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Modular Servo System 
 

1. Introduction and general description 
The Modular Servo System (MSS) consists of the Inteco digital servomechanism and 

open-architecture software environment for real-time control experiments. The main concept 
of the MSS is to create a rapid and direct path from the control system design to hardware 
implementation. The MSS  supports the real-time design and implementation of advanced 
control methods using MATLAB and Simulink tools and extends the MATLAB 
environment in the solution of digital servomechanism control problems. 

The integrated software supports all phases of a control system development: 
• on-line process identification, 
• control system modelling, design and simulation, 
• real-time implementation of control algorithms. 

 
The Modular Servo System uses standard PC hardware platforms and Microsoft Windows 

operating systems. Besides the hardware and the related software you obtain the User’s 
Manual. The manual: 
• shows step-by-step how to design and generate your own real-time controller in 

MATLAB/Simulink environment, 
• contains the library of ready to use real-time controllers and 
• includes the set of preprogrammed experiments. 

 

1.1. Product overview 

The MSS setup (Fig. 1.1) consists of several modules mounted at the metal rail and 
coupled with small clutches. The modules are arranged in the chain. The DC motor together 
with tachogenerator opens the chain. The gearbox with the output disk closes the  chain. The 
potentiometer module is located outside the chain.  
For example the DC motor can drive activates the following modules: inertia, backlash, 
encoder module, magnetic brake and the gearbox with the output disk. The rotation angle of 
the DC motor shaft is measured using an incremental encoder. Anywhere the rotational angle 
measurement is required we can place the encoder. A tachogenerator is connected directly to 
the DC motor and generates a voltage signal proportional to the angular velocity.  
 

Tachogenerator          DC motor 
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      Inertia load Backlash 
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             Encoder Magnetic 
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Gearbox with  
output disk 
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Fig. 1.1 The MSS setup  

The servomechanism is connected to a computer where a control algorithm is realized 
based on measurements of angle and angular velocity. The system has no inner feedback for 
dead zone compensation. The accuracy of measurement of velocity is 5% while the accuracy 
of angle measurement is 0.1%. The armature voltage of the DC motor is controlled by  PWM 
signal. For this reason the dimensionless control signal is the scaled input voltage, 

max/)()( vtvtu =  The admissible controls satisfy 1|)(| ≤tu  and 12max =v [V].  

The measurement system is based on RTDAC/PCI acquisition board equipped with A/D 
converters.  

The I/O board communicates with the power interface unit. The whole logic necessary to 
activate and read the encoder signals and to generate the appropriate sequence of PWM pulses 
to control the DC motor is configured in the Xilinx chip of the RT-DAC/PCI board. All 
functions of the board are accessed from the Modular Servo Toolbox which operates directly 
in the MATLAB/Simulink environment. 

 
Features 
• The set-up is fully integrated with MATLAB/Simulink and operates in real-time in 

MS Windows 2000/XP. 
• Real-time control algorithms can be rapidly prototyped. No C code programming is 

required. 
• The software includes complete dynamic models. 
• The User’s Manual contains a number of pre-programmed experiments familiarising 

the user with the system in a fast way. 
 

1.2. Equipment and requirements 

The following minimum configuration is required: 
 
Hardware:   
• MSS including the following modules: Input Potentiometer, DC Motor with 

Tachogenerator, Gearbox with output disk, Magnetic Brake, Inertia Load, Digital 
Encoder, Backlash module.  

• Computer system based on INTEL or AMD processor. 
• Specialised RT-DAC/PCI-D I/O board. 
• Power Interface unit. 
 
 
 
Software:  
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• MS Windows 2000/XP, MATLAB 7 (R14 SP2/SP3), R2006a/b, R2007a, R2008a/b 
or R2009a appropriate Simulink, Real Time Workshop and Real Time Windows 
Target  toolboxes, MSS Control/Simulation Toolbox. 

 

� 

The Modular Servo Toolbox supports Matlab 7 (R14 SP2, SP3), MATLAB 
R2006a/b, R2007a and R2008a/b and R2009a. 

 
Manuals: 
• Installation Manual 
• User’s Manual 
 

� 

 
The experiments and corresponding to them measurements have been 
conducted by the use of the standard INTECO system. Every new system 
manufactured and developed by INTECO can be slightly different to the 
standard. It explains why a user can obtain results that are not identical to 
these given in the manual. 

 
 
 

1.3. Hardware installation 

Hardware installation is described in the Installation Manual. 
 

1.4. Software installation 

Insert the installation CD and proceed step by step following displayed commands. 
Software installation is described in the Installation Manual. 
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2. Starting, testing and stopping procedures 
 

2.1. Starting procedure 

Invoke MATLAB by double clicking on the MATLAB icon. The MATLAB command 
window opens. Then simply type: 

 Servo 
Servo Control Window opens (see Fig. 2.1). The pushbuttons indicate actions that execute 

callback routines when the user selects a menu item. 
 

 

Fig. 2.1 The Servo Control Window  

The Servo Control Window contains: testing tools, drivers, models and demo applications. 
See section 3 for a detailed description.  

 
 

2.2. Testing  and troubleshooting 

This section explains how to perform the tests. These tests allow checking if mechanical 
assembling and wiring has been done correctly. The tests have to be performed obligatorily 
after assembling the system. They are also necessary if an incorrect operation of the system 
takes place. The tests are helpful to look for reasons of errors when the system fails. The tests 
have been designed to validate the existence and sequence of measurements and controls. 
They do not relate to accuracy of the signals.  

 
First, you have to be aware that all signals are transferred in a proper way. Five testing 

steps are applied.  
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• Double click the Basic Tests button. The following window appears (Fig. 2.2): 

 

 

Fig. 2.2 The Basic Tests window 

The first step in testing of the MSS is to check if the RT-DAC/PCI I/O board is installed 
properly.  

 
• Double click the Detect RTDAC/PCI board button. One of the messages shown in Fig. 2.3 

opens. If the board has been correctly installed, the base address, and number of logic 
version of the board are displayed. 

 

  

Fig. 2.3 Result of the step 1  

If the board is not detected check if the board is put into the slot properly. The boards are 
tested very precisely before sending to a customer and only wrong assembly procedure 
invokes errors. 

 
In the next step one can reset encoders. One sets the initial position of the servo system. 
• Double click the Reset Angle Encoders button. When the window (Fig. 2.4) opens 

click the Yes option. The encoders are reset and zero position of the servo system are 
stored.  
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Fig. 2.4 The Reset Encoders window 

The next step of the testing procedure refers to the angle measurement.  
• Double click the Check Angles button, next click the Yes button and rotate the inertia 

load by hand. The rotational angle of the inertia is measured and displayed (Fig. 2.5 ). 
 

 

Fig. 2.5 Angle measurement test 

• To check whether the potentiometer works correctly double click the Check Reference 
Pot button. Next click the Yes and turn the potentiometer right and left.  

 
Fig. 2.6 shows an example of the proper measurements of the potentiometer position. 
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Fig. 2.6 Position of the reference potentiometer  

 
In the next step of the basic tests one can check whether the control and measurements of 

the angle and velocity in MSS are correct. This experiment is not performed in real-time 
mode. 

• Double click the Control Impulse Response button and start experiment clicking the 
Yes button. 

 

 
 

The results of experiments are shown in Fig. 2.7. The control impulse has a square wave 
form. The first part of the control signal is positive, and the second one is negative.  Note that 
angle and velocity signals are positive at the beginning and next fall down to the negative 
values. It means that the measurements are correct.  
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Fig. 2.7 The response of the system 
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3.  Servo Control Window 
 
The user has a quick access to all basic functions of the modular servo control system from 

the Servo Control Window. It includes tests, drivers, models and application examples.  
Type at the Matlab prompt servo command and Servo Control Window shown in Fig. 2.1 

opens. Simultaneously start.m m-file is executed which set the  default values of the 
coefficients of the MSS: 186=sK [rad/s] and 04.1=sT [s]. Also the sampling time 0T  is set 

equal to 0.002 [s]. 
 
The window contains four groups of the menu items: 
 
• Tools   - Basic Test, Manual Setup, Reset Encoders and Stop Experiment, 
• Drivers - RTWT Device Driver,  
• Simulation Models: linear and nonlinear, 
• Identification - Basic Measurements, Steady-State Characteristics and Time Domain 

Identification, 
• Demo Controllers –PID Controller and State Feedback Controller applied to a 

position control and PID controller applied to a velocity control. 
 

3.1. Basic test 

The Basic Test  tool was described in the previous section. 
 

3.2. Manual setup 

The Servo Manual Setup program gives access to the basic parameters of the laboratory 
modular servo setup. The most important data transferred from the RT-DAC/PCI board and 
the measurements of the servo may be visualised. Moreover, the control signals can be set. 
Double click the Manual Setup button and the screen shown in Fig. 3.1 opens.  

The application contains four frames: 
• RT-DAC/PCI board, 
• Encoders, 
• Control and 
• Analog inputs. 

 
All data presented by the Servo Manual Setup program are updated 10 times per second. 
 

• RT-DAC/PCI board frame 
 
The RT-DAC/PCI board frame presents the main parameters of the RT-DAC/PCI I/O 

board. 
 
No of detected boards 
Presents the number of detected RT-DAC/PCI boards. If the number is equal to zero it 

means that the software has not detect any RT-DAC/PCI board. When more then one board is 
detected the Board list must be used to select the board that communicates with the MSS 
control program. 
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Board 
Contains the list applied to select the board currently used by the program. The list 

contains a single entry for each RT-DAC/PCI board installed in the computer. A new 
selection at the list automatically changes values of the remaining parameters. 

 

 

Fig. 3.1 View of the Servo Manual Setup window 

 
Bus number 
Displays the number of the PCI bus where the current RT-DAC/PCI board is plugged-in. 

The parameter may be useful to distinguish boards, when more then one board is used. 
 
Slot number 
The number of the PCI slot where the current RT-DAC/PCI board is plugged-in. The 

parameter may be useful to distinguish boards, when more then one board is used. 
 
Base address 
The base address of the selected RT-DAC/PCI board. The RT-DAC/PCI board occupies 

256 bytes of the I/O address space of the microprocessor. The base address is equal to the 
beginning of the occupied I/O range. The I/O space is assigned to the board by the computer 
operating system and may differ from one computer to another.  

The base address is given in the decimal and hexadecimal forms. 
 
Logic version 
The number of the configuration logic of the on-board FPGA chip. A logic version 

corresponds to the configuration of the RT-DAC/PCI boards defined by this logic. 
 
Application 
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The name of the application the board is dedicated for. The name contains four characters. 
In the case of the MSS it has to be SERV string. 

 
I/O driver status 
The status of the driver that allows the access to the I/O address space of the 

microprocessor. The status displayed has to be OK string. In other case the driver HAS TO 
BE INSTALLED. 

 
• Encoders frame 
 

The state of the encoder channels is given in the Encoder frame. 
 
Channel 0, Channel 1 
The values of the encoder counters, the angles expressed in radians and the encoder reset 

flags are displayed in the Channel 0 and Channel 1 row. In this version MSS may use a single 
encoder module. In such a case only one channel presents the current data. 

 
Value 
The values of the encoder counters are given in the respective columns. The values are 24-

bit integer numbers. When an encoder remains in the reset state the corresponding value is 
equal to zero. 

 
Angle [rad] 
The angular positions of the encoders expressed in radians are given in the respective 

columns. When the encoder remains in the reset state the corresponding angle is equal to zero. 
 
Reset 
When the checkbox is selected the corresponding encoder remains in the reset state. The 

checkbox has to be unchecked to allow the encoder to count the position. 
 

• Control frame 
 

The Control frame allows to change the control signal. 
 
Edit field, slider 
The control edit box and the slider are applied to set a new control value. The control value 

may vary from –1.0 to 1.0. 
 
STOP 
The pushbutton is applied to switch off the control signal. When pressed the control value 

is set to zero. 
 
PWM prescaler 
The divider of the PWM reference signal. The frequency of the PWM control is equal to: 
 

][
)1(

40
KHz

erPWMprescal
f pwm +

=  

 
Thermal flag / status 
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The thermal flag and the thermal status of the power amplifier. If the thermal status box is 
checked the power interface is overheated. If the thermal flag is set and the power interface is 
overheated the RT-DAC/PCI board automatically switches off the PWM control signal. 

 
 
 
• Analog inputs frame 
 

The Analog inputs frame displays two measured analog signals. 
 
Potentiometer 
Presents the voltage at the output of the potentiometer block. 
 
Tacho 
Presents the voltage at the output of the tachogenerator. 
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3.3. RTWT Driver 

The main driver is located in the RTWT Device Driver column. The driver is a software 
“go-between” for the real-time MATLAB environment and the RT-DAC/PCI I/O board. This 
driver serves the control and measurement signals. Click the Modular Servo Device Driver 
button and the driver window opens (Fig. 3.2). 

 

 

Fig. 3.2 RTWT Device Driver 

When one wants to build his own application he has to copy this driver to a new Simulink 
diagram.  

 

� 

Do not introduce changes inside the original driver. They can be done only 
inside its copy!  

 
The device driver has two inputs: control [ ]11)( +−⊂tu  and signal Reset. If the Reset 

signal changes to one the encoders are reset and do not work. If the Reset signal is equal to 
zero encoders work in the standard way. It means when switching occurs, encoders reset and 
start measure when the switch returns to the zero (normal) position. It is important that the 
Reset switch works only when the real-time code is executed.  
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The mask of the Servo block 

(presented in Fig. 3.3) contains base 
address of the RT-DAC/PCI board 
(automatically detected with the help 
RTDACPCIBaseAddress function) 
and the sampling period which default 
value is set to 0.002 sec. If one wants 
to change the default sampling time 
he must do it in this mask also.  

  
Fig. 3.3 Mask of the device driver 

 
The details of the device driver are depicted in Fig. 3.4. The driver uses functions which 

communicates directly with a logic applied at the RTDAC/PCI board. Notice, that the driver 
is ready to use a second (optional) encoder, as well. 
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1
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Fig. 3.4 Interior of the RTWT device driver 

 

3.4. Simulation Models 

There are two simulation models available for the servo system. The first one is a linear 
model and the second one is nonlinear. The linear model is used to design controllers. The 
nonlinear model is used to check the quality of the designed control system. 

 
Linear  and Nolinear Simulation Model – the simulation models of the servo are located 

under these buttons. The external view of the simulation models is identical as the model 
described in the Modular Servo Device Driver except the Reset Encoder input and reference 
Potentiometer output which are not used in the simulation mode.  
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Linear Simulation Model

Linear Simulation Model

0

Control

Angle

Velocity

 

 

Fig. 3.5 Linear Simulation Model and its mask 

 
The vector of the initial conditions of the state variables of the simulation model is the 

parameter available in the mask.  
 

� 

The model has no constrained control (as in the case of the real servo system). 
If you use the linear simulation model in a closed-loop remember that control 
should satisfy 1≤u . You can include the Saturation block to limit the control. 

 
 
In the case of the nonlinear simulation model two additional parameters appear. The gain 

of the model and the vector which contains the static characteristics of the servo system. Refer 
to section 4 for the details. 

 

Nonlinear Simulation Model

Nonlinear Simulation Model

0

Control

Angle

Velocity

 
 

Fig. 3.6 Nonlinear Simulation Model and its mask 

 
The simulation models are running in the normal simulation mode.  
 

� 

Choose Fixed step solver options and set Fixed-step size equal to 0.002. It is 
necessary because the default value of the sampling time of all real-time 
models is equal to 0.002 [s].  
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3.5. Identification 

The consecutive buttons in the  group  Identification of the Servo Control Window perform 
the following tasks:  

 
Basic Measurements – contains a real-time Simulink model where  a saw shape control 

signal is given as the input of the servo system and four velocities are plotted in a scope: 
 

• measurements reconstructed from encoder, 
• measurement directly from tachogenerator, 
• filtered tachogenerator voltage using low pass Butterworth filter, 
• filtered tachogenerator voltage using simple first order filter. 
 

The experiment allows to decide which kind of velocity measurements can be used in 
following experiments. 

 
Plot basic measurements push button -  activates the plot_basic.m file to plot 

measurements visible in the scope in the previous experiment. 
 
Static Characteristics - performs experiment aimed to measure of the static characteristics 

of the loaded DC motor (angular velocity [rad/s] vs. input voltage [dimensionless] in the 
steady state). The characteristics can be measured for the servo system with or without 
magnetic brake module. The measurements are stored in the ChStat.mat file. 

 
Plot & Save Characteristics - uses plot_stat.m file which plots measured characteristics, 

performs some normalisations of the data, and saves characteristics in servo_chstat.mat file.  
 
Time Domain Identification – opens the real-time Simulink model which starts 

identification based on a step system response. 
 
The button Identify Model - takes advantage of identification data and calculates 

coefficients of a linear model of the servo system. The surface method is applied by the  
identification procedure.  

 
 
 

3.6. Demo Controllers 

 
The respective buttons in the  column Demo Controllers perform the following tasks:  
 
Position control 
 
PID Control Continous -  contains the Simulink model for real-time experiments in closed-

loop with PID position controller, and simulation model of the PID controlled servo system. 
 
State Feedback Control - opens the Simulink model to start real-time experiments for 

closed-loop system with state feedback. This model can be used for experiments with LQ or 
deadbeat controllers. Also simulation model of the closed-loop system is included under this 
button. 
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All the Simulink models mentioned above are examples of position control problems.  
 
Calculate LQ controller – uses Servo_calc_lq.m file to obtain state feedback controller 

coefficients by solving the appropriate LQ problem. In the  Servo_calc_lq.m file one can set 
matrices of the objective function to obtain appropriate behaviour of the system. 

 
Velocity control 
 
PID Controller - opens the  Simulink model to start-real time experiments for the closed-

loop system with velocity PID controller. 
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4. Mathematical model of the servo system 
 

4.1. Linear Model  

 
A DC motor with a negligible armature inductance (Fig. 4.1) 
 

 

αω ,  

iKm=τ

R 

v(t) ωeK  

+ 

- 

J 

β  
 

Fig. 4.1 Diagram of the DC motor  

 
is described by two classical equations: electrical  

)()()( tKtiRtv eω+=  

and mechanical 

)()()( ttiKtJ m ωβω −=&  

where: 
)(tv  is the input voltage, 

)(ti  is the armature current, 
)(tω  is the angular velocity of the rotor,  

R  is the resistance of the armature winding,  
J  is the inertia moment of the moving parts,  
β  is the damping coefficient due to the viscous friction,  

)(tKeω  is the back EMF,  

and )(tiKm=τ  is the electromechanical torque.  

 
This model is linear because the static and dry kinetic friction, as well as the saturation are 
neglected. By combining the electrical and mechanical equations we obtain the equation of a 
first order inertial system 

)()()( tvKttT sms +−= ωω&  

where the motor time constant sT  and motor gain smK  are given by 

me
s KKR

RJ
T

+
=

β
,       

me

m
sm KKR

K
K

+
=

β
.  

 
The transfer function has the form  
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The transfer function for the motor position has the form: 
 

)1()(

)(
)(

+
==

sTs

K

sv

s
sG

s

smα
 

 
The control applied in the system is a PWM signal that’s way we assume the 

dimensionless control signal as the scaled input voltage max/)()( vtvtu = . The admissible 

controls satisfy 

 1|)(| ≤tu .       

Defining also maxvKK sms =  we obtain transfer functions in the forms: 

 

Velocity transfer function Angle transfer function 

 

1)(

)(
)(

+
==

sT

K

su

s
sG

s

sω
 

 

 

)1()(

)(
)(

+
==

sTs

K

su

s
sG

s

sα
 

   

The model can be written using a state space notation. Let ),(col 21 xxx =  be the state vector 

where 1x  is the angle α (in [rad]) determining the position of the motor shaft, and ω=2x  is 
the respective angular velocity (in [rad/s]). Time t is measured in [s].  

There are the following state equations 

 21 xx =&         

 buaxx += 22&        

where 

0,0
1 >=<−=

s

s

s T

K
  b

T
a . 

The equivalent classical matrix state space notation has the form 

 
 

BuAxx +=&  
Cxy =                  

 

where: 















−=
sT

A 1
0

10
,   














=

s

s

T

KB
0

,    IC = . 

 

The system  can be classified as a multivariable (SIMO) because it has two measurable state 
variables and one control variable. The parameters sT and sK must be identified by a user.  
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The default values  assumed for identification experiments are as follows: 12max =v [V], 

04.1=sT  [s],  186=sK [rad/s], which gives ]s[961.0 2−−=a , and 8.178=b ]rad/s[ 2 .   

These values have been identified by the manufacturer for the DC motor with the 
tachogenerator loaded by the inertia module and connected to the gearbox module equipped 
with the output disk. 

 
 

 

4.2. Nonlinear model 

Very often small changes of the state variables are assumed. Therefore, the control system 
can be considered as a linear one. However, in some applications nonlinearities in the control 
loop have to be taken into account. This includes non-linear static characteristics such as 
hysteresis and saturation, which may occur  if the following devices are applied: operational 
amplifiers, actuators, finite word length in A/D and D/A converters.  Often the signal 
constraint first appears for the control variable. We will assume a nonlinear model of the DC 
motor in the form 

21 xx =&         

))(( 22 xgucx −=&     

where the state variables 1x , 2x  and control u are defined as in the linear model.  
 
The function g is the inverted steady state characteristics of the system, which can be 

determined experimentally (see section 6.2). The original steady state characteristics (see Fig. 
6.8) is obtained from measurements. The results of measurements undergo a preliminary 
treatment consisting of scaling (to express them in appropriate units) and a shift (to remove 
the bias). The function g is presented in Fig. 4.2. An interesting property of the g function is 
that it is discontinuous at zero and shows distinct effects of dry friction in a vicinity of the 
origin.  

 

� 

The static characteristics was obtained for the system consisting of DC motor, 
inertia load, encoder and gearbox modules. If a magnetic break module is 
added to the system a measured characteristics are quite different. 

 
The c coefficient was identified and 206=c  [rad/s]. 
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Fig. 4.2 Function )( 2xg is the inverted static characteristics of the servo 
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5. RTWT model 
 

In this section the process of building your own control system is described. The Real Time 
Windows Target (RTWT) toolbox is used. An example how to use the MSS software will be 
shown in section 6. In this section some hints how to proceed in the RTWT environment are 
given. 

 

� 

 
Before start, test your MATLAB configuration by bui lding and running an 
example of real-time application. Real-time Windows Target Toolbox includes 
the rtvdp.mdl model. Running this model will test the installation by running 
Real-Time Workshop, Real-Time Windows Target, and the Real-Time Windows 
Target kernel.  
In the MATLAB window, type  

rtvdp 
Next, build and run the real-time model.  
 

 
To build the control application that operates in the real-time mode the user has to: 
• create a Simulink model of the control system which consists of the Modular Servo 

Device Driver and other blocks selected from the Simulink library, 
• build the executable file under RTWT, 
• start the real-time code to run from the Simulation/Start real-time code pull-down 

menus. 
 

5.1. Creating a model  

The simplest way to create a Simulink model of the control system is to use one of the 
models available from the Servo Control Window as a template.  For example, click on the 
Basic Measurements button and save it as MySystem.mdl name. The MySystem Simulink 
model is shown in Fig. 5.1. 

Now, you can modify the model. You have absolute freedom to modify the model and to 
develop your own control system. Remember to leave the Servo driver block in the window. 
This is necessary to work in RTWT environment.  

Though it is not obligatory, we recommend you to leave the scope. You need a scope to 
watch how the system runs. The saturation blocks are built in the Servo driver block. They 
limit currents to DC motor for safety reasons. However they are not visible for the user who 
may amaze at the saturation of controls. Other blocks remaining in the window are  not 
necessary for our new project. 

Creating your own model on the basis of an old example ensures that all-internal options of 
the model are set properly. These options are required to proceed with compiling and linking 
in a proper way. To put the Servo Device Driver into the real-time code a special make-file is 
required. This file is included in the MSS software.   
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Fig. 5.1  The MySystem Simulink model 

You can apply most of the blocks from the Simulink library. However, some of them 
cannot be used (see RTW or RTWT references manual). 

The scope block properties are important for appropriate data acquisition and supervising 
how the system runs.  

The Scope block properties are defined in the Scope property window (see Fig. 5.2). This 
window opens after the selection of the Scope/Properties tab. You can gather measurement 
data to the Matlab Workspace marking the Save data to workspace checkbox. The data is 
placed under Variable name. The variable format can be set as structure or matrix. The 
default Sampling Decimation parameter value is set to 1. This means that each measured point 
is plotted and saved.  Often we choose the Decimation parameter value equal to 5. This is a 
good choice to get enough points to describe the signal behaviour and to save the computer 
memory. In this case the time space of the plot is equal to 0.01 [s].  

 

  

Fig. 5.2 Setting the parameters of the Scope block 
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When the Simulink model is ready, click the Tools/External Mode Control Panel option 
and next click the Signal Triggering button. The window presented in Fig. 5.3 opens. Select 
Select All check button, set Source as manual, set Duration equal to the number of samples 
you intend to collect and close the window. 
 

 

Fig. 5.3 External Signal & Triggering window 

 

5.2. Code generation and the build process 

Once a model of the system has been designed the code for real-time mode can be 
generated, compiled, linked and downloaded into the computer.  

The code is generated by the use of  Target Language Compiler (TLC) (see description of 
the Simulink Target Language). The make-file is used to build and download object files to 
the target hardware automatically.  

First, you have to specify the simulation parameters of your Simulink model in the 
Simulation parameters dialog box. The RTW page appears when you select the RTW tab (Fig. 
5.4). The RTW page allows you to set the real-time build options and then to start the building 
process of the executable file. 
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Fig. 5.4 RTW page of the Simulation parameters dialog box (MATLAB 6.5) 

The system target file name is rtwin.tlc. It manages the code generation process. The 
servo_win_vc.tmf template make-file is devoted to C code generation using the Microsoft 
Visual C++  compiler. The servo_win_watc.tmf template file has to be applied if the Open 
Watcom 1.3 compiler is used. 

 
If the Matlab 7.0.4  or higher version is used a third party compiler is not required. The 

built-in Open Watcom compiler is used to creating real-time executable code for RTWT.  
The Configuration parameters page for MATLAB 7.04 is shown in Fig. 5.5. Notice that 

rtwin.tmf template makefile is used. This file is default  one for RTWT building process. 
 

-  
 

 Fig. 5.5. Configuration parameters page for MATLAB 7.04 and higher versions 
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The Solver page appears when you select the Solver tab (Fig. 5.6). The Solver page allows 
you to set the simulation parameters. Several parameters and options are available in the 
window. The Fixed-step size editable text box is set to 0.002 (this is the sampling period in 
seconds). 

 

� 

The Fixed-step solver is obligatory for real-time applications. If you use an 
arbitrary block from the discrete Simulink library or a block from the driver 
library remember that different sampling periods must have a common 
divider.  

 
The Start time has to be set to 0. The solver has to be selected. In our example the fifth-

order integration method − ode5 is chosen.  
 

 

Fig. 5.6 Simulation parameters 

If all parameters are set properly you can start the executable building process. For this 
purpose press the Build push button on the RTW page (Fig. 5.4). 

Successful compilation and linking processes generate the following message: 
 
### Created Real-Time Windows Target module MySystem.rwd.  
### Successful completion of Real-Time Workshop build procedure for model: MySystem 
 
Otherwise, an error massage is displayed in the MATLAB command window. 
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6. Basic Assignments 
All experiments described in this manual are performed with servo system consisting of 

the following modules: DC motor with tachogenerator, inertia load, encoder and gearbox with 
the output disk. In one experiment additionally the backlash module is applied. 

 

6.1. Basic measurements 

In this section quality of measurements in the servo system is concerned. The shaft angle is 
measured with high accuracy by an incremental encoder. If the tachogenerator is not used the 
shaft angular velocity must be reconstructed from the angle measurements. If the 
tachogenerator is used as a velocity sensor then its voltage signal comes together with 
disturbances, therefore it must be filtered.  

 

 

Fig. 6.1 Simulink model of Basic Measurements  

The Signal generator block produces a saw shape control signal for the servo system. This 
shape was selected to demonstrate the full range of the control values.  

 
The velocity measurements are shown in Fig. 6.2. One can see that the most disturbed is 

signal obtained directly from the tachogenerator. The reconstructed velocity (from encoder 
measurements of the angle) is the best one. Two types of the filters are applied: the fourth 
order Buterworth filter and a simple first order filter. Details and differences between the 
measurements are shown in Fig. 6.3 and Fig. 6.4. A user can choose which one of the velocity 
measurement will be used in his own real-time experiments. 
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Fig. 6.2 Velocity measurements 
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Fig. 6.3 Comparison of the velocity measurements 
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Fig. 6.4 Comparison of the velocity measurements 

 
 

6.2. Steady state characteristics of the DC servo 

Double click the Static characteristics button in Servo Control Window.  The window 
given in Fig. 6.5 opens. In this window one defines the minimal and maximal control values 
and a number of measured points. Also the control order can be set as: Ascending, 
Descending or Reverse. 

 

Fig. 6.5 Parameters of measurement of static characteristics 

 
The Run button starts the experiment. The constant value of the control activates the DC 

motor so long as a steady state of the shaft angular velocity is achieved. Then, the velocity is 
measured and the control value is changed to the next constant value and DC motor is 
activated again. These steps are repeated to the end of the control range. Simultaneously, the 
measurements are displayed in the screen (see Fig. 6.6). There are two sources of DC motor 
velocity: the reconstruction from the incremental encoder pulses and the tachogenerator 
voltage. After the identification process the measurements are saved in the ChStat.mat file. 
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Fig. 6.6 Visualisation of measurements the static characteristic 

When the measurements are completed, close the window and double click the Plot & save 
button. The ChStat.mat file is loaded and the static characteristics is plotted (see Fig. 6.7). 
Notice that when the characteristics is measured in Reverse mode (the control is changed from 
–1 to +1 and in the reverse order). The plots are slightly different.  Next, the characteristics 
are averaged and shifted to zero for a number of points to diminish influence of the dry 
friction. Next, the plot (see Fig. 6.6) is drawn and the characteristic is saved in the 
servo_chstat.mat file. If this file exists it is overwritten.  
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Fig. 6.7 Collecting points of the static 
characteristic 

Fig. 6.8 Averaged and shifted static characteristic 

Building a new static characteristics is a seldom operation. Please do not forget to save the 
old characteristics (with an appropriate description) in a safe place. The details are included in 
the plot_stat.m file which executes all operations mentioned above. 
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The characteristics saved in the servo_stat.mat file is used in the construction of a 
nonlinear model of the servo system. 

 
 

6.3. Identification in time domain 

 
The task is to find the parameters sT  and sK of the linear model of the servo system 

described by the transfer function 

 
1)(

)(2       
 s+T

 K

su

sx
G(s)=

s

s=        (6.1) 

that the states of the  model fit to the experimentally measured states. The step input signal 
u(t)= 1(t) is applied to the servo system and the velocity vs. time is acquired. The surface 
method is applied to find the system parameters.  

 

6.3.1. Identification task by the surface method  
 
The velocity signal is denoted as )(2 tx . Applying the model (6.1) the required parameters 

SS  and TK  can be calculated using   the  following relations: 
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The surface method is the useful identification algorithm in the presence of disturbances. 
In this case the integral formula filtrates the measurement noises. Fig. 6.9 shows a typical 
application of this method to a DC servo identification problem. 

 

  

sK

surface 1K  

t 

)()(2 twtx +  

 

Fig. 6.9 Surface method in the presence of disturbances )(tw  
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6.3.2. Time domain identification experiment 
 
In this experiment MSS includes the following modules: the DC motor with 

tachogenerator, inertia load, encoder module and gearbox module with the output disk. The 
magnetic break module can be added but in such a case the identified parameters of the 
system will be different. 

To start the identification experiment type servo at the MATLAB prompt and Servo 
Control Window appears. Now, double click the Time domain identification button. The 
model shown in Fig. 6.10 opens.  

Build model (in the case if it has not been done before). Next, select the 
Simulation/Connect to target option and click the Simulation/Start real-time code. The servo 
starts to move and one can observe the velocities displayed in the screen (see Fig. 6.11). 

 

 

Fig. 6.10 Real-time Simulink model for identification 

  

Fig. 6.11 Step response of the servo 
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Click the Calculate model  button. This action starts the plot_ident.m file where the surface 
method is applied and the parameters of the servo model are calculated. Consequently, Fig. 
6.12 opens and two plots are displayed in the screen: 

• velocity obtained from the measurements (red), 
• velocity calculated from the model (black). 

 
At the top of the figure the obtained coefficients and the Mean square error denoted by J 

corresponding to data fitting are displayed. The coefficients are also displayed in the Matlab 
window. 

 

Fig. 6.12 Measured (red) and modelled (black) velocities  

 
 

� 

 
Remember that your servo can be different to the system described in this 

manual. The time domain identification has to be performed before any 
experiment. 
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7. Advanced Assignments  
 

7.1. PID position control   

A PID controller is the most common form of feedback. In process control today, more than 
95% of the control loops are of a PID type, in principle a PI control. The PID controllers are 
today present in all areas where control is used. In our case only P and PD controllers are 
concerned. The servo itself behaves as an integrator. 

  
In this section a problem of the position control of the servo is concerned. The background 

to simple tuning methods is introduced.  
 
All real-time experiments related to the PID position control are  performed using the 

model given in Fig. 7.1.  
 
 

PID controller
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Fig. 7.1 Real-time model of the servo with the PID controller 

 
 
 
 The transfer function of  a continuous PID controller used in this manual has the form: 
 

D
I

p sK 
s

K
  = K

s

su
K(s)= ++

)(

)(

ε
 

 
where: ε  - error ,  

pK - proportionality coefficient, IK  - integration coefficient and DK  - 

derivation coefficient.  
       
 
P controller 
 
A goal of the control is to track a reference signal  which is defined as a square wave. In 

this section the P controller is investigated.  
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Fig. 7.2 Position servo control with the P controller 

The diagram of the closed loop system is shown in Fig. 7.2. It is well known that increasing 
gain leads to oscillations. To test the real-time system for different gains of the P controller 
click PID control continuous button in Servo Control Window.  The model given in Fig. 7.1 
opens.  
We start with a small value of the gain of the P controller. Type  K=[0.0064 0 0]  at the 
MATLAB prompt. It set proportional coefficient pK  of the P controller. Assuming a desired 

range of the change of the output disk equal to pi/2 set reference input signal equal to 25*pi/2 
(it is the measured angle at the input to the gearbox). Also set frequency of the reference input 
to 0.05 Hz and sample time to 0.002 s. 
• Build the model. 
• Click the Simulation/Connect to target and Start real-time code options to start 

experiment.  
Next, repeat the experiment for the new setting: 0127.0=pK and 0254.0=pK . 

The results of all experiments are given in Fig. 7.3 and Fig. 7.4. Note, that oscillations of 
the system response appear if 0127.0=pK and 0254.0=pK .  
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Fig. 7.3 Response of the closed-loop system with the P controller 
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The controls shown in Fig. 7.4 do not reach the zero value. It is due to the dead zone of the 
system which can be observed at the steady state characteristic shown in Fig. 6.8. The dead 
zone of the normalized u is in the range from -0.15 to 0.15.. Notice, that the control saturates 
for 0254.0=pK .  
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Fig. 7.4 Controls for different gains of the P controller 

In the table below the steady state error is shown for the gain coefficients applied in these 
experiments. In accordance with theory if the pK increases the steady state error decreases. 

 
K 0.0064 0.0127 0.0254 

∞ε  20 % 9.1 % 4.8 % 

 
 
 
PD controller 
 
The main goal of the controller tuning is to obtain the standard second order system step 

response. The general form of the second order transfer function is 
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If 10 << ζ , then the step response of )(sGs exhibits an exponentially damped sinusoidal 

character with the following features: 
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• percentage overshoot  
21

% 100 ζ

ζπ

−

−

= ep  

 

• 2% settling time  
n
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• time to peak 
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π
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n
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For given %p  and st one can calculate the damping coefficient ζ and natural frequency 

nω . Comparing a transfer function of the closed-loop system, which contains the coefficients 

of the controller, with the standard transfer function )(sGs  one can calculate the controller 

coefficients.  
 
 

EXAMPLE 
 

Assume that we would like to design a PD controller for the position control of the servo 
system as it is shown in Fig. 7.5: Note that at the first glance the state feedback controller is 

used. But remember that 
dt

dαω = . For this reason the applied controller is PD type. 

 
The requirements corresponding to the dynamics of the closed-loop system are as follows:  

• settling time ][ 5.2 sts ≤   

• and maximal overshoot 10% ≤p   
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Fig. 7.5 Position control with the PD controller 

The servo system has the transfer function 
)1(

)(
+

=
sTs

K
sG

s

s . The transfer function of the 

PD controller is sKKsK Dp  )( += . The default values of the system coefficients are 

186=sK  [rad/s] and 04.1=sT  [s]. 

 
Closing the control system we obtain the transfer function in the form 
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Substituting values for the coefficients into the transfer function we obtain   
 

pD

p
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 846.178)9615.0 846.178(

 846.178
)(

2 +++
= . 

 
The following relationships are obtained by comparing the transfer function with the 
standard transfer function of the second order system 

  
2 846.178 npK ω= , 

9615.0 846.1782 += Dn Kζω . 

 
Considering the formula and the condition for the settling time ][ 5.2 sts ≤  one obtains the 

inequality 0125.0≥DK .  
Consequently, respecting the formula and the condition 10% ≤p  related to the assumed 

percentage overshoot one can calculate an unknown value as 5912.0=ζ , later 7039.2=nω  

and 0409.0=pK . 

To check if the behaviour of the closed-loop system is consistent with requirements one 
can use the simulation method. Type at the Matlab prompt K=[0.0409 0 0.0125] to save the 
coefficients of the PD controller in the workspace. Click the PID controller & linear model 
button. The model depicted in  Fig. 7.6 opens. Note, that the linear model of the servo is 
applied. The simulation results are shown in Fig. 7.7. 
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Fig. 7.6 Simulation model of the closed-loop system with the PD controller 
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Fig. 7.7  Simulation results of  the system with the PD controller 

The percentage overshoot is too large, namely 16.4%. However the settling time is equal to 
2.4[s] what is a satisfactory result. The steady state error is equal to 1.2% what shows that the 
goal of the control is satisfied but the requirement related  to the percentage overshoot is 
missed.  

Before redesigning a controller a real time experiment should be performed. Click the PID 
control continuous button. Click PID controller and the model presented in Fig. 7.1 opens. 
Build it and start the real-time code. The results are presented in Fig. 7.8. Notice, that the 
response of the real system always differs slightly from the simulated one.  

 

 

Fig. 7.8 Results of the real-time experiment with the PD controller 
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To see in details differences between the real time and simulation responses of the closed-
loop system execute the servo_plot_pid.m file. This file is included in the Servo Toolbox but 
is accessible only from Matlab Command Window.  The plot is depicted in Fig. 7.9. The table 
below includes the details read from the figure. 

 
 Simulation Real-time experiment 

st  [s] 2.4 3 

%p [%] 16.5 8.14 

Steady state error [%] 0.2 4.02 
 

 

Fig. 7.9 Comparison of the real-time and simulation experiments with the PD controller 

 
The overshoot of the real-time experiment is small but the steady state error is too large 

and the settling time is too long. 
We are trying to increase proportional coefficient pK of the PD controller. It will increase 

the overshoot (that is an admissible step) and decrease the steady state error (to a value which 
is required) and shorten the settling time what is required also.  

Type at Matlab prompt: K=[0.0609 0  0.0125] and repeat the real-time experiment with the 
PD controller and observe the results in the scope of the model. To see all details of responses 
vs. time type the following commands: 

 
a=1;b1=length(PD_C.time); 
t=PD_C.time(a:b); 
a=1; 
b=10/(t(2)-t(1));  %plot only first 10 seconds of r esponse 
t=t(a:b);    
plot(t,PD_C.signals(1).values(a:b,1),'b',t,PD_C.sig nals(1).va  
lues(a:b,2),'k');grid; 
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title('Responses of: real system with corrected PD controller'); 
xlabel('time [s]'); 

 
The plot which is obtained is shown in Fig. 7.10  The values of the percentage overshoot, 

settling time and steady state error are as follows: 
 

5.12% =p [%] ,  23.2=st [s] and 33.0=∞ε [%]. 

 
The overshoot is a little greater than the assumed one but the settling time is fine and the 

steady-state error is perfect. We can conclude that the goal of the control is satisfied and that 
the PD controller just designed works well. 
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Fig. 7.10 Response of the real-system with the corrected PD controller 

 
 
Position control with the backlash module 

 
In this section position control problem is considered when the backlash exists in the servo 

system as it is shown in Fig. 7.11. 
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Fig. 7.11 Position servo control with the backlash and P controller 
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The backlash is present in a number of mechanical and hydraulic systems. In many cases 
backlash is necessary to proper work of a mechanical system. A gearbox without backlash 
will not work if temperature rises. The backlash in a system deacreases control performance 
and in most applications introduces oscillations to the controlled system. 

At the beginning the backlash have to be added to existing servo system. Add this module 
between the inertia and the encoder modules in the system chain. It is important that encoder 
measures an angle after the backlash module.  

To test a behaviour of the real-time system with the backlash module for different gains of 
the P controller click PID control continuous button in Servo Control Window.  The model 
given in Fig. 7.1 opens.  
Type  K=[0.1024 0 0]  at the MATLAB prompt. It sets the proportional coefficient pK  of the 

P controller. Assuming a desired range of the change of the output disk equal to pi/2 set the 
reference input signal equal to 25*pi/2 (it is the measured angle at the input to the gearbox). 
Also set the frequency of the reference input to 0.05 Hz and sample time to 0.002 [s]. 
• Build the model. 
• Click the Simulation/Connect to target and Start real-time code options to start the  

experiment.  
 
The results are given in Fig. 7.12 and Fig. 7.13. 
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Fig. 7.12 Position control with the backlash module - 1024.0=pK  

Notice, that there are oscillations in the system. The oscillations are far from the harmonic 
shape. They are generated as the result of a limit cycle in the system. The control shown in 
Fig. 7.13 is saturated. It is the well known fact that decreasing the proportional gain of the 
controller can correct this unfavourable behaviour of the servo system.   
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Fig. 7.13 Control signal 

Repeat the experiment for 0128.0=pK . The results are shown in Fig. 7.14 and Fig. 7.15. 
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Fig. 7.14 Position control with backlash module 0128.0=pK  

Notice, that oscillations are not present in this case. The desired position is reached with 
2.8% accuracy. The control does not saturate. We conclude that the closed-loop system 
behaviour is satisfactory. 
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Fig. 7.15 Control signal 

 

7.2. PID Velocity control  

The task of the velocity control is to keep the desired velocity in the presence of 
disturbances. The disturbances can be introduced as a change of the velocity reference signal 
or as a change of the motor load. To disturb the reference velocity the potentiometer can be 
used. The load disturbances can be introduced by braking slightly the inertia load of the 
system. In the example the load disturbances are introduced manually. 

 
Click the Velocity control  button in Servo Control Window and model shown in  Fig. 7.16 

opens. 
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Fig. 7.16 PID velocity control in the real-time system 
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Set the sine  reference velocity, amplitude equal to 40 [rad/s] and  frequency equal to 0.1 
[Hz] . Simulation time set equal to 30 [s]. The Gain  of the potentiometer set equal to zero. 
The coefficients of the PID controller set to the following values: 15.0=pK  and 03.0=iK . 

 

 

Fig. 7.17 The results of the PID velocity control 

Build the model and run the real time code. The results of the experiment are given in  Fig. 
7.17. 

One can see that the disturbances of the motor load are introduced manually after five 
seconds from the start and remain active in tha period of 15 seconds. Note, that the control 
increases in this time interval. The results are stored in the VelCtrl variable stored in the 
Matlab workspace. 

 
Type at the Matlab prompt :  
plot(VelCtrl.time,VelCtrl.signals(1).values(:,2),'r ',VelCtrl.time,VelCtrl

.signals(1).values(:,1),'k');grid;xlabel('time [s]' );title('Reference 
velocity (red) - measured velocity (black)'); 

 

The plot is shown in Fig. 7.18 . In this scale the differences between the diagrams are 
unvisible. The details of the reference velocity and the measured velocity are shown in Fig. 
7.19. 
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Fig. 7.18 Reference and measured velocity 
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Fig. 7.19 Zoomed data  

The tracking error of the velocity (at 12.5 seconds) is equal to 1%. Of course this error varies 
in time but it is rather small as far as the error of the velocity measurements is concerned. 
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7.3. Multivariable  control design        

The section demonstrates how properties of a closed-loop system are influenced by the 
design parameters: the closed-loop roots and sampling period. Two methods of  the closed-
loop systems design are shown. The first is based on the pole placement and is applied for 
continuous systems. The second control method, known as "deadbeat control" is used for 
discrete systems. 

7.3.1. Pole-placement method  
A closed-loop system with feedback gains from the states is analysed. The approach we 

wish to apply is the pole placement. It means that we can change the closed-loop system 
roots. There are different ways of achieving this. One of the design methods is described 
below. 

 
The continuous-time system is represented by the state equation: 

BuAxx +=&    
Cxy =  

The state controller realises a linear feedback control law in the form: )( yyKu d −= , 

where K is the feedback gain matrix and dy is the desired output vector. 

We request that the roots of the closed system are equal to λ λ1 2,  (fixed). The design 
methods consist in finding K that the roots of the closed-loop system are in the desired 
locations. That means, we assume dynamic properties of the closed system.  It can be shown 
that there exists a linear feedback that gives a closed-loop system with roots specified if and 
only if the pair (A,B) is controllable. It is clear that closed-loop system has to be stable and it 
is a 'sine qua non' assumption of the design.  

 
The state matrix of the closed-loop system is 

 
)( BKCAAc −= . 

 
For the case of the DC motor the matrix cA is given as 
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and the characteristics equation has the form  
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By means of the feedback gains, the location of roots of the characteristics equation may 
be changed. From the Vieta's formula we obtain  
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and we can calculate 1k  and 2k  from 
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It is clear that we can require the desired behaviour of  the closed-loop system but we have 
to keep   the control  between appropriate limits 1|)(| ≤tu . When the control variable 
saturates, it is necessary to be sure that the system behaves properly.  

 

 
EXAMPLE 
 
Assume that we would like to design a closed-loop system without oscillations. A possible 

selection of the roots is:    
21 −=λ  and 32 −=λ . 

For the identified parameters (an example) 186=sK [rad/s] and 04.1=sT [s] we can 

calculate 21,kk  from formula (7.1)  
 
 0335.01 =k     and   0226.02 =k  
 
Then, we simulate the closed-loop system with the feedback gains 21,kk . 
 
Perform the following steps: 
 

• type  K=[0.0335 0.0226]  and  servo at the MATLAB prompt. 
• Double click the State feedback control continuous and State feedback controller 

buttons. The model shown in Fig. 7.20 opens. Assuming a desired range of the change of 
the output disk position equal to pi/2 set the reference input signal equal to 25*pi/2 (it is 
the measured angle at the input to the gearbox). Also set the frequency of the reference 
input equal to 0.1 Hz and sample time equal to 0.002 s. 

• Build the model. 
• Click the Simulation/Connect to target and Start real-time code options to start the 

experiment.  
 
The results are presented in Fig. 7.21. Notice, that the response of the system is slow and not 
accurate. The reference angle is reached with accuracy equal to 6% and the settling time is 
about 4[s].  

We can change the  roots of the closed-loop system to make the system faster. Assuming  
41 −=λ  and 52 −=λ   we obtain: 1118.01 =k     and   0449.02 =k . 
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Fig. 7.20 Real-time model with state  feedback controller 

 
 Type at the Matlab prompt K=[0.0335 0.0226] and repeat the experiment with the new 

values of  21  and kk . The experimental results are shown in Fig. 7.22. Notice, that the response 
of the system  is faster and more accurate. The reference angle is reached with accuracy equal 
to 2.3% and the settling time is 2.5 [s]. These results outperform the previous one. 

In both experiments the control saturates despite that the goals of the design are achieved.  
 

 

Fig. 7.21 Experiment of the closed-loop system , 21 −=λ  and 32 −=λ  
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Fig. 7.22 Experiment of the closed-loop system , 41 −=λ  and 52 −=λ  

 

7.3.2. Deadbeat controller  
 
It is the control method unique to discrete systems in which we calculate feedback gains in 

such a way that the roots of the closed system are equal to zero. This control strategy has the 
property that it drives the states of a closed-loop system from arbitrary values to zero in at 
most N steps (dim(A)=N). It is the fastest possible discrete controller. 

The sampling time T0 is the only design parameter. The magnitude of the control variable 
u can be decreased by increasing the sampling time T0, or vice versa. For a given range of the 
reference variable step a suitable sample time can be determined. The main problem of the 
design is the saturation of the system actuators.  

 
The discrete system is described by a discrete state equation: 
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The matrices DA  and DB  are calculated from the continuous state-space model using the 

following, well known, relations: 
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For a discrete model of the DC motor matrices dA  and dB  have the form 
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If we assume reachability of the pair (DA , DB ) and a control law in the form 
 
  ])[][(])[( 000 nTynTyKTnu d −=   

][ 21kkK = ,                    
 
we obtain the closed-loop system shown in Fig. 7.23. 
 

 

u 
K - 
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Fig. 7.23. Closed-loop system with the feedback gain 

 
The closed-loop system is described by the equation 

 
][][)(])1[( 000 nTKyBnTxKCBATnx dDDDD +−=+ . 

 
Feedback gains for the deadbeat controller are calculated from the equation: 

 
0|))(det( 2,1,0 =−− == iDDD i

KCBAI λλ . 

 
 

Design method 
 

We can design the deadbeat controller using a simulation method. The following steps are 
necessary in this case:  

1. choose the sampling time 0T , 

2. create the discrete model, 
3. calculate feedback gains, 
4. simulate the closed-loop discrete system, 
5. if the control overruns saturation limits increase the sampling time 0T  and repeat 

the steps from 1 to 5. 
 
 
 
EXAMPLE 
 
This example shows how to design the deadbeat controller. 
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A goal of the control is to track a reference signal (the angle of the motor shaft). The 
reference signal  is assumed to be a square wave.  

Type servo at the MATLAB prompt and then double click the State feedback control 
discrete button. To design the controller click the Calculate deadbeat controller button. It 
executes the servo_calc_db.m file where a coefficients of deadbeat controller are calculated 
according to the algorithm shown above. The body of this file is listed below. Note the 
comments in the file. 

 
%  Continuous linear model of the servo system. 
%  Parameters of the servo are read from workspace 
 
A=[0 1;0 -1/Ts];  B=[0; Ks/Ts]; C = [1 0;0 1];   D = zeros( 2, 1 ); 
 
% If the distance to the reference signal is big co ntrol value in the  
% first sample time is big too. Due to we are looki ng for such a T0  
% when control does not saturate,we must assume the  maximum change of  
% the reference signal. 
 
delta_ref=[25*pi;0];   && it is maximal change of t he reference signal 
 
%  we start look for T0  
   T0=0.1;   
   for i = 1:200 
   T0=T0+0.005;    
% ** Discrete model for sampling time T0* 
 
  [Ad,Bd]=c2d(A,B, T0); 
 
% Now we calculate a coeffitients of deadbeat contr oller  
% using the formula : eig(Ad-Bd*K)=0 
 
  Z=[Bd(1) Bd(2); Ad(2,2)*Bd(1)-Ad(1,2)*Bd(2) Ad(1, 1)*Bd(2)]; 
  X=[Ad(1,1)+Ad(2,2);Ad(1,1)*Ad(2,2)]; 
  K=(Z\X)'; 
 
% Now coefficients of the controller are saved in K  
 
% checking  if the control saturates in the first s ample time: 
% u(1)=K*delta_ref; 
 

if abs(K*delta_ref)<=1 
          K   
         T0  && write K and T0 in Matlab command wi ndow 

  return 
end 

end  
 
The variables K and 0T  are stored in the MATLAB workspace after the execution of the 

above m-file. In our case for 186=sK [rad/s] and 04.1=sT [s] we obtain 

0.0091]  0127.0[=K  and 7950.00 =T . 

Now double click the State feedback controller buttons to perform the real-time 
experiment and  the model depicted in Fig. 7.24 opens. 
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Fig. 7.24 State feedback controller – a discrete model 

This model differs in details from the other models. Due to the fact that the model is 
discrete, and the sampling time 0T can vary from experiment to experiment 0T  is read from 

the Matlab workspace. Variable 0T  is located in the Simulink model in the following places: 

in Fixed step size in tag Solver which is located in Simulation/Simulation Parameters option, 
in all Zero-Order Hold blocks and in the mask of the Servo device driver. There is no filter 
connected to the output of the tachogenerator. The filter applied in other models is not 
discrete one and can not be used here. However it is interesting how the controller works 
without filtering of the velocity signal.  

Set the amplitude of the input signal to 25*pi/2 (as in the previous example), the frequency 
of the reference signal to 0.05 Hz. Set simulation time equal to 60 [s] and time range in the 
scope also equal to 60 [s]. 

Due to the fact that the model includes variables K and 0T  and some settings are changed 

rebuild it. Click Simulation/Connect to target. Click the Start real-time code option to start 
the experiment. The results are shown in Fig. 7.25.  
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Fig. 7.25 Results of the position control using the deadbeat controller 

Note, that the system does not reach the reference angle in two steps. In fact, the servo is a 
nonlinear system and it is only approximated by a linear model. Notice, that this control is 
significant only during two first sampling intervals.  

 
        
 

7.4.  Optimal design method: LQ controller       

 
The linear-quadratic problem (LQ problem) is a central one in the theory and applications 

of optimal control. There are two versions of the LQ problem: the open-loop and the closed-
loop optimal control problems. Either the optimal control is given as an explicit function of 
time for fixed initial conditions, or the optimal controller is synthesised. Further only the 
second case is considered. The main result of the finite-dimensional linear-quadratic theory is 
that under suitable assumptions the optimal feedback controller is linear with respect to the 
state, and constant with respect to time.  

 
The synthesis of the discrete and continuous LQ controller is presented below. For a very 

small value of the sampling time the response of the discrete system converges to the 
response of the corresponding continuous system. The most important question for a designer 
of a control system, as far as LQ control problem is concerned, is how to select the weighting 
factors in the cost function. 
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Let us examine separately the continuous and discrete LQ problems.  

 

7.4.1. The continuous case 
 
The dynamical model of  the DC-motor is described by the linear differential equations: 

 
BuAxx +=&           

Cxy =  ,          

where the matrices A, B and C have the form 
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The desired input time history of the state vector is given by )](),([)( 21 tytyty ddd = . 

Hence, the error vector e is defined 

)()()( tytyte d −= . 

 
A typical quadratic cost function (performance index) has the form 

∫ +=
kT

TT dttRututQeteuJ
0

)]()()()([
2

1
)( ,      

where: 
 
• matrix Q ≥ 0,  Q is a nonnegative definite matrix, 
• matrix R > 0, R is a positive definite matrix, 
• the (A,B) pair is controllable. 
 

The weighting matrices Q and R are selected by a designer but they must satisfy the above 
conditions. It is most easily accomplished by picking the matrix Q to be diagonal with all 
diagonal elements positive or zero. Some positive weight (|R|≠0) must be selected for the 
control, otherwise the solution will include infinite control gains.  

 
The values of elements of Q and R matrices  weakly correspond to the performance 

specification. A certain amount of trial and error is required with a simulation program to 
achieve a satisfactory result. A few guidelines can be recommended. For example, if all states 
are to be kept under close regulation and  Q are diagonal with entries so selected that a fixed 
percentage change of each variable makes an equal contribution to the cost. The matrix R is 
also diagonal. 

If the maximum deviations of the servomechanism outputs are: max1y max2y , and the 

maximum deviation of control is maxu , then the cost is: 

22
2

2
1 2211 Ru)y,Q()y,Q( ++  

 
The coefficients of the Q and R matrices can be set related to the rule:  
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This rule can be modified to satisfy desired root locations and transient response for 
selected values of weights. One must avoid saturation effects both of outputs and control.  

Due to the differences in methods of analysis, problem formulation and the form of results, 
we strongly distinguish the linear-quadratic problem with a finite settling time from that with 
a infinite settling time. However in applications we frequently encounter the situation when 
the termination moment of the control process is so far away that it does not affect the current 
control actions. The infinite-time optimal control problem is then posed. The cost function is 
replaced by the formula:  

dttRututQeteuJ TT )]()()()([)(
0

+= ∫
∞

       (7.3)

  

Then the optimal scalar control  *u  and the optimal trajectory  vector *y are given  

)( ** yyKu d −=          (7.4)

   
where K is the feedback matrix.  
 
The optimal control problem is now defined as follows: find the gain K such that the 

feedback law (7.4) minimises the cost function (7.3) subject to the state equation (7.2). The 
calculation of the control variable which minimizes the criterion (7.3) is a dynamic 
optimisation problem. This problem can be solved by variation calculus applying the 
maximum principle due to the Bellman optimisation principle. The procedure returns the 
optimal feedback matrix K,  the matrix S, the unique positive definite solution to the 
associated matrix Riccati equation: 

 

SA + ATS - SBR-1BTS + Q = 0     
 

Due to the quadratic appearance of S, there is more than one solution, and S must be 
positive definite to select the correct one. The procedure returns also the matrix E, the closed-
loop roots: 

E = eig(A - B*K*C)         

The vector K can be calculated by a numeric iterative formula on the basis of the Riccati 
equation. The associated closed-loop system eBKCAe )( −=&  is asymptotically stable.  

 
To solve the LQ controller problem the lqry function from the Control System Toolbox can 

be used. The synopsis of  lqry is: [K,S,E] = lqry(A,B,C,D,Q,R). 
In this case the matrix of weights Q relate the outputs y instead of the state x. For the 

servomechanism D is the row matrix with two zero elements. The function lqry computes the 
equivalent Q, R and calls lqr, 

The control u is not constrained. This assumption can not be satisfied for a real physical 
system. One must remember that if the control u saturates then it not satisfies the LQ problem. 
To return to the LQ problem the amplitude of  the u signal should be diminished. In such a 
case a designer tunes the relative weights between state and control variables. To perform that 
the simulation tools are recommended.  
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EXAMPLE 
 
The goal of the control is to track a reference signal  which is defined as a square wave. Set 

the amplitude of the reference input signal equal to 25*pi/2. Set the frequency of the reference 
input to 0.1 Hz and sample time to 0.002 [s]. 

 
Type Servo at the MATLAB prompt and then double click the State feedback control 

continuous button. To design LQ controller click the Calculate LQ controller button. It 
executes servo_calc_lq.m file presented below: 

 
   % State space representation of servo: 

   A=[0 1;0 -1/Ts]; 
   B=[0; Ks/Ts]; 
   C = [1 0;0 1]; 
   D = zeros( 2, 1 ); 

    
   % Set Q and R matrices. These values can be chan ged by a user 

   Q=[50 0;0 1];   
   R=1000; 

    
   % calculate coefficients of the LQ controller 

   [K,S,lambda]=lqry(A,B,C,D,Q,R); 
 
   % type K in Matlab command window 

   K 

 
For the default values: 186=sK [rad/s] and 04.1=sT [s] we obtain 0.054]  2236.0[=K .  

 
To perform the real-time experiment click the State feedback controller button. When the 

model opens (see Fig. 7.26), check parameters of the reference signal. Build the model, click 
Simulation/connect to target and Start real-time code option to start experiment. The results 
are given in Fig. 7.27. Notice that the reference signal is reached with accuracy equal to 
0.58% and without overshoots. The control signal saturates. 
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Fig. 7.26 Real-time model of the servo with the LQ controller 

 

 

Fig. 7.27 Results of the position control with a continuous LQ controller 
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7.4.2. The discrete case 
 
If we introduce the sampling period 0T  then the model can be discretized. The discrete 

model of the DC motor has the form: 
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where the matrices: DA , DB and DC  are in the form 
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The matrix DA   is the fundamental solution of the differential equation (7.5) calculated for 

the sampling period 0T . The explicit values of the matrices DA  and DB  of the servo system 

can be obtained numerically by the use of  c2d  function. C2d converts a continuous state 
representation to the discrete corresponding to the continuous. The procedure is a part of 
Control System Toolbox. One must simply type the command:  

 
 [ DA , DB ]=c2d(A,B, T0) 
 
The optimal feedback law: 

][][  ],[][ 0000 nTyynTenTKenTu d −==       

   

minimizes the cost function: 
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subject to the state equation (7.5). The dlqry function from the Control System Toolbox is 
used to solve the discrete-time linear-quadratic control problem. The synopsis of  the dlqry 
and lqry programs are identical. The dlqr also solves and returns matrix S, the unique positive 
definite solution to the associated discrete iterative matrix Riccati equation: 

 
 QASBBSBRBSAASAS Di

T
DDi

T
DDi

T
DDi

T
Di ++−= −

+
1

1 )( . 

 
The feedback matrix is derived from S by 
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EXAMPLE 
 
A goal of the control is the same as in the continuous case example. Assume that sampling 

time for discrete system 1.00 =T [s].  

 
In Servo Control Window double click the State feedback control discrete button. To 

design the LQ controller click the Calculate LQ controller button. It executes the 
servo_calc_lq_d.m file presented below. 

 
% State space representation of servo: 
   A=[0 1;0 -1/Ts]; 
   B=[0; Ks/Ts]; 
   C = [1 0;0 1]; 
   D = zeros( 2, 1 ); 
   
    
 % set sampling time 
   T0=0.1;    
 % calculate discrete model from continuous 
   [Ad,Bd]=c2d(A,B, T0) 
    
 % set Q and R matrices 
   Q=[50 0;0 1]; 
   R=1000; 
    
 % design discrete LQ controller 
    
   [K,S,lambda]=dlqry(Ad,Bd,C,D,Q,R);  
   K 

 
For the default values: 186=sK [rad/s] and 04.1=sT [s] we obtain 0.0395]  139.0[=K .  

 
To perform the real-time experiment click the State feedback controller button and the 

model shown in Fig. 7.24 opens. It is the same model as was previously applied to the 
deadbeat control. Set the frequency of the reference signal to 0.1 [Hz] the simulation time to 
30 [s] and the time range of the scope to 30 [s]. These settings correspond to the values which 
have been assumed for the continuous LQ controller. Build model, click the 
Simulation/connect to target and the Start real-time code options to start experiment.  

The results are shown in Fig. 7.27. They are similar to these for the continuous controller. 
The reference signal is reached with accuracy equal to 1% and without overshoots. The 
control signal saturates as in the previous example. 
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Fig. 7.28 Results of the position control by the discrete LQ controller 
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8. Description of the Modular Servo class properties 
 
The CServo is a MATLAB class, which gives the access to all the features of the RT-

DAC/PCI board equipped with the logic for the MSS model. The RT-DAC/PCI board is an 
interface between the control software executed by a PC computer and the power-interface 
electronic of the modular servo model. The logic on the board contains the following blocks: 

• incremental encoder registers – two 24-bit registers to measure the position of the 
incremental encoders. There are two identical encoder inputs, that may be applied to 
measure the shaft positions of two modular servo blocks; 

• incremental encoder reset logic. The incremental encoders generate different output 
waves when the encoder rotates clockwise and counter-clockwise. The encoders are not 
able to detect the reference (“zero”) position. To determine the “zero” position the 
incremental encoder registers have to be set to zero by the computer program; 

• PWM generation block – generates the Pulse-Width Modulation output signal. 
Simultaneously the direction signal and the brake signal are generated to control the 
power interface module. The PWM prescaler determines the frequency of the PWM 
wave, 

• power interface thermal flags –the thermal flags can be used to disable the operation of 
the overheated power amplifier, 

• interface to the on-board analog-to-digital converter. The A/D converter is applied to 
measure the position of the external potentiometer and to measure the output voltage of 
the tachogenerator. 

 
All the parameters and measured variables from the RT-DAC/PCI board are accessible by 

appropriate properties of the CServo class. 
In the MATLAB environment the object of the CServo class is created by the command: 
object_name = CServo; 
The get method is called to read a value of the property of the object: 
property_value = get( object_name, ‘property_name’ ); 
The set method is called to set new value of the given property: 
set( object_name, ‘property_name’, new_property_value ); 
The display method is applied to display the property values when the object_name is 
entered in the MATLAB command window. 
 
This section describes all the properties of the CServo class. The description consists of the 

following fields: 
 

Purpose Provides short description of the property 
Synopsis Shows the format of the method calls 
Description Describes what the property does and the restrictions 

subjected to the property 
Arguments Describes arguments of the set method 
See Refers to other related properties 
Examples  Provides examples how the property can be used 
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8.1. BaseAddress 

 
Purpose:   Read the base address of the RT-DAC/PCI board. 

Synopsis:   BaseAddress = get( sv, ‘BaseAddress’ ); 

Description: The base address of RT-DAC/PCI board is determined by computer. Each 
CServo object has to know the base address of the board. When a CServo 
object is created the base address is detected automatically. The detection 
procedure detects the base address of the first RT-DAC/PCI board plugged 
into the PCI slots.  

 
Example: Create the CServo object: 
 sv = CServo; 
 Display their properties by typing the command: 
 sv 

 
Type:             CSERVO Object 
BaseAddress:      54272 / D400 Hex 
Bitstream ver.:   x402 
Encoder:          [ 0  46606 ][bit] 
Reset Encoder:    [ 0  0 ] 
Input voltage:    [ 0.1123  0.1123 ][V] 
PWM:              [ 0 ] 
PWM Prescaler:    [ 0 ] 
Thermal status:   [ 0 ] 
Thermal flag:     [ 1 ] 
Angle:            [ 0  71.4927 ][rad] 
Time:             31.657 [sec] 

 
 Read the base address: 
 BA = get( sv, ‘BaseAddress’ ); 
 
 

8.2. BitstreamVersion 

 
Purpose:   Read the version of the logic stored in the RT-DAC/PCI board. 

Synopsis:   Version = get( sv, ‘BitstreamVersion’ ); 

Description:   The property determines the version of the logic design of the RT-DAC/PCI 
board. The modular servo models may vary and the detection of the logic 
design version makes it possible to check if the logic design is compatible 
with the physical model. 

 
 

8.3. Encoder 

 
Purpose:   Read the incremental encoder registers. 
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Synopsis:   enc = get( sv, ‘Encoder’ ); 
 
Description:  The property returns two digits. They are equal to the number of impulses 

generated by the corresponding encoders. The encoder counters are 24-bit 
numbers so the values of this property is from (–224) to (224-1). When an 
encoder counter is reset the value is set to zero.  

 The incremental encoders generate 4096 pulses per rotation. The values of the 
Encoder property should be converted into physical units. 

 
See:  ResetEncoder, Angle, AngleScaleCoeff 
 
 

8.4. Angle 

 
Purpose:   Read the angle of the encoders. 
 
Synopsis:   angle_rad = get( sv, ‘Angle’ ); 
 
Description:  The property returns two angles of the corresponding encoders. To calculate 

the angle the encoder counters are multiplied by the values defined as the 
AngleScaleCoeff property. The angles are expressed in radians. 

 
See:  Encoder, AngleScaleCoeff 
 
 

8.5. AngleScaleCoeff 

 
Purpose:   Read the coefficients applied to convert the encoder counter values into 

physical units. 
 
Synopsis:   scale_coeff = get( sv, ‘AngleScaleCoeff’ ); 
 
Description:  The property returns two digits. They are equal to the coefficients applied to 

convert encoder impulses into radians. The incremental encoders generate 
4096 pulses per rotation so the coefficients are equal to 2*pi/4096. 

 
See:  Encoder, Angle 
 
 

8.6. PWM 

 
Purpose:   Set the direction and duty cycle of the PWM wave. 
 
Synopsis:   PWM = get( sv, ‘PWM’ ); 
  set( sv, ‘PWM’, NewPWM ); 
 



Modular Servo System - User’s Manual 69 
 

Description:  The property determines the duty cycle and direction of the PWM wave. The 
PWM wave and the direction signals are used to control the DC drive so in fact 
this property is responsible for the DC motor control signal. The NewPWM 
variable is a scalars in the range from –1 to 1. The value of –1, 0.0 and +1 
mean respectively: the maximum control in a given direction, zero control and 
the maximum control in the opposite direction to that defined by –1. 
The PWM wave is not generated if the thermal flag is set and the power 
amplifier is overheated. 

 
See: PWMPrescaler,  Therm, ThermFlag 
 
Example: set( sv, ‘PWM’, [ -0.3 ] ); 
 
 

8.7. PWMPrescaler 

 
Purpose:   Determine the frequency of the PWM wave. 
 
Synopsis:   Prescaler = get( sv, ‘PWMPrescaler’ ); 
 set( sv, ‘PWMPrescaler’, NewPrescaler ); 
 
Description:  The prescaler value can vary from 0 to 63. The 0 value generates the 

maximal PWM frequency. The value 63 generates the minimal frequency. 
The frequency of the generated PWM wave is given by the formula: 

 
PWMfrequency = 40MHz / 1023 / (Prescaler+1) 

 
See: PWM 
 
 

8.8. Stop 

 
Purpose:   Sets the control signal to zero. 
 
Synopsis:   set( sv, ‘Stop’ ); 
 
Description:  This property can be called only by the set method. It sets the zero control of 

the DC motor and is equivalent to the set(sv, ‘PWM’, 0) call. 
 
See: PWM 
 
 

8.9. ResetEncoder 

 
Purpose:   Reset the encoder counters. 
 
Synopsis:   set( sv, ‘ResetEncoder’, ResetFlags ); 
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Description:   The property is used to reset the encoder registers. The ResetFlags is a 1x2 

vector. Each element of this vector is responsible for one encoder register. If 
the element is equal to 1 the appropriate register is set to zero. If the element 
is equal to 0 the appropriate register counts encoder impulses.  

 
See: Encoder 
 
Example: To reset only the first encoder register execute the command: 
 set( sv, ‘ResetEncoder’, [ 1 0 ] ); 
 
 

8.10. Voltage 

 
Purpose:   Read two voltage values. 
 
Synopsis:   Volt = get( sv, ‘Voltage’ ); 
 
Description:  Returns the voltage of two analog inputs. Usually the analog inputs are 

applied to measure the position of the external potentiometer and the output 
of the tachogenerator. 

 

8.11. Therm 

 
Purpose:   Read thermal status flag of the power amplifier. 
 
Synopsis:   Therm = get( sv, ‘Therm’ ); 
 
Description:  Returns the thermal flag of the power amplifier. When the temperature of a 

power amplifier is too high the flag is set to 1. 
 
See: ThermFlag 
 
 

8.12. ThermFlag 

 
Purpose:   Control an automatic power down of the power amplifiers. 
 
Synopsis:   ThermFlag = get( sv, ‘ThermFlag’ ); 
  set( sv, ‘ThermFlag’, NewThermFlag ); 
 
Description:  If the ThermFlag and NewThermFlag are both equal to 1 the DC motor is 

not excited by the PWM wave when the power interface is overheated. 
 
See: Therm 
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8.13. Time 

 
Purpose:   Return time information. 
 
Synopsis:   T = get( sv, ‘Time’ ); 
 
Description:   The CServo object contains the time counter. When a CServo object is 

created the time counter is set to zero. Each reference to the Time property 
updates its value. The value is equal to the number of milliseconds which 
elapsed since the object was created. 

 
 

8.14. Quick reference table 

 

Property name Operation* Description 

BaseAddress R Read the base address of the RT-DAC/PCI board  

BitstreamVersion R 
Read the version of the logic design for the RT-
DAC/PCI board 

Encoder R Read the incremental encoder registers 

Angle R Read the angles of the encoders 

AngleScaleCoeff R 
Read the coefficient applied to convert encoder 
positions into radians 

PWM R+S Read/set the parameters of the PWM waves 

PWMPrescaler R+S Read/set the frequency of the PWM waves 

Stop S Set the control signal to zero 

ResetEncoder R+S Reset the encoder counters or read the reset flags 

Voltage R Read the input voltages 

Therm R Read the thermal flags of the power amplifiers 

ThermFlag R+S 
Read/set the automatic power down flag of the power 
amplifier 

Time R Read time information 

• R – read-only property, S – allowed only set operation, R+S –property may be read 
and set 

 

 

8.15. CServo Example 

 
To familiarise a reader with the CServo class this section presents an M-file example that 
uses the properties of the CServo class to measure the static characteristics of the DC 
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motor (see section 6). The static characteristics is a diagram showing the relation between 
DC motor control signal and the motor shaft velocity. The M-file changes the control 
signal and waits until the MSS reaches steady-state. The velocity of the shaft is obtained in 
two ways: 
• the M-file measures the output voltage from the tachogenerator, 
• the M-file measures the encoder position in two time points and calculates the 

velocity as the difference of positions divided by the time period between the time 
points. 

The M-file is written in the M-function form. The name of the M-function is 
Servo_PWM2RPM.  

The function requires two parameters: 
 

• CtrlDirection - a string that selects how to change the control value. The 'A' string 
causes the control is changed in ascending manner (from -1 to 1), the 'D' string causes 
the control is changed in descending order (from 1 to -1) and the 'R' string causes 
reverse double changes (from -1 to +1 and after that from +1 to -1), 

• MinControl, MaxControl – minimal and maximal control signal values. The control 
signal changes within the region defined by these values,  

• NoOfPoints - number of characteristics points within the MinControl/MaxControl 
range. The exact number of points of the characteristics declared by this parameter is 
enlarged to two points namely: MinControl and MaxControl. 

 
The body of this function is given below. The comments within the function describe the 
main stages. 
 
function ChStat = Servo_PWM2RPM( … 
                  CtrlDirection, MinControl, MaxCon trol, NoOfPoints ) 
 
CtrlDirection = lower( CtrlDirection ); 
NoOfPoints    = max( 1, NoOfPoints+1 ); 
 
% Calculate control step 
Step = (MaxControl-MinControl) / NoOfPoints; 
 
switch CtrlDirection 
  case 'a'    
    Ctrl = MinControl:Step:MaxControl; 
  case 'd'    
    Ctrl = MaxControl:-Step:MinControl; 
  case 'r'    
    Ctrl = [ MinControl:Step:MaxControl MaxControl: -Step:MinControl]; 
  otherwise  % This should not happen 
    error('The CtrlDirection must be ''A'',''D'' or  ''R''.') 
end  
 
FigNum = figure( 'Visible', 'on', ... 
                 'NumberTitle', 'off', ... 
              'Name', 'Velocity vs. PWM characteris tic', ... 
                 'Menubar', 'none' ); 
 
sv = cservo; 
Control = []; 
VelEnc  = []; 
% Optionally set the PWM prescaler 
%set( sv, 'pwmprescaler', 20); 
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for i=1:length(Ctrl) 
  % Set a new control value 
  set( sv, 'PWM', Ctrl(i) ); 
  % Reset encoders 
  set( sv, 'ResetEncoder', [1 1] ); 
  set( sv, 'ResetEncoder', [0 0] ); 
  pause( 5 ) 
  AuxEnc = get( sv, 'Encoder' ); TimeBeg=gettime; 
  pause( 2 ) 
  % Calculate velocity based on the encoder positio ns 
  VelEnc(i,:) = 2*pi*(get( sv, 'Encoder' )-AuxEnc)/  … 
                4096/((gettime-TimeBeg)/1000); % [r ad/s] 
  Control(i)  = get( sv, 'PWM' ); 
  Volt(i,:)   = get( sv, 'Voltage' ); 
   
  % Perform 10000 A/D conversions and calculate ave rage values 
  AuxVolt = [0 0]; 
  for j=1:10000 
    AuxVolt = AuxVolt + get( sv, 'Voltage' ); 
  end 
  Volt(i,:) = AuxVolt/10000; 
  % Convert voltage into velocity 
  Volt2Vel = 20.4*Volt(:,2); 
  % Plot data 
  subplot(211);  
  plot( Control, VelEnc(:,2), Control, VelEnc(:,2),  'x' ); grid 
  title( 'Encoder velocity vs. PWM' );  
  xlabel('PWM control value'); ylabel( 'Velocity [r ad/s]' ); 
  subplot(212);  
  plot( Control, Volt2Vel, Control, Volt2Vel, 'x' ) ; grid 
  title( 'Tacho velocity vs. PWM' );  
  xlabel('PWM control value'); ylabel( 'Tacho veloc ity [rad/s]' ); 
end 
% Assign data to the structure returned by the func tion 
ChStat.Control         = Control; 
ChStat.TachoVelocity   = VelEnc(:,2); 
ChStat.EncoderVelocity = Volt2Vel; 
 
% Switch off the control  
set( sv, 'Stop'); 

 
The diagrams generated by the call 
 
 servo_pwm2rpm('r',-0.5,0.5,19), 
 
are shown below. The diagrams present the velocity of the shaft as function of the control 
signal. The control signal changes from –0.5 to +0.5. The velocity value is obtained in two 
ways. At the upper diagram the velocity is calculated from the encoder positions. The 
lower diagram presents the velocity obtained from the tachogenerator. 
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Fig. 8.1 Result of the servo_pwm2rpm function call 

 
The values on the diagram may vary from an experiment to an experiment as they depend 

on the configuration of the modular servo set-up. 
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9. Some technical data 
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Brass inertia load  2.030 kg 0.055 kg      Aluminium wheels    0.05 kg 

Fig. 9.1 Dimensions and weights of the MSS mechanical elements  

 Data sheet of the DC motor   is available at  
 
http://www.buehlermotor.com/cgi-bin/sr.exe/productpageus&productpage=54 
 
    
The gearbox ratio 25=N  
 


