Servo block

(presented in Fig. 3.3) contains base
address of the RT-DAC/PCI board
(automatically detected with the help
RTDACPCIBaseAddress function)
and the sampling period which default
value is set to 0.002 sec. If one wants
to change the default sampling time
he must do it in this mask also.

Fig. 3.3 Mask of the device driver

The details of the device driver are depicted in Fig. 3.4. The driver uses functions which

communicates directly with a logic applied at the RTDAC/PCI board. Notice, that the driver
is ready to use a second (optional) encoder, as well.

Measurements

Control

Parameters

3
Set-up

2
Tacho

1
A Angle

1

ThermFlagSource

1

ThermFlagGain

Servo_ThermFlag

ThermFlag

Servo_PWMTherm

Therm Status

1

0.25s+1

Simple filter

Saturation

1

ResetEncoderGain

Servo_ResetEncoder

ResetEncoder

servo_analoginputs

RT-DAC
Analog Inputs1

2

PWMPrescalerSource

1

PWMPrescalerGain

Servo_PWMPrescaler

PWMPrescaler

1

PWMGain

1

PWM Therm Status

Servo_PWM

PWM

Mux

1

Encoder
1024 PPR

Servo_Encoder

Encoder

0

Display Version

0

Display Therm Flag

0

Display Status

0

Display Reset

0

Display Prescaler

0

Display PWM

0

Display Encoder

Demux

Demux

-K-

Convert to rad/s

-K-

Convert to rad

Servo_BitstreamVersion

Bitstream Version

2
Reset Encoder

1
PWM Control

Fig. 3.4 Interior of the RTWT device driver

3.4. Simulation Models

There are two simulation models available for the servo system. The first one is a linear
model and the second one is nonlinear. The linear model is used to design controllers. The
nonlinear model is used to check the quality of the designed control system.

Linear and Nolinear Simulation Model – the simulation models of the servo are located

under these buttons. The external view of the simulation models is identical as the model
described in the Modular Servo Device Driver except the Reset Encoder input and reference
Potentiometer output which are not used in the simulation mode.

Modular Servo System - User’s Manual 19

Linear Simulation Model

Linear Simulation Model

0

Control

Angle

Velocity

Fig. 3.5 Linear Simulation Model and its mask

The vector of the initial conditions of the state variables of the simulation model is the

parameter available in the mask.

�

The model has no constrained control (as in the case of the real servo system).
If you use the linear simulation model in a closed-loop remember that control
should satisfy 1≤u . You can include the Saturation block to limit the control.

In the case of the nonlinear simulation model two additional parameters appear. The gain

of the model and the vector which contains the static characteristics of the servo system. Refer
to section 4 for the details.

Nonlinear Simulation Model

Nonlinear Simulation Model

0

Control

Angle

Velocity

Fig. 3.6 Nonlinear Simulation Model and its mask

The simulation models are running in the normal simulation mode.

�

Choose Fixed step solver options and set Fixed-step size equal to 0.002. It is
necessary because the default value of the sampling time of all real-time
models is equal to 0.002 [s].

Modular Servo System - User’s Manual 20

3.5. Identification

The consecutive buttons in the group Identification of the Servo Control Window perform
the following tasks:

Basic Measurements – contains a real-time Simulink model where a saw shape control

signal is given as the input of the servo system and four velocities are plotted in a scope:

• measurements reconstructed from encoder,
• measurement directly from tachogenerator,
• filtered tachogenerator voltage using low pass Butterworth filter,
• filtered tachogenerator voltage using simple first order filter.

The experiment allows to decide which kind of velocity measurements can be used in
following experiments.

Plot basic measurements push button - activates the plot_basic.m file to plot

measurements visible in the scope in the previous experiment.

Static Characteristics - performs experiment aimed to measure of the static characteristics

of the loaded DC motor (angular velocity [rad/s] vs. input voltage [dimensionless] in the
steady state). The characteristics can be measured for the servo system with or without
magnetic brake module. The measurements are stored in the ChStat.mat file.

Plot & Save Characteristics - uses plot_stat.m file which plots measured characteristics,

performs some normalisations of the data, and saves characteristics in servo_chstat.mat file.

Time Domain Identification – opens the real-time Simulink model which starts

identification based on a step system response.

The button Identify Model - takes advantage of identification data and calculates

coefficients of a linear model of the servo system. The surface method is applied by the
identification procedure.

3.6. Demo Controllers

The respective buttons in the column Demo Controllers perform the following tasks:

Position control

PID Control Continous - contains the Simulink model for real-time experiments in closed-

loop with PID position controller, and simulation model of the PID controlled servo system.

State Feedback Control - opens the Simulink model to start real-time experiments for

closed-loop system with state feedback. This model can be used for experiments with LQ or
deadbeat controllers. Also simulation model of the closed-loop system is included under this
button.

Modular Servo System - User’s Manual 21

All the Simulink models mentioned above are examples of position control problems.

Calculate LQ controller – uses Servo_calc_lq.m file to obtain state feedback controller

coefficients by solving the appropriate LQ problem. In the Servo_calc_lq.m file one can set
matrices of the objective function to obtain appropriate behaviour of the system.

Velocity control

PID Controller - opens the Simulink model to start-real time experiments for the closed-

loop system with velocity PID controller.

Modular Servo System - User’s Manual 22

4. Mathematical model of the servo system

4.1. Linear Model

A DC motor with a negligible armature inductance (Fig. 4.1)

αω ,

iKm=τ

R

v(t) ωeK

+

-

J

β

Fig. 4.1 Diagram of the DC motor

is described by two classical equations: electrical

)()()(tKtiRtv eω+=

and mechanical

)()()(ttiKtJ m ωβω −=&

where:
)(tv is the input voltage,

)(ti is the armature current,
)(tω is the angular velocity of the rotor,

R is the resistance of the armature winding,
J is the inertia moment of the moving parts,
β is the damping coefficient due to the viscous friction,

)(tKeω is the back EMF,

and)(tiKm=τ is the electromechanical torque.

This model is linear because the static and dry kinetic friction, as well as the saturation are
neglected. By combining the electrical and mechanical equations we obtain the equation of a
first order inertial system

)()()(tvKttT sms +−= ωω&

where the motor time constant sT and motor gain smK are given by

me
s KKR

RJ
T

+
=

β
,

me

m
sm KKR

K
K

+
=

β
.

The transfer function has the form

Modular Servo System - User’s Manual 23

1)(

)(
)(

+
==

sT

K

sv

s
sG

s

smω

The transfer function for the motor position has the form:

)1()(

)(
)(

+
==

sTs

K

sv

s
sG

s

smα

The control applied in the system is a PWM signal that’s way we assume the

dimensionless control signal as the scaled input voltage max/)()(vtvtu = . The admissible

controls satisfy

 1|)(| ≤tu .

Defining also maxvKK sms = we obtain transfer functions in the forms:

Velocity transfer function Angle transfer function

1)(

)(
)(

+
==

sT

K

su

s
sG

s

sω

)1()(

)(
)(

+
==

sTs

K

su

s
sG

s

sα

The model can be written using a state space notation. Let),(col 21 xxx = be the state vector

where 1x is the angle α (in [rad]) determining the position of the motor shaft, and ω=2x is
the respective angular velocity (in [rad/s]). Time t is measured in [s].

There are the following state equations

 21 xx =&

 buaxx += 22&

where

0,0
1 >=<−=

s

s

s T

K
 b

T
a .

The equivalent classical matrix state space notation has the form

BuAxx +=&
Cxy =

where:















−=
sT

A 1
0

10
,














=

s

s

T

KB
0

, IC = .

The system can be classified as a multivariable (SIMO) because it has two measurable state
variables and one control variable. The parameters sT and sK must be identified by a user.

Modular Servo System - User’s Manual 24

The default values assumed for identification experiments are as follows: 12max =v [V],

04.1=sT [s], 186=sK [rad/s], which gives]s[961.0 2−−=a , and 8.178=b]rad/s[2 .

These values have been identified by the manufacturer for the DC motor with the
tachogenerator loaded by the inertia module and connected to the gearbox module equipped
with the output disk.

4.2. Nonlinear model

Very often small changes of the state variables are assumed. Therefore, the control system
can be considered as a linear one. However, in some applications nonlinearities in the control
loop have to be taken into account. This includes non-linear static characteristics such as
hysteresis and saturation, which may occur if the following devices are applied: operational
amplifiers, actuators, finite word length in A/D and D/A converters. Often the signal
constraint first appears for the control variable. We will assume a nonlinear model of the DC
motor in the form

21 xx =&

))((22 xgucx −=&

where the state variables 1x , 2x and control u are defined as in the linear model.

The function g is the inverted steady state characteristics of the system, which can be

determined experimentally (see section 6.2). The original steady state characteristics (see Fig.
6.8) is obtained from measurements. The results of measurements undergo a preliminary
treatment consisting of scaling (to express them in appropriate units) and a shift (to remove
the bias). The function g is presented in Fig. 4.2. An interesting property of the g function is
that it is discontinuous at zero and shows distinct effects of dry friction in a vicinity of the
origin.

�

The static characteristics was obtained for the system consisting of DC motor,
inertia load, encoder and gearbox modules. If a magnetic break module is
added to the system a measured characteristics are quite different.

The c coefficient was identified and 206=c [rad/s].

Modular Servo System - User’s Manual 25

Fig. 4.2 Function)(2xg is the inverted static characteristics of the servo

Modular Servo System - User’s Manual 26

5. RTWT model

In this section the process of building your own control system is described. The Real Time
Windows Target (RTWT) toolbox is used. An example how to use the MSS software will be
shown in section 6. In this section some hints how to proceed in the RTWT environment are
given.

�

Before start, test your MATLAB configuration by bui lding and running an
example of real-time application. Real-time Windows Target Toolbox includes
the rtvdp.mdl model. Running this model will test the installation by running
Real-Time Workshop, Real-Time Windows Target, and the Real-Time Windows
Target kernel.
In the MATLAB window, type

rtvdp
Next, build and run the real-time model.

To build the control application that operates in the real-time mode the user has to:
• create a Simulink model of the control system which consists of the Modular Servo

Device Driver and other blocks selected from the Simulink library,
• build the executable file under RTWT,
• start the real-time code to run from the Simulation/Start real-time code pull-down

menus.

5.1. Creating a model

The simplest way to create a Simulink model of the control system is to use one of the
models available from the Servo Control Window as a template. For example, click on the
Basic Measurements button and save it as MySystem.mdl name. The MySystem Simulink
model is shown in Fig. 5.1.

Now, you can modify the model. You have absolute freedom to modify the model and to
develop your own control system. Remember to leave the Servo driver block in the window.
This is necessary to work in RTWT environment.

Though it is not obligatory, we recommend you to leave the scope. You need a scope to
watch how the system runs. The saturation blocks are built in the Servo driver block. They
limit currents to DC motor for safety reasons. However they are not visible for the user who
may amaze at the saturation of controls. Other blocks remaining in the window are not
necessary for our new project.

Creating your own model on the basis of an old example ensures that all-internal options of
the model are set properly. These options are required to proceed with compiling and linking
in a proper way. To put the Servo Device Driver into the real-time code a special make-file is
required. This file is included in the MSS software.

Modular Servo System - User’s Manual 27

Fig. 5.1 The MySystem Simulink model

You can apply most of the blocks from the Simulink library. However, some of them
cannot be used (see RTW or RTWT references manual).

The scope block properties are important for appropriate data acquisition and supervising
how the system runs.

The Scope block properties are defined in the Scope property window (see Fig. 5.2). This
window opens after the selection of the Scope/Properties tab. You can gather measurement
data to the Matlab Workspace marking the Save data to workspace checkbox. The data is
placed under Variable name. The variable format can be set as structure or matrix. The
default Sampling Decimation parameter value is set to 1. This means that each measured point
is plotted and saved. Often we choose the Decimation parameter value equal to 5. This is a
good choice to get enough points to describe the signal behaviour and to save the computer
memory. In this case the time space of the plot is equal to 0.01 [s].

Fig. 5.2 Setting the parameters of the Scope block

Modular Servo System - User’s Manual 28

When the Simulink model is ready, click the Tools/External Mode Control Panel option
and next click the Signal Triggering button. The window presented in Fig. 5.3 opens. Select
Select All check button, set Source as manual, set Duration equal to the number of samples
you intend to collect and close the window.

Fig. 5.3 External Signal & Triggering window

5.2. Code generation and the build process

Once a model of the system has been designed the code for real-time mode can be
generated, compiled, linked and downloaded into the computer.

The code is generated by the use of Target Language Compiler (TLC) (see description of
the Simulink Target Language). The make-file is used to build and download object files to
the target hardware automatically.

First, you have to specify the simulation parameters of your Simulink model in the
Simulation parameters dialog box. The RTW page appears when you select the RTW tab (Fig.
5.4). The RTW page allows you to set the real-time build options and then to start the building
process of the executable file.

Modular Servo System - User’s Manual 29

Fig. 5.4 RTW page of the Simulation parameters dialog box (MATLAB 6.5)

The system target file name is rtwin.tlc. It manages the code generation process. The
servo_win_vc.tmf template make-file is devoted to C code generation using the Microsoft
Visual C++ compiler. The servo_win_watc.tmf template file has to be applied if the Open
Watcom 1.3 compiler is used.

If the Matlab 7.0.4 or higher version is used a third party compiler is not required. The

built-in Open Watcom compiler is used to creating real-time executable code for RTWT.
The Configuration parameters page for MATLAB 7.04 is shown in Fig. 5.5. Notice that

rtwin.tmf template makefile is used. This file is default one for RTWT building process.

-

 Fig. 5.5. Configuration parameters page for MATLAB 7.04 and higher versions

Modular Servo System - User’s Manual 30

The Solver page appears when you select the Solver tab (Fig. 5.6). The Solver page allows
you to set the simulation parameters. Several parameters and options are available in the
window. The Fixed-step size editable text box is set to 0.002 (this is the sampling period in
seconds).

�

The Fixed-step solver is obligatory for real-time applications. If you use an
arbitrary block from the discrete Simulink library or a block from the driver
library remember that different sampling periods must have a common
divider.

The Start time has to be set to 0. The solver has to be selected. In our example the fifth-

order integration method − ode5 is chosen.

Fig. 5.6 Simulation parameters

If all parameters are set properly you can start the executable building process. For this
purpose press the Build push button on the RTW page (Fig. 5.4).

Successful compilation and linking processes generate the following message:

Created Real-Time Windows Target module MySystem.rwd.
Successful completion of Real-Time Workshop build procedure for model: MySystem

Otherwise, an error massage is displayed in the MATLAB command window.

Modular Servo System - User’s Manual 31

6. Basic Assignments
All experiments described in this manual are performed with servo system consisting of

the following modules: DC motor with tachogenerator, inertia load, encoder and gearbox with
the output disk. In one experiment additionally the backlash module is applied.

6.1. Basic measurements

In this section quality of measurements in the servo system is concerned. The shaft angle is
measured with high accuracy by an incremental encoder. If the tachogenerator is not used the
shaft angular velocity must be reconstructed from the angle measurements. If the
tachogenerator is used as a velocity sensor then its voltage signal comes together with
disturbances, therefore it must be filtered.

Fig. 6.1 Simulink model of Basic Measurements

The Signal generator block produces a saw shape control signal for the servo system. This
shape was selected to demonstrate the full range of the control values.

The velocity measurements are shown in Fig. 6.2. One can see that the most disturbed is

signal obtained directly from the tachogenerator. The reconstructed velocity (from encoder
measurements of the angle) is the best one. Two types of the filters are applied: the fourth
order Buterworth filter and a simple first order filter. Details and differences between the
measurements are shown in Fig. 6.3 and Fig. 6.4. A user can choose which one of the velocity
measurement will be used in his own real-time experiments.

Modular Servo System - User’s Manual 32

Fig. 6.2 Velocity measurements

0 10 20 30 40 50 60
-200

-150

-100

-50

0

50

100

150

200
Velocity measurements: red - encoder, blue - directly from tacho

time [s] press any key

40.02 40.04 40.06 40.08 40.1 40.12 40.14 40.16 40.18 40.2

-100

-95

-90

-85

-80
Velocity measurements: red - encoder, blue - directly from tacho

time [s] press any key

Fig. 6.3 Comparison of the velocity measurements

Modular Servo System - User’s Manual 33

0 10 20 30 40 50 60
-200

-150

-100

-50

0

50

100

150

200
Filtered velocity: red - Butterworth filter, blue - simple filter

time [s] press any key
40 40.02 40.04 40.06 40.08 40.1 40.12 40.14 40.16 40.18 40.2

-94.5

-94

-93.5

-93

-92.5

-92

-91.5

-91

-90.5

Filtered velocity: red - Butterworth filter, blue - simple filter

time [s] press any key

Fig. 6.4 Comparison of the velocity measurements

6.2. Steady state characteristics of the DC servo

Double click the Static characteristics button in Servo Control Window. The window
given in Fig. 6.5 opens. In this window one defines the minimal and maximal control values
and a number of measured points. Also the control order can be set as: Ascending,
Descending or Reverse.

Fig. 6.5 Parameters of measurement of static characteristics

The Run button starts the experiment. The constant value of the control activates the DC

motor so long as a steady state of the shaft angular velocity is achieved. Then, the velocity is
measured and the control value is changed to the next constant value and DC motor is
activated again. These steps are repeated to the end of the control range. Simultaneously, the
measurements are displayed in the screen (see Fig. 6.6). There are two sources of DC motor
velocity: the reconstruction from the incremental encoder pulses and the tachogenerator
voltage. After the identification process the measurements are saved in the ChStat.mat file.

Modular Servo System - User’s Manual 34

Fig. 6.6 Visualisation of measurements the static characteristic

When the measurements are completed, close the window and double click the Plot & save
button. The ChStat.mat file is loaded and the static characteristics is plotted (see Fig. 6.7).
Notice that when the characteristics is measured in Reverse mode (the control is changed from
–1 to +1 and in the reverse order). The plots are slightly different. Next, the characteristics
are averaged and shifted to zero for a number of points to diminish influence of the dry
friction. Next, the plot (see Fig. 6.6) is drawn and the characteristic is saved in the
servo_chstat.mat file. If this file exists it is overwritten.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-200

-150

-100

-50

0

50

100

150

200
Static characteristic of DC servo

u [normalised]

A
ng

ul
ar

 v
el

oc
ity

 [
ra

d/
s]

Fig. 6.7 Collecting points of the static
characteristic

Fig. 6.8 Averaged and shifted static characteristic

Building a new static characteristics is a seldom operation. Please do not forget to save the
old characteristics (with an appropriate description) in a safe place. The details are included in
the plot_stat.m file which executes all operations mentioned above.

Modular Servo System - User’s Manual 35

The characteristics saved in the servo_stat.mat file is used in the construction of a
nonlinear model of the servo system.

6.3. Identification in time domain

The task is to find the parameters sT and sK of the linear model of the servo system

described by the transfer function

1)(

)(2
 s+T

 K

su

sx
G(s)=

s

s= (6.1)

that the states of the model fit to the experimentally measured states. The step input signal
u(t)= 1(t) is applied to the servo system and the velocity vs. time is acquired. The surface
method is applied to find the system parameters.

6.3.1. Identification task by the surface method

The velocity signal is denoted as)(2 tx . Applying the model (6.1) the required parameters

SS and TK can be calculated using the following relations:

∞→−==

∞→=

∫ txKK
K

K
T

ttxK

s
s

s

s

 ,d))((lim where

 ,)(lim
t

0

21
1

2

λλ

The surface method is the useful identification algorithm in the presence of disturbances.
In this case the integral formula filtrates the measurement noises. Fig. 6.9 shows a typical
application of this method to a DC servo identification problem.

sK

surface 1K

t

)()(2 twtx +

Fig. 6.9 Surface method in the presence of disturbances)(tw

Modular Servo System - User’s Manual 36

6.3.2. Time domain identification experiment

In this experiment MSS includes the following modules: the DC motor with

tachogenerator, inertia load, encoder module and gearbox module with the output disk. The
magnetic break module can be added but in such a case the identified parameters of the
system will be different.

To start the identification experiment type servo at the MATLAB prompt and Servo
Control Window appears. Now, double click the Time domain identification button. The
model shown in Fig. 6.10 opens.

Build model (in the case if it has not been done before). Next, select the
Simulation/Connect to target option and click the Simulation/Start real-time code. The servo
starts to move and one can observe the velocities displayed in the screen (see Fig. 6.11).

Fig. 6.10 Real-time Simulink model for identification

Fig. 6.11 Step response of the servo

Modular Servo System - User’s Manual 37

Click the Calculate model button. This action starts the plot_ident.m file where the surface
method is applied and the parameters of the servo model are calculated. Consequently, Fig.
6.12 opens and two plots are displayed in the screen:

• velocity obtained from the measurements (red),
• velocity calculated from the model (black).

At the top of the figure the obtained coefficients and the Mean square error denoted by J

corresponding to data fitting are displayed. The coefficients are also displayed in the Matlab
window.

Fig. 6.12 Measured (red) and modelled (black) velocities

�

Remember that your servo can be different to the system described in this

manual. The time domain identification has to be performed before any
experiment.

Modular Servo System - User’s Manual 38

7. Advanced Assignments

7.1. PID position control

A PID controller is the most common form of feedback. In process control today, more than
95% of the control loops are of a PID type, in principle a PI control. The PID controllers are
today present in all areas where control is used. In our case only P and PD controllers are
concerned. The servo itself behaves as an integrator.

In this section a problem of the position control of the servo is concerned. The background

to simple tuning methods is introduced.

All real-time experiments related to the PID position control are performed using the

model given in Fig. 7.1.

PID controller

1

0.05s+1

Simple fil ter

Signal
Generator1

Servo

Saturation

Reset
Encoders

Real-time only

1

Reset

0

Normal

-K-

Kp

-K-

Ki

-K-

Kd

rad-to-rad/s

Calculate
Velocity1

Angle & Reference
& velocity

Angle & ref

Angle (encoder)

Reset

v elocity (tacho)

f ilterd v elocity

control

control

Fig. 7.1 Real-time model of the servo with the PID controller

 The transfer function of a continuous PID controller used in this manual has the form:

D
I

p sK
s

K
 = K

s

su
K(s)= ++

)(

)(

ε

where: ε - error ,

pK - proportionality coefficient, IK - integration coefficient and DK -

derivation coefficient.

P controller

A goal of the control is to track a reference signal which is defined as a square wave. In

this section the P controller is investigated.

Modular Servo System - User’s Manual 39

αrefα

-
)1(+s

s

sTs

K
pK

Fig. 7.2 Position servo control with the P controller

The diagram of the closed loop system is shown in Fig. 7.2. It is well known that increasing
gain leads to oscillations. To test the real-time system for different gains of the P controller
click PID control continuous button in Servo Control Window. The model given in Fig. 7.1
opens.
We start with a small value of the gain of the P controller. Type K=[0.0064 0 0] at the
MATLAB prompt. It set proportional coefficient pK of the P controller. Assuming a desired

range of the change of the output disk equal to pi/2 set reference input signal equal to 25*pi/2
(it is the measured angle at the input to the gearbox). Also set frequency of the reference input
to 0.05 Hz and sample time to 0.002 s.
• Build the model.
• Click the Simulation/Connect to target and Start real-time code options to start

experiment.
Next, repeat the experiment for the new setting: 0127.0=pK and 0254.0=pK .

The results of all experiments are given in Fig. 7.3 and Fig. 7.4. Note, that oscillations of
the system response appear if 0127.0=pK and 0254.0=pK .

0 5 10 15 20 25 30
-80

-60

-40

-20

0

20

40

60

80
Position control with P controller

time [s]

Kp=0.0127

Kp=0.0064

Kp=0.0254

Fig. 7.3 Response of the closed-loop system with the P controller

Modular Servo System - User’s Manual 40

The controls shown in Fig. 7.4 do not reach the zero value. It is due to the dead zone of the
system which can be observed at the steady state characteristic shown in Fig. 6.8. The dead
zone of the normalized u is in the range from -0.15 to 0.15.. Notice, that the control saturates
for 0254.0=pK .

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Controls

time [s]

Kp=0.0127

Kp=0.0064

Kp=0.0254

Fig. 7.4 Controls for different gains of the P controller

In the table below the steady state error is shown for the gain coefficients applied in these
experiments. In accordance with theory if the pK increases the steady state error decreases.

K 0.0064 0.0127 0.0254

∞ε 20 % 9.1 % 4.8 %

PD controller

The main goal of the controller tuning is to obtain the standard second order system step

response. The general form of the second order transfer function is

22

2

2
)(

nn

n
s

ss
sG

ωζω
ω

++
=

If 10 << ζ , then the step response of)(sGs exhibits an exponentially damped sinusoidal

character with the following features:

Modular Servo System - User’s Manual 41

• percentage overshoot
21

% 100 ζ

ζπ

−

−

= ep

• 2% settling time
n

st ζω
4=

• time to peak
21 ζω

π
−

=
n

pt

For given %p and st one can calculate the damping coefficient ζ and natural frequency

nω . Comparing a transfer function of the closed-loop system, which contains the coefficients

of the controller, with the standard transfer function)(sGs one can calculate the controller

coefficients.

EXAMPLE

Assume that we would like to design a PD controller for the position control of the servo
system as it is shown in Fig. 7.5: Note that at the first glance the state feedback controller is

used. But remember that
dt

dαω = . For this reason the applied controller is PD type.

The requirements corresponding to the dynamics of the closed-loop system are as follows:

• settling time][5.2 sts ≤

• and maximal overshoot 10% ≤p

Reference
Signal

-K-
Ks/Ts

-K-

Kp

-K-
Kd

-K-
1/Ts

e alfa ref
angle

controller servo

velocity

1/s 1/s

Fig. 7.5 Position control with the PD controller

The servo system has the transfer function
)1(

)(
+

=
sTs

K
sG

s

s . The transfer function of the

PD controller is sKKsK Dp)(+= . The default values of the system coefficients are

186=sK [rad/s] and 04.1=sT [s].

Closing the control system we obtain the transfer function in the form

Modular Servo System - User’s Manual 42

s

sp

s

Ds

s

sp

z

T

KK

T

KK
ss

T

KK

sG

+
+

+
=

1
)(

2

.

Substituting values for the coefficients into the transfer function we obtain

pD

p
z KKss

K
sG

 846.178)9615.0 846.178(

 846.178
)(

2 +++
= .

The following relationships are obtained by comparing the transfer function with the
standard transfer function of the second order system

2 846.178 npK ω= ,

9615.0 846.1782 += Dn Kζω .

Considering the formula and the condition for the settling time][5.2 sts ≤ one obtains the

inequality 0125.0≥DK .
Consequently, respecting the formula and the condition 10% ≤p related to the assumed

percentage overshoot one can calculate an unknown value as 5912.0=ζ , later 7039.2=nω

and 0409.0=pK .

To check if the behaviour of the closed-loop system is consistent with requirements one
can use the simulation method. Type at the Matlab prompt K=[0.0409 0 0.0125] to save the
coefficients of the PD controller in the workspace. Click the PID controller & linear model
button. The model depicted in Fig. 7.6 opens. Note, that the linear model of the servo is
applied. The simulation results are shown in Fig. 7.7.

PID controller (simulation)

Reference
Signal

Linear Simulation Model

-K-

Kp

-K-

Ki

-K-

Kd

Angle & Ref

e alf a
ref

Angle

v elocity

Fig. 7.6 Simulation model of the closed-loop system with the PD controller

Modular Servo System - User’s Manual 43

Fig. 7.7 Simulation results of the system with the PD controller

The percentage overshoot is too large, namely 16.4%. However the settling time is equal to
2.4[s] what is a satisfactory result. The steady state error is equal to 1.2% what shows that the
goal of the control is satisfied but the requirement related to the percentage overshoot is
missed.

Before redesigning a controller a real time experiment should be performed. Click the PID
control continuous button. Click PID controller and the model presented in Fig. 7.1 opens.
Build it and start the real-time code. The results are presented in Fig. 7.8. Notice, that the
response of the real system always differs slightly from the simulated one.

Fig. 7.8 Results of the real-time experiment with the PD controller

Modular Servo System - User’s Manual 44

To see in details differences between the real time and simulation responses of the closed-
loop system execute the servo_plot_pid.m file. This file is included in the Servo Toolbox but
is accessible only from Matlab Command Window. The plot is depicted in Fig. 7.9. The table
below includes the details read from the figure.

 Simulation Real-time experiment

st [s] 2.4 3

%p [%] 16.5 8.14

Steady state error [%] 0.2 4.02

Fig. 7.9 Comparison of the real-time and simulation experiments with the PD controller

The overshoot of the real-time experiment is small but the steady state error is too large

and the settling time is too long.
We are trying to increase proportional coefficient pK of the PD controller. It will increase

the overshoot (that is an admissible step) and decrease the steady state error (to a value which
is required) and shorten the settling time what is required also.

Type at Matlab prompt: K=[0.0609 0 0.0125] and repeat the real-time experiment with the
PD controller and observe the results in the scope of the model. To see all details of responses
vs. time type the following commands:

a=1;b1=length(PD_C.time);
t=PD_C.time(a:b);
a=1;
b=10/(t(2)-t(1)); %plot only first 10 seconds of r esponse
t=t(a:b);
plot(t,PD_C.signals(1).values(a:b,1),'b',t,PD_C.sig nals(1).va
lues(a:b,2),'k');grid;

Modular Servo System - User’s Manual 45

title('Responses of: real system with corrected PD controller');
xlabel('time [s]');

The plot which is obtained is shown in Fig. 7.10 The values of the percentage overshoot,

settling time and steady state error are as follows:

5.12% =p [%] , 23.2=st [s] and 33.0=∞ε [%].

The overshoot is a little greater than the assumed one but the settling time is fine and the

steady-state error is perfect. We can conclude that the goal of the control is satisfied and that
the PD controller just designed works well.

0 1 2 3 4 5 6 7 8 9 10
-50

-40

-30

-20

-10

0

10

20

30

40

50
Response of real system with corrected PD controller

time [s]

Fig. 7.10 Response of the real-system with the corrected PD controller

Position control with the backlash module

In this section position control problem is considered when the backlash exists in the servo

system as it is shown in Fig. 7.11.

αrefα

-

pK Backlash
)1(+s

s

sTs

K

Fig. 7.11 Position servo control with the backlash and P controller

Modular Servo System - User’s Manual 46

The backlash is present in a number of mechanical and hydraulic systems. In many cases
backlash is necessary to proper work of a mechanical system. A gearbox without backlash
will not work if temperature rises. The backlash in a system deacreases control performance
and in most applications introduces oscillations to the controlled system.

At the beginning the backlash have to be added to existing servo system. Add this module
between the inertia and the encoder modules in the system chain. It is important that encoder
measures an angle after the backlash module.

To test a behaviour of the real-time system with the backlash module for different gains of
the P controller click PID control continuous button in Servo Control Window. The model
given in Fig. 7.1 opens.
Type K=[0.1024 0 0] at the MATLAB prompt. It sets the proportional coefficient pK of the

P controller. Assuming a desired range of the change of the output disk equal to pi/2 set the
reference input signal equal to 25*pi/2 (it is the measured angle at the input to the gearbox).
Also set the frequency of the reference input to 0.05 Hz and sample time to 0.002 [s].
• Build the model.
• Click the Simulation/Connect to target and Start real-time code options to start the

experiment.

The results are given in Fig. 7.12 and Fig. 7.13.

0 5 10 15 20 25 30
-80

-60

-40

-20

0

20

40

60

80
Position control with P controller

time [s]

Fig. 7.12 Position control with the backlash module - 1024.0=pK

Notice, that there are oscillations in the system. The oscillations are far from the harmonic
shape. They are generated as the result of a limit cycle in the system. The control shown in
Fig. 7.13 is saturated. It is the well known fact that decreasing the proportional gain of the
controller can correct this unfavourable behaviour of the servo system.

Modular Servo System - User’s Manual 47

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1
Controls

time [s]

Fig. 7.13 Control signal

Repeat the experiment for 0128.0=pK . The results are shown in Fig. 7.14 and Fig. 7.15.

0 5 10 15 20 25 30
-60

-40

-20

0

20

40

60

80
Position control with P controller

time [s]

Fig. 7.14 Position control with backlash module 0128.0=pK

Notice, that oscillations are not present in this case. The desired position is reached with
2.8% accuracy. The control does not saturate. We conclude that the closed-loop system
behaviour is satisfactory.

Modular Servo System - User’s Manual 48

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1
Controls

time [s]

Fig. 7.15 Control signal

7.2. PID Velocity control

The task of the velocity control is to keep the desired velocity in the presence of
disturbances. The disturbances can be introduced as a change of the velocity reference signal
or as a change of the motor load. To disturb the reference velocity the potentiometer can be
used. The load disturbances can be introduced by braking slightly the inertia load of the
system. In the example the load disturbances are introduced manually.

Click the Velocity control button in Servo Control Window and model shown in Fig. 7.16

opens.

PID velocity control

1

0.2s+1

Simple fi lter1

1

0.05s+1

Simple fi lter

Signal
Generator

Servo

Saturation

Reset
Encoders

real-time only

1

Reset

Reference
& Velocity

Control

0

Pot

PID

0

Normal

rad-to-rad/s

Calculate
Velocity

Angle (encoder)

Reset

v elocity (tacho)

f ilterd v elocity

Control

Velocity & Ref erence

f iltered control

Fig. 7.16 PID velocity control in the real-time system

Modular Servo System - User’s Manual 49

Set the sine reference velocity, amplitude equal to 40 [rad/s] and frequency equal to 0.1
[Hz] . Simulation time set equal to 30 [s]. The Gain of the potentiometer set equal to zero.
The coefficients of the PID controller set to the following values: 15.0=pK and 03.0=iK .

Fig. 7.17 The results of the PID velocity control

Build the model and run the real time code. The results of the experiment are given in Fig.
7.17.

One can see that the disturbances of the motor load are introduced manually after five
seconds from the start and remain active in tha period of 15 seconds. Note, that the control
increases in this time interval. The results are stored in the VelCtrl variable stored in the
Matlab workspace.

Type at the Matlab prompt :
plot(VelCtrl.time,VelCtrl.signals(1).values(:,2),'r ',VelCtrl.time,VelCtrl

.signals(1).values(:,1),'k');grid;xlabel('time [s]');title('Reference
velocity (red) - measured velocity (black)');

The plot is shown in Fig. 7.18 . In this scale the differences between the diagrams are
unvisible. The details of the reference velocity and the measured velocity are shown in Fig.
7.19.

Modular Servo System - User’s Manual 50

0 5 10 15 20 25 30
-50

-40

-30

-20

-10

0

10

20

30

40

50

time [s]

Reference velocity (red) - measured velocity (black)

Fig. 7.18 Reference and measured velocity

12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

40

time [s]

Reference velocity (red) - measured velocity (black)

Fig. 7.19 Zoomed data

The tracking error of the velocity (at 12.5 seconds) is equal to 1%. Of course this error varies
in time but it is rather small as far as the error of the velocity measurements is concerned.

Modular Servo System - User’s Manual 51

7.3. Multivariable control design

The section demonstrates how properties of a closed-loop system are influenced by the
design parameters: the closed-loop roots and sampling period. Two methods of the closed-
loop systems design are shown. The first is based on the pole placement and is applied for
continuous systems. The second control method, known as "deadbeat control" is used for
discrete systems.

7.3.1. Pole-placement method
A closed-loop system with feedback gains from the states is analysed. The approach we

wish to apply is the pole placement. It means that we can change the closed-loop system
roots. There are different ways of achieving this. One of the design methods is described
below.

The continuous-time system is represented by the state equation:

BuAxx +=&
Cxy =

The state controller realises a linear feedback control law in the form:)(yyKu d −= ,

where K is the feedback gain matrix and dy is the desired output vector.

We request that the roots of the closed system are equal to λ λ1 2, (fixed). The design
methods consist in finding K that the roots of the closed-loop system are in the desired
locations. That means, we assume dynamic properties of the closed system. It can be shown
that there exists a linear feedback that gives a closed-loop system with roots specified if and
only if the pair (A,B) is controllable. It is clear that closed-loop system has to be stable and it
is a 'sine qua non' assumption of the design.

The state matrix of the closed-loop system is

)(BKCAAc −= .

For the case of the DC motor the matrix cA is given as














+−−=

s

s

s

sc

T

kK

T

kKA 21 1
10

,

and the characteristics equation has the form

 0
1 122 =+++

s

s

s

s

T

kK

T

kK
λλ .

By means of the feedback gains, the location of roots of the characteristics equation may
be changed. From the Vieta's formula we obtain

s

s

T

 kK
λλ

1
21 =⋅

s

s

T

kK
λλ

2
21

1
)(

+
−=+ ,

and we can calculate 1k and 2k from

Modular Servo System - User’s Manual 52

s

s

K

Tλλ
k

⋅⋅= 21
1

s

s

K

Tλλ
k

1)(21
2

++
−= . (7.1)

It is clear that we can require the desired behaviour of the closed-loop system but we have
to keep the control between appropriate limits 1|)(| ≤tu . When the control variable
saturates, it is necessary to be sure that the system behaves properly.

EXAMPLE

Assume that we would like to design a closed-loop system without oscillations. A possible

selection of the roots is:
21 −=λ and 32 −=λ .

For the identified parameters (an example) 186=sK [rad/s] and 04.1=sT [s] we can

calculate 21,kk from formula (7.1)

 0335.01 =k and 0226.02 =k

Then, we simulate the closed-loop system with the feedback gains 21,kk .

Perform the following steps:

• type K=[0.0335 0.0226] and servo at the MATLAB prompt.
• Double click the State feedback control continuous and State feedback controller

buttons. The model shown in Fig. 7.20 opens. Assuming a desired range of the change of
the output disk position equal to pi/2 set the reference input signal equal to 25*pi/2 (it is
the measured angle at the input to the gearbox). Also set the frequency of the reference
input equal to 0.1 Hz and sample time equal to 0.002 s.

• Build the model.
• Click the Simulation/Connect to target and Start real-time code options to start the

experiment.

The results are presented in Fig. 7.21. Notice, that the response of the system is slow and not
accurate. The reference angle is reached with accuracy equal to 6% and the settling time is
about 4[s].

We can change the roots of the closed-loop system to make the system faster. Assuming
41 −=λ and 52 −=λ we obtain: 1118.01 =k and 0449.02 =k .

Modular Servo System - User’s Manual 53

State feedback controller

1

0.05s+1

Simple fi l ter

Signal
Generator1

Servo

Saturation

Reset
Encoders

Real-time only

1

Reset

0

Normal

-K-

-K-

rad-to-rad/s

Calculate
Velocity1

Angle & Reference
& velocity

Angle & ref

Angle (encoder)

Reset

v elocity (tacho)

f ilterd v elocity

control

control

Fig. 7.20 Real-time model with state feedback controller

 Type at the Matlab prompt K=[0.0335 0.0226] and repeat the experiment with the new

values of 21 and kk . The experimental results are shown in Fig. 7.22. Notice, that the response
of the system is faster and more accurate. The reference angle is reached with accuracy equal
to 2.3% and the settling time is 2.5 [s]. These results outperform the previous one.

In both experiments the control saturates despite that the goals of the design are achieved.

Fig. 7.21 Experiment of the closed-loop system , 21 −=λ and 32 −=λ

Modular Servo System - User’s Manual 54

Fig. 7.22 Experiment of the closed-loop system , 41 −=λ and 52 −=λ

7.3.2. Deadbeat controller

It is the control method unique to discrete systems in which we calculate feedback gains in

such a way that the roots of the closed system are equal to zero. This control strategy has the
property that it drives the states of a closed-loop system from arbitrary values to zero in at
most N steps (dim(A)=N). It is the fastest possible discrete controller.

The sampling time T0 is the only design parameter. The magnitude of the control variable
u can be decreased by increasing the sampling time T0, or vice versa. For a given range of the
reference variable step a suitable sample time can be determined. The main problem of the
design is the saturation of the system actuators.

The discrete system is described by a discrete state equation:

].[][

][][])1[(

00

000

nTxCnTy

nTuBnTxATnx

D

DD

=

+=+

The matrices DA and DB are calculated from the continuous state-space model using the

following, well known, relations:

 0AT
D eA = BdteB

T
At

D











= ∫

0

0

 CCD = = I .

For a discrete model of the DC motor matrices dA and dB have the form

Modular Servo System - User’s Manual 55

















−

−−=















−==

−

−

−

−

)1(

))1((

0

)1(1
0

0

0

0

0 0

s

s

s

s

T

T

S

T

T

SS
D

T

T

T

T

SAT
D

eK

eTTK
, B

e

eT
eA .

If we assume reachability of the pair (DA , DB) and a control law in the form

])[][(])[(000 nTynTyKTnu d −=

][21kkK = ,

we obtain the closed-loop system shown in Fig. 7.23.

u
K -

][0nTyd

][][
][][])1[(

00
000

nTxCnTy
nTuBnTxATnx

d
dd

=
+=+

][0nTy

Fig. 7.23. Closed-loop system with the feedback gain

The closed-loop system is described by the equation

][][)(])1[(000 nTKyBnTxKCBATnx dDDDD +−=+ .

Feedback gains for the deadbeat controller are calculated from the equation:

0|))(det(2,1,0 =−− == iDDD i

KCBAI λλ .

Design method

We can design the deadbeat controller using a simulation method. The following steps are
necessary in this case:

1. choose the sampling time 0T ,

2. create the discrete model,
3. calculate feedback gains,
4. simulate the closed-loop discrete system,
5. if the control overruns saturation limits increase the sampling time 0T and repeat

the steps from 1 to 5.

EXAMPLE

This example shows how to design the deadbeat controller.

Modular Servo System - User’s Manual 56

A goal of the control is to track a reference signal (the angle of the motor shaft). The
reference signal is assumed to be a square wave.

Type servo at the MATLAB prompt and then double click the State feedback control
discrete button. To design the controller click the Calculate deadbeat controller button. It
executes the servo_calc_db.m file where a coefficients of deadbeat controller are calculated
according to the algorithm shown above. The body of this file is listed below. Note the
comments in the file.

% Continuous linear model of the servo system.
% Parameters of the servo are read from workspace

A=[0 1;0 -1/Ts]; B=[0; Ks/Ts]; C = [1 0;0 1]; D = zeros(2, 1);

% If the distance to the reference signal is big co ntrol value in the
% first sample time is big too. Due to we are looki ng for such a T0
% when control does not saturate,we must assume the maximum change of
% the reference signal.

delta_ref=[25*pi;0]; && it is maximal change of t he reference signal

% we start look for T0
 T0=0.1;
 for i = 1:200
 T0=T0+0.005;
% ** Discrete model for sampling time T0*

 [Ad,Bd]=c2d(A,B, T0);

% Now we calculate a coeffitients of deadbeat contr oller
% using the formula : eig(Ad-Bd*K)=0

 Z=[Bd(1) Bd(2); Ad(2,2)*Bd(1)-Ad(1,2)*Bd(2) Ad(1, 1)*Bd(2)];
 X=[Ad(1,1)+Ad(2,2);Ad(1,1)*Ad(2,2)];
 K=(Z\X)';

% Now coefficients of the controller are saved in K

% checking if the control saturates in the first s ample time:
% u(1)=K*delta_ref;

if abs(K*delta_ref)<=1
 K
 T0 && write K and T0 in Matlab command wi ndow

 return
end

end

The variables K and 0T are stored in the MATLAB workspace after the execution of the

above m-file. In our case for 186=sK [rad/s] and 04.1=sT [s] we obtain

0.0091] 0127.0[=K and 7950.00 =T .

Now double click the State feedback controller buttons to perform the real-time
experiment and the model depicted in Fig. 7.24 opens.

Modular Servo System - User’s Manual 57

Fig. 7.24 State feedback controller – a discrete model

This model differs in details from the other models. Due to the fact that the model is
discrete, and the sampling time 0T can vary from experiment to experiment 0T is read from

the Matlab workspace. Variable 0T is located in the Simulink model in the following places:

in Fixed step size in tag Solver which is located in Simulation/Simulation Parameters option,
in all Zero-Order Hold blocks and in the mask of the Servo device driver. There is no filter
connected to the output of the tachogenerator. The filter applied in other models is not
discrete one and can not be used here. However it is interesting how the controller works
without filtering of the velocity signal.

Set the amplitude of the input signal to 25*pi/2 (as in the previous example), the frequency
of the reference signal to 0.05 Hz. Set simulation time equal to 60 [s] and time range in the
scope also equal to 60 [s].

Due to the fact that the model includes variables K and 0T and some settings are changed

rebuild it. Click Simulation/Connect to target. Click the Start real-time code option to start
the experiment. The results are shown in Fig. 7.25.

Modular Servo System - User’s Manual 58

Fig. 7.25 Results of the position control using the deadbeat controller

Note, that the system does not reach the reference angle in two steps. In fact, the servo is a
nonlinear system and it is only approximated by a linear model. Notice, that this control is
significant only during two first sampling intervals.

7.4. Optimal design method: LQ controller

The linear-quadratic problem (LQ problem) is a central one in the theory and applications

of optimal control. There are two versions of the LQ problem: the open-loop and the closed-
loop optimal control problems. Either the optimal control is given as an explicit function of
time for fixed initial conditions, or the optimal controller is synthesised. Further only the
second case is considered. The main result of the finite-dimensional linear-quadratic theory is
that under suitable assumptions the optimal feedback controller is linear with respect to the
state, and constant with respect to time.

The synthesis of the discrete and continuous LQ controller is presented below. For a very

small value of the sampling time the response of the discrete system converges to the
response of the corresponding continuous system. The most important question for a designer
of a control system, as far as LQ control problem is concerned, is how to select the weighting
factors in the cost function.

Modular Servo System - User’s Manual 59

Let us examine separately the continuous and discrete LQ problems.

7.4.1. The continuous case

The dynamical model of the DC-motor is described by the linear differential equations:

BuAxx +=&

Cxy = ,

where the matrices A, B and C have the form





=














=















−= 1
0

0
1 ,

0
 ,1

0

10
C

T

KB
T

A

S

s

S

. (7.2)

The desired input time history of the state vector is given by)](),([)(21 tytyty ddd = .

Hence, the error vector e is defined

)()()(tytyte d −= .

A typical quadratic cost function (performance index) has the form

∫ +=
kT

TT dttRututQeteuJ
0

)]()()()([
2

1
)(,

where:

• matrix Q ≥ 0, Q is a nonnegative definite matrix,
• matrix R > 0, R is a positive definite matrix,
• the (A,B) pair is controllable.

The weighting matrices Q and R are selected by a designer but they must satisfy the above
conditions. It is most easily accomplished by picking the matrix Q to be diagonal with all
diagonal elements positive or zero. Some positive weight (|R|≠0) must be selected for the
control, otherwise the solution will include infinite control gains.

The values of elements of Q and R matrices weakly correspond to the performance

specification. A certain amount of trial and error is required with a simulation program to
achieve a satisfactory result. A few guidelines can be recommended. For example, if all states
are to be kept under close regulation and Q are diagonal with entries so selected that a fixed
percentage change of each variable makes an equal contribution to the cost. The matrix R is
also diagonal.

If the maximum deviations of the servomechanism outputs are: max1y max2y , and the

maximum deviation of control is maxu , then the cost is:

22
2

2
1 2211 Ru)y,Q()y,Q(++

The coefficients of the Q and R matrices can be set related to the rule:

Modular Servo System - User’s Manual 60

2
max1)(

1
)1,1(

y
Q = ,

2
max2)(

1
)2,2(

y
Q = and

2
max)(

1

u
R =

This rule can be modified to satisfy desired root locations and transient response for
selected values of weights. One must avoid saturation effects both of outputs and control.

Due to the differences in methods of analysis, problem formulation and the form of results,
we strongly distinguish the linear-quadratic problem with a finite settling time from that with
a infinite settling time. However in applications we frequently encounter the situation when
the termination moment of the control process is so far away that it does not affect the current
control actions. The infinite-time optimal control problem is then posed. The cost function is
replaced by the formula:

dttRututQeteuJ TT)]()()()([)(
0

+= ∫
∞

 (7.3)

Then the optimal scalar control *u and the optimal trajectory vector *y are given

)(** yyKu d −= (7.4)

where K is the feedback matrix.

The optimal control problem is now defined as follows: find the gain K such that the

feedback law (7.4) minimises the cost function (7.3) subject to the state equation (7.2). The
calculation of the control variable which minimizes the criterion (7.3) is a dynamic
optimisation problem. This problem can be solved by variation calculus applying the
maximum principle due to the Bellman optimisation principle. The procedure returns the
optimal feedback matrix K, the matrix S, the unique positive definite solution to the
associated matrix Riccati equation:

SA + ATS - SBR-1BTS + Q = 0

Due to the quadratic appearance of S, there is more than one solution, and S must be
positive definite to select the correct one. The procedure returns also the matrix E, the closed-
loop roots:

E = eig(A - B*K*C)

The vector K can be calculated by a numeric iterative formula on the basis of the Riccati
equation. The associated closed-loop system eBKCAe)(−=& is asymptotically stable.

To solve the LQ controller problem the lqry function from the Control System Toolbox can

be used. The synopsis of lqry is: [K,S,E] = lqry(A,B,C,D,Q,R).
In this case the matrix of weights Q relate the outputs y instead of the state x. For the

servomechanism D is the row matrix with two zero elements. The function lqry computes the
equivalent Q, R and calls lqr,

The control u is not constrained. This assumption can not be satisfied for a real physical
system. One must remember that if the control u saturates then it not satisfies the LQ problem.
To return to the LQ problem the amplitude of the u signal should be diminished. In such a
case a designer tunes the relative weights between state and control variables. To perform that
the simulation tools are recommended.

Modular Servo System - User’s Manual 61

EXAMPLE

The goal of the control is to track a reference signal which is defined as a square wave. Set

the amplitude of the reference input signal equal to 25*pi/2. Set the frequency of the reference
input to 0.1 Hz and sample time to 0.002 [s].

Type Servo at the MATLAB prompt and then double click the State feedback control

continuous button. To design LQ controller click the Calculate LQ controller button. It
executes servo_calc_lq.m file presented below:

 % State space representation of servo:

 A=[0 1;0 -1/Ts];
 B=[0; Ks/Ts];
 C = [1 0;0 1];
 D = zeros(2, 1);

 % Set Q and R matrices. These values can be chan ged by a user

 Q=[50 0;0 1];
 R=1000;

 % calculate coefficients of the LQ controller

 [K,S,lambda]=lqry(A,B,C,D,Q,R);

 % type K in Matlab command window

 K

For the default values: 186=sK [rad/s] and 04.1=sT [s] we obtain 0.054] 2236.0[=K .

To perform the real-time experiment click the State feedback controller button. When the

model opens (see Fig. 7.26), check parameters of the reference signal. Build the model, click
Simulation/connect to target and Start real-time code option to start experiment. The results
are given in Fig. 7.27. Notice that the reference signal is reached with accuracy equal to
0.58% and without overshoots. The control signal saturates.

Modular Servo System - User’s Manual 62

Fig. 7.26 Real-time model of the servo with the LQ controller

Fig. 7.27 Results of the position control with a continuous LQ controller

Modular Servo System - User’s Manual 63

7.4.2. The discrete case

If we introduce the sampling period 0T then the model can be discretized. The discrete

model of the DC motor has the form:

].[][

][][])1[(

00

000

nTxCnTy

nTuBnTxATnx

D

DD

=

+=+
 (7.5)

where the matrices: DA , DB and DC are in the form

















−

−−=















−==

−

−

−

−

)1(

))1((

0

)1(1
0

0

0

0

0 0

s

s

s

s

T

T

S

T

T

SS
D

T

T

T

T

SAT
D

eK

eTTK
, B

e

eT
eA .

The matrix DA is the fundamental solution of the differential equation (7.5) calculated for

the sampling period 0T . The explicit values of the matrices DA and DB of the servo system

can be obtained numerically by the use of c2d function. C2d converts a continuous state
representation to the discrete corresponding to the continuous. The procedure is a part of
Control System Toolbox. One must simply type the command:

 [DA , DB]=c2d(A,B, T0)

The optimal feedback law:

][][],[][0000 nTyynTenTKenTu d −==

minimizes the cost function:

∑
=

+=
N

n

TT nRununenQneuJ
0

)]()()()()([)((7.6)

subject to the state equation (7.5). The dlqry function from the Control System Toolbox is
used to solve the discrete-time linear-quadratic control problem. The synopsis of the dlqry
and lqry programs are identical. The dlqr also solves and returns matrix S, the unique positive
definite solution to the associated discrete iterative matrix Riccati equation:

 QASBBSBRBSAASAS Di

T
DDi

T
DDi

T
DDi

T
Di ++−= −

+
1

1)(.

The feedback matrix is derived from S by

 D

T
DD

T
D SABSBBRK 1)(−+=

Modular Servo System - User’s Manual 64

EXAMPLE

A goal of the control is the same as in the continuous case example. Assume that sampling

time for discrete system 1.00 =T [s].

In Servo Control Window double click the State feedback control discrete button. To

design the LQ controller click the Calculate LQ controller button. It executes the
servo_calc_lq_d.m file presented below.

% State space representation of servo:
 A=[0 1;0 -1/Ts];
 B=[0; Ks/Ts];
 C = [1 0;0 1];
 D = zeros(2, 1);

 % set sampling time
 T0=0.1;
 % calculate discrete model from continuous
 [Ad,Bd]=c2d(A,B, T0)

 % set Q and R matrices
 Q=[50 0;0 1];
 R=1000;

 % design discrete LQ controller

 [K,S,lambda]=dlqry(Ad,Bd,C,D,Q,R);
 K

For the default values: 186=sK [rad/s] and 04.1=sT [s] we obtain 0.0395] 139.0[=K .

To perform the real-time experiment click the State feedback controller button and the

model shown in Fig. 7.24 opens. It is the same model as was previously applied to the
deadbeat control. Set the frequency of the reference signal to 0.1 [Hz] the simulation time to
30 [s] and the time range of the scope to 30 [s]. These settings correspond to the values which
have been assumed for the continuous LQ controller. Build model, click the
Simulation/connect to target and the Start real-time code options to start experiment.

The results are shown in Fig. 7.27. They are similar to these for the continuous controller.
The reference signal is reached with accuracy equal to 1% and without overshoots. The
control signal saturates as in the previous example.

Modular Servo System - User’s Manual 65

Fig. 7.28 Results of the position control by the discrete LQ controller

Modular Servo System - User’s Manual 66

8. Description of the Modular Servo class properties

The CServo is a MATLAB class, which gives the access to all the features of the RT-

DAC/PCI board equipped with the logic for the MSS model. The RT-DAC/PCI board is an
interface between the control software executed by a PC computer and the power-interface
electronic of the modular servo model. The logic on the board contains the following blocks:

• incremental encoder registers – two 24-bit registers to measure the position of the
incremental encoders. There are two identical encoder inputs, that may be applied to
measure the shaft positions of two modular servo blocks;

• incremental encoder reset logic. The incremental encoders generate different output
waves when the encoder rotates clockwise and counter-clockwise. The encoders are not
able to detect the reference (“zero”) position. To determine the “zero” position the
incremental encoder registers have to be set to zero by the computer program;

• PWM generation block – generates the Pulse-Width Modulation output signal.
Simultaneously the direction signal and the brake signal are generated to control the
power interface module. The PWM prescaler determines the frequency of the PWM
wave,

• power interface thermal flags –the thermal flags can be used to disable the operation of
the overheated power amplifier,

• interface to the on-board analog-to-digital converter. The A/D converter is applied to
measure the position of the external potentiometer and to measure the output voltage of
the tachogenerator.

All the parameters and measured variables from the RT-DAC/PCI board are accessible by

appropriate properties of the CServo class.
In the MATLAB environment the object of the CServo class is created by the command:
object_name = CServo;
The get method is called to read a value of the property of the object:
property_value = get(object_name, ‘property_name’);
The set method is called to set new value of the given property:
set(object_name, ‘property_name’, new_property_value);
The display method is applied to display the property values when the object_name is
entered in the MATLAB command window.

This section describes all the properties of the CServo class. The description consists of the

following fields:

Purpose Provides short description of the property
Synopsis Shows the format of the method calls
Description Describes what the property does and the restrictions

subjected to the property
Arguments Describes arguments of the set method
See Refers to other related properties
Examples Provides examples how the property can be used

Modular Servo System - User’s Manual 67

8.1. BaseAddress

Purpose: Read the base address of the RT-DAC/PCI board.

Synopsis: BaseAddress = get(sv, ‘BaseAddress’);

Description: The base address of RT-DAC/PCI board is determined by computer. Each
CServo object has to know the base address of the board. When a CServo
object is created the base address is detected automatically. The detection
procedure detects the base address of the first RT-DAC/PCI board plugged
into the PCI slots.

Example: Create the CServo object:
 sv = CServo;
 Display their properties by typing the command:
 sv

Type: CSERVO Object
BaseAddress: 54272 / D400 Hex
Bitstream ver.: x402
Encoder: [0 46606][bit]
Reset Encoder: [0 0]
Input voltage: [0.1123 0.1123][V]
PWM: [0]
PWM Prescaler: [0]
Thermal status: [0]
Thermal flag: [1]
Angle: [0 71.4927][rad]
Time: 31.657 [sec]

 Read the base address:
 BA = get(sv, ‘BaseAddress’);

8.2. BitstreamVersion

Purpose: Read the version of the logic stored in the RT-DAC/PCI board.

Synopsis: Version = get(sv, ‘BitstreamVersion’);

Description: The property determines the version of the logic design of the RT-DAC/PCI
board. The modular servo models may vary and the detection of the logic
design version makes it possible to check if the logic design is compatible
with the physical model.

8.3. Encoder

Purpose: Read the incremental encoder registers.

Modular Servo System - User’s Manual 68

Synopsis: enc = get(sv, ‘Encoder’);

Description: The property returns two digits. They are equal to the number of impulses

generated by the corresponding encoders. The encoder counters are 24-bit
numbers so the values of this property is from (–224) to (224-1). When an
encoder counter is reset the value is set to zero.

 The incremental encoders generate 4096 pulses per rotation. The values of the
Encoder property should be converted into physical units.

See: ResetEncoder, Angle, AngleScaleCoeff

8.4. Angle

Purpose: Read the angle of the encoders.

Synopsis: angle_rad = get(sv, ‘Angle’);

Description: The property returns two angles of the corresponding encoders. To calculate

the angle the encoder counters are multiplied by the values defined as the
AngleScaleCoeff property. The angles are expressed in radians.

See: Encoder, AngleScaleCoeff

8.5. AngleScaleCoeff

Purpose: Read the coefficients applied to convert the encoder counter values into

physical units.

Synopsis: scale_coeff = get(sv, ‘AngleScaleCoeff’);

Description: The property returns two digits. They are equal to the coefficients applied to

convert encoder impulses into radians. The incremental encoders generate
4096 pulses per rotation so the coefficients are equal to 2*pi/4096.

See: Encoder, Angle

8.6. PWM

Purpose: Set the direction and duty cycle of the PWM wave.

Synopsis: PWM = get(sv, ‘PWM’);
 set(sv, ‘PWM’, NewPWM);

Modular Servo System - User’s Manual 69

Description: The property determines the duty cycle and direction of the PWM wave. The
PWM wave and the direction signals are used to control the DC drive so in fact
this property is responsible for the DC motor control signal. The NewPWM
variable is a scalars in the range from –1 to 1. The value of –1, 0.0 and +1
mean respectively: the maximum control in a given direction, zero control and
the maximum control in the opposite direction to that defined by –1.
The PWM wave is not generated if the thermal flag is set and the power
amplifier is overheated.

See: PWMPrescaler, Therm, ThermFlag

Example: set(sv, ‘PWM’, [-0.3]);

8.7. PWMPrescaler

Purpose: Determine the frequency of the PWM wave.

Synopsis: Prescaler = get(sv, ‘PWMPrescaler’);
 set(sv, ‘PWMPrescaler’, NewPrescaler);

Description: The prescaler value can vary from 0 to 63. The 0 value generates the

maximal PWM frequency. The value 63 generates the minimal frequency.
The frequency of the generated PWM wave is given by the formula:

PWMfrequency = 40MHz / 1023 / (Prescaler+1)

See: PWM

8.8. Stop

Purpose: Sets the control signal to zero.

Synopsis: set(sv, ‘Stop’);

Description: This property can be called only by the set method. It sets the zero control of

the DC motor and is equivalent to the set(sv, ‘PWM’, 0) call.

See: PWM

8.9. ResetEncoder

Purpose: Reset the encoder counters.

Synopsis: set(sv, ‘ResetEncoder’, ResetFlags);

Modular Servo System - User’s Manual 70

Description: The property is used to reset the encoder registers. The ResetFlags is a 1x2

vector. Each element of this vector is responsible for one encoder register. If
the element is equal to 1 the appropriate register is set to zero. If the element
is equal to 0 the appropriate register counts encoder impulses.

See: Encoder

Example: To reset only the first encoder register execute the command:
 set(sv, ‘ResetEncoder’, [1 0]);

8.10. Voltage

Purpose: Read two voltage values.

Synopsis: Volt = get(sv, ‘Voltage’);

Description: Returns the voltage of two analog inputs. Usually the analog inputs are

applied to measure the position of the external potentiometer and the output
of the tachogenerator.

8.11. Therm

Purpose: Read thermal status flag of the power amplifier.

Synopsis: Therm = get(sv, ‘Therm’);

Description: Returns the thermal flag of the power amplifier. When the temperature of a

power amplifier is too high the flag is set to 1.

See: ThermFlag

8.12. ThermFlag

Purpose: Control an automatic power down of the power amplifiers.

Synopsis: ThermFlag = get(sv, ‘ThermFlag’);
 set(sv, ‘ThermFlag’, NewThermFlag);

Description: If the ThermFlag and NewThermFlag are both equal to 1 the DC motor is

not excited by the PWM wave when the power interface is overheated.

See: Therm

Modular Servo System - User’s Manual 71

8.13. Time

Purpose: Return time information.

Synopsis: T = get(sv, ‘Time’);

Description: The CServo object contains the time counter. When a CServo object is

created the time counter is set to zero. Each reference to the Time property
updates its value. The value is equal to the number of milliseconds which
elapsed since the object was created.

8.14. Quick reference table

Property name Operation* Description

BaseAddress R Read the base address of the RT-DAC/PCI board

BitstreamVersion R
Read the version of the logic design for the RT-
DAC/PCI board

Encoder R Read the incremental encoder registers

Angle R Read the angles of the encoders

AngleScaleCoeff R
Read the coefficient applied to convert encoder
positions into radians

PWM R+S Read/set the parameters of the PWM waves

PWMPrescaler R+S Read/set the frequency of the PWM waves

Stop S Set the control signal to zero

ResetEncoder R+S Reset the encoder counters or read the reset flags

Voltage R Read the input voltages

Therm R Read the thermal flags of the power amplifiers

ThermFlag R+S
Read/set the automatic power down flag of the power
amplifier

Time R Read time information

• R – read-only property, S – allowed only set operation, R+S –property may be read
and set

8.15. CServo Example

To familiarise a reader with the CServo class this section presents an M-file example that
uses the properties of the CServo class to measure the static characteristics of the DC

Modular Servo System - User’s Manual 72

motor (see section 6). The static characteristics is a diagram showing the relation between
DC motor control signal and the motor shaft velocity. The M-file changes the control
signal and waits until the MSS reaches steady-state. The velocity of the shaft is obtained in
two ways:
• the M-file measures the output voltage from the tachogenerator,
• the M-file measures the encoder position in two time points and calculates the

velocity as the difference of positions divided by the time period between the time
points.

The M-file is written in the M-function form. The name of the M-function is
Servo_PWM2RPM.

The function requires two parameters:

• CtrlDirection - a string that selects how to change the control value. The 'A' string
causes the control is changed in ascending manner (from -1 to 1), the 'D' string causes
the control is changed in descending order (from 1 to -1) and the 'R' string causes
reverse double changes (from -1 to +1 and after that from +1 to -1),

• MinControl, MaxControl – minimal and maximal control signal values. The control
signal changes within the region defined by these values,

• NoOfPoints - number of characteristics points within the MinControl/MaxControl
range. The exact number of points of the characteristics declared by this parameter is
enlarged to two points namely: MinControl and MaxControl.

The body of this function is given below. The comments within the function describe the
main stages.

function ChStat = Servo_PWM2RPM(…
 CtrlDirection, MinControl, MaxCon trol, NoOfPoints)

CtrlDirection = lower(CtrlDirection);
NoOfPoints = max(1, NoOfPoints+1);

% Calculate control step
Step = (MaxControl-MinControl) / NoOfPoints;

switch CtrlDirection
 case 'a'
 Ctrl = MinControl:Step:MaxControl;
 case 'd'
 Ctrl = MaxControl:-Step:MinControl;
 case 'r'
 Ctrl = [MinControl:Step:MaxControl MaxControl: -Step:MinControl];
 otherwise % This should not happen
 error('The CtrlDirection must be ''A'',''D'' or ''R''.')
end

FigNum = figure('Visible', 'on', ...
 'NumberTitle', 'off', ...
 'Name', 'Velocity vs. PWM characteris tic', ...
 'Menubar', 'none');

sv = cservo;
Control = [];
VelEnc = [];
% Optionally set the PWM prescaler
%set(sv, 'pwmprescaler', 20);

Modular Servo System - User’s Manual 73

for i=1:length(Ctrl)
 % Set a new control value
 set(sv, 'PWM', Ctrl(i));
 % Reset encoders
 set(sv, 'ResetEncoder', [1 1]);
 set(sv, 'ResetEncoder', [0 0]);
 pause(5)
 AuxEnc = get(sv, 'Encoder'); TimeBeg=gettime;
 pause(2)
 % Calculate velocity based on the encoder positio ns
 VelEnc(i,:) = 2*pi*(get(sv, 'Encoder')-AuxEnc)/ …
 4096/((gettime-TimeBeg)/1000); % [r ad/s]
 Control(i) = get(sv, 'PWM');
 Volt(i,:) = get(sv, 'Voltage');

 % Perform 10000 A/D conversions and calculate ave rage values
 AuxVolt = [0 0];
 for j=1:10000
 AuxVolt = AuxVolt + get(sv, 'Voltage');
 end
 Volt(i,:) = AuxVolt/10000;
 % Convert voltage into velocity
 Volt2Vel = 20.4*Volt(:,2);
 % Plot data
 subplot(211);
 plot(Control, VelEnc(:,2), Control, VelEnc(:,2), 'x'); grid
 title('Encoder velocity vs. PWM');
 xlabel('PWM control value'); ylabel('Velocity [r ad/s]');
 subplot(212);
 plot(Control, Volt2Vel, Control, Volt2Vel, 'x') ; grid
 title('Tacho velocity vs. PWM');
 xlabel('PWM control value'); ylabel('Tacho veloc ity [rad/s]');
end
% Assign data to the structure returned by the func tion
ChStat.Control = Control;
ChStat.TachoVelocity = VelEnc(:,2);
ChStat.EncoderVelocity = Volt2Vel;

% Switch off the control
set(sv, 'Stop');

The diagrams generated by the call

 servo_pwm2rpm('r',-0.5,0.5,19),

are shown below. The diagrams present the velocity of the shaft as function of the control
signal. The control signal changes from –0.5 to +0.5. The velocity value is obtained in two
ways. At the upper diagram the velocity is calculated from the encoder positions. The
lower diagram presents the velocity obtained from the tachogenerator.

Modular Servo System - User’s Manual 74

Fig. 8.1 Result of the servo_pwm2rpm function call

The values on the diagram may vary from an experiment to an experiment as they depend

on the configuration of the modular servo set-up.

Modular Servo System - User’s Manual 75

9. Some technical data

20 Φ

15

68

66 Φ

20 Φ25 Φ

5

5

66 Φ

5,8

Brass inertia load 2.030 kg 0.055 kg Aluminium wheels 0.05 kg

Fig. 9.1 Dimensions and weights of the MSS mechanical elements

 Data sheet of the DC motor is available at

http://www.buehlermotor.com/cgi-bin/sr.exe/productpageus&productpage=54

The gearbox ratio 25=N

