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Chapter 1

INTRODUCTION

R,obotics is a relatively young field of modern technology that crosses
traditional engineering boundaries. Understanding the complexity of robots
and their application requires knowledge of electrical engineering, mechan-
ical engineering, systems and industrial engineering, computer science, eco-
nomics, and mathematics. New disciplines of engineering, such as manu-
facturing engineering, applications engineering, and knowledge engineering
have emerged to deal with the complexity of the field of robotics and factory
automation.

This book is concerned with fundamentals of robotics, including kine=
matics, dynamics, motion planning, computer vision, and control.
Our goal is to provide an introduction to the most important concepts in
these subjects as applied to industrial robot manipulators and other me-
chanical systems. ;

The term robot was first introduced by the Czech playwright Karel
Capek in his 1920 play Rossum’s Universal Robots, the word robota being
the Czech word for work. Since then the term has been applied to a great
variety of mechanical devices, such as teleoperators, underwater vehicles,
autonomous land rovers, etc. Virtually anything that operates with some
degree of autonomy, usually under computer control, has at some point been
called a robot. In this text the term robot will mean a computer controlled
industrial manipulator of the type shown in Figure 1.1.

This type of robot is essentially a mechanical arm operating under com-
puter control. Such devices, though far from the robots of science fiction, are
nevertheless extremely complex electromechanical systems whose analytical
description requires advanced methods, presenting many challenging and
interesting research problems. An official definition of such a robot comes
from the Robot Institute of America (RIA):



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of typical industrial manipulators, the AdeptSix 600
robot (left) and the AdeptSix 300 robot (right). Both are six-axis, high per-
formance robots designed for materials handling or assembly applications.
(Photo courtesy of Adept Technology, Inc.)

Definition: A robot is a reprogrammable, multifunctional manipulator de-
signed to move material, parts, tools, or specialized devices through variable
programmed motions for the performance of a variety of tasks.

The key element in the above definition is the reprogrammability, which
gives a robot its utility and adaptability. The so-called robotics revolution
is, in fact, part of the larger computer revolution.

Even this restricted definition of a robot has several features that make it
attractive in an industrial environment. Among the advantages often cited
in favor of the introduction of robots are decreased labor costs, increased
precision and productivity, increased flexibility compared with specialized
machines, and more humane working conditions as dull, repetitive, or haz-
ardous jobs are performed by robots.

The robot, as we have defined it, was born out of the marriage of two
earlier technologies: teleoperators and numerically controlled milling
machines. Teleoperators, or master-slave devices, were developed during
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the second world war to handle radioactive materials. Computer numerical
control (CNC) was developed because of the high precision required in the
machining of certain items, such as components of high performance air-
craft. The first robots essentially combined the mechanical linkages of the
teleoperator with the autonomy and programmability of CNC machines.

The first successful applications of robot manipulators generally involved
some sort of material transfer, such as injection molding or stamping, in
which the robot merely attends a press to unload and either transfer or
stack the finished parts. These first robots could be programmed to execute
a sequence of movements, such as moving to a location A, closing a gripper,
moving to a location B, etc., but had no external sensor capability. More
complex applications, such as welding, grinding, deburring, and assembly
require not only more complex motion but also some form of external sensing
such as vision, tactile, or force sensing, due to the increased interaction of
the robot with its environment.

Worldwide there are currently over 800,000 industrial robots in oper-
ation, mostly in Japan, the European Union and North America (see Fig-
ure 1.2). After a period of stagnation in the late 1980’s, the sale of industrial
robots began to rise in the 1990’s and sales growth is likely to remain strong
for the remainder of this decade.

It should be pointed out that the important applications of robots are
by no means limited to those industrial jobs where the robot is directly re-
placing a human worker. In fact, there are over 600,000 household robots
currently in use primarily as vacuum cleaning and lawn mowing robots.
There are many other applications of robotics in areas where the use of hu-
mans is impractical or undesirable. Among these are undersea and planetary
exploration, satellite retrieval and repair, the defusing of explosive devices,
and work in radioactive environments. Finally, prostheses, such as artifi-
cial limbs, are themselves robotic devices requiring methods of analysis and
design similar to those of industrial manipulators.

1.1 MATHEMATICAL MODELING OF ROBOTS

In this text we will be primarily concerned with developing and analyzing
mathematical models for robots. In particular, we will develop methods
to represent basic geometric aspects of robotic manipulation, dynamic as-
pects of manipulation, and the various sensors available in modern robotic
systems. Equipped with these mathematical models, we will develop meth-
ods for planning and controlling robot motions to perform specified tasks.
We begin here by describing some of the basic notation and terminology
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Number of Robots in Various Countries at the end of 2003

Jopan SRR s R EEET 350,000
Germany [iESGsE 112,700
North America [FEERERSEEN 112,000
naly (R 50,000
France [26,000
Spain !13,000

uk Ej14,000

Figure 1.2: Number of robots in use at the end of 2003. Japan has the
largest number of industrial robots, followed by the European Union and
North America. Source: UNECE - United Nations Economic Commission
for Europe, October, 2004.

that we will use in later chapters to develop mathematical models for robot
manipulators.

1.1.1 Symbolic Representation of Robots

Robot manipulators are composed of links connected by joints to form
a kinematic chain. Joints are typically rotary (revolute) or linear (pris-
matic). A revolute joint is like a hinge and allows relative rotation between
two links. A prismatic joint allows a linear relative motion between two
links. We denote revolute joints by R and prismatic joints by P, and draw
them as shown in Figure 1.3. For example, a three-link arm with three
revolute joints will be referred to as an RRR arm.

Each joint represents the interconnection between two links. We denote
the axis of rotation of a revolute joint, or the axis along which a prismatic
joint translates by z; if the joint is the interconnection of links ¢ and i+1. The
joint variables, denoted by 6 for a revolute joint and d for the prismatic
joint, represent the relative displacement between adjacent links. We will
make this precise in Chapter 3.

1.1. MATHEMATICAL MODELING OF ROBOTS 5

Revolute Prismatic

o| = | =
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Figure 1.3: Symbolic representation of robot joints. Each joint allows a
single degree of freedom of motion between adjacent links of the manipulator.
The revolute joint (shown in 2D and 3D on the left) produces a relative
rotation between adjacent links. The prismatic joint (shown in 2D and 3D
on the right) produces a linear or telescoping motion between adjacent links.

1.1.2 The Configuration Space

A configuration of a manipulator is a complete specification of the location
of every point on the manipulator. The set of all configurations is called the
configuration space. In our case, if we know the values for the joint vari-
ables (i.e., the joint angle for revolute joints, or the joint offset for prismatic
joints), then it is straightforward to infer the position of any point on the
manipulator, since the individual links of the manipulator are assumed to
be rigid and the base of the manipulator is assumed to be fixed. Therefore,
in this text, we will represent a configuration by a set of values for the joint
variables. We will denote this vector of values by g, and say that the robot
is in configuration g when the joint variables take on the values q;,.. ., gn,
with g; = 8; for a revolute joint and ¢; = d; for a prismatic joint.

An object is said to have n degrees of freedom (DOF) if its configura-
tion can be minimally specified by n parameters. Thus, the number of DOF
is equal to the dimension of the configuration space. For a robot manipula-
tor, the number of joints determines the number of DOF. A rigid object in
three-dimensional space has six DOF: three for positioning and three for
orientation. Therefore, a manipulator should typically possess at least six
independent DOF. With fewer than six DOF the arm cannot reach every
point in its work space with arbitrary orientation. Certain applications such
as reaching around or behind obstacles may require more than six DOF. A
manipulator having more than six DOF is referred to as a kinematically
redundant manipulator.
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1.1.3 The State Space

A configuration provides an instantaneous description of the geometry of
a manipulator, but says nothing about its dynamic response. In contrast,
the state of the manipulator is a set of variables that, together with a
description of the manipulator’s dynamics and future inputs, is sufficient to
determine the future time response of the manipulator. The state space is
the set of all possible states. In the case of a manipulator arm, the dynamics
are Newtonian, and can be specified by generalizing ‘the familiar equation
F'= ma. Thus, a state of the manipulator can be specified by giving the
values for the joint variables q and for joint velocities ¢ (acceleration is
related to the derivative of joint velocities).

1.1.4 The Workspace

The workspace of a manipulator is the total volume swept out by the end
effector as the manipulator executes all possible motions. The workspace
is constrained by the geometry of the manipulator as well as mechanical
constraints on the joints. For example, a revolute joint may be limited to
less than a full 360° of motion. The workspace is often broken down into
a reachable workspace and a dexterous workspace. The reachable
workspace is the entire set of points reachable by the manipulator, whereas
the dexterous workspace consists of those points that the manipulator can
reach with an arbitrary orientation of the end effector. Obviously the dex-
terous workspace is a subset of the reachable workspace. The workspaces of
several robots are shown later in this chapter,

1.2 ROBOTS AS MECHANICAL DEVICES

There are a number of physical aspects of robotic manipulators that we will
not necessarily consider when developing our mathematical models. These
include mechanical aspects (e.g., how are the joints actually implemented),
accuracy and repeatability, and the tooling attached at the end effector. In
this section, we briefly describe some of these.

1.2.1 Classification of Robotic Manipulators

Robot manipulators can be classified by several eriteria, such as their power
source, or the way in which the joints are actuated; their geometry, or
kinematic structure; their method of control; and their intended applica-
tion area. Such classification is useful primarily in order to determine which
robot is right for a given task. For example, an hydraulic robot would not
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be suitable for food handling or clean room applications whereas a SCARA
robot would not be suitable for automobile spray painting. We explain this
in more detail below.

Power Source

Most robots are either electrically, hydraulically, or pneumatically powered.
Hydraulic actuators are unrivaled in their speed of response and torque pro-
ducing capability. Therefore hydraulic robots are used primarily for lifting
heavy loads. The drawbacks of hydraulic robots are that they tend to leak
hydraulic fluid, require much more peripheral equipment (such as pumps,
which require more maintenance), and they are noisy. Robots driven by
DC or AC motors are increasingly popular since they are cheaper, cleaner
and quieter. Pneumatic robots are inexpensive and simple but cannot be
controlled precisely. As a result, pneumatic robots are limited in their range
of applications and popularity.

Method of Control
Robots are classified by control method into servo and nonservo robots.
The earliest robots were nonservo robots. These robots are essentially open-
loop devices whose movements are limited to predetermined mechanical
stops, and they are useful primarily for materials transfer. In fact, according
to the definition given above, fixed stop robots hardly qualify as robots.
Servo robots use closed-loop computer control to determine their motion
and are thus capable of being truly multifunctional, reprogrammable devices.
Servo controlled robots are further classified according to the method
that the controller uses to guide the end effector. The simplest type of
robot in this class is the point-to-point robot. A point-to-point robot can
be taught a discrete set of points but there is no control of the path of
the end effector in between taught points. Such robots are usually taught
a series of points with a teach pendant. The points are then stored and
played back. Point-to-point robots are limited in their range of applications.
With continuous path robots, on the other hand, the entire path of the
end effector can be controlled. For example, the robot end effector can
be taught to follow a straight line between two points or even to follow a
contour such as a welding seam. In addition, the velocity and /or acceleration
of the end effector can often be controlled. These are the most advanced
robots and require the most sophisticated computer controllers and software
development.

Application Area

Robot manipulators are often classified by application area into assembly
and nonassembly robots. Assembly robots tend to be small, electrically
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driven and either revolute or SCARA (described below) in design. Typical
nonassembly application areas to date have been in welding, spray painting,
material handling, and machine loading and unloading.

One of the primary differences between assembly and nonassembly appli-
cations is the increased level of precision required in assembly due to signif-
icant interaction with objects in the workspace. For example, an assembly
task may require part insertion (the so-called peg-in-hole problem) or
gear meshing. A slight mismatch between the parts can result in wedging
and jamming, which can cause large interaction forces and failure of the
task. As a result assembly tasks are difficult to accomplish without special
fixtures and jigs, or without sensing and controlling the interaction forces.

Geometry

Most industrial manipulators at the present time have six or fewer DOF.
These manipulators are usually classified kinematically on the basis of the
first three joints of the arm, with the wrist being described separately. The
majority of these manipulators fall into one of five geometric types: articu-
lated (RRR), spherical (RRP), SCARA (RRP), cylindrical (RPP),
or Cartesian (PPP). We discuss each of these below in Section 1.3.

Each of these five manipulator arms is a serial link robot. A sixth
distinct class of manipulators consists of the so-called parallel robot. In
a parallel manipulator the links are arranged in a closed rather than open
kinematic chain. Although we include a brief discussion of parallel robots
in this chapter, their kinematics and dynamics are more difficult to derive
than those of serial link robots and hence are usually treated only in more
advanced texts.

1.2.2 Robotic Systems

A robot manipulator should be viewed as more than just a series of me-
chanical linkages. The mechanical arm is just one component in an over-
all robotic system, illustrated in Figure 1.4, which consists of the arm,
external power source, end-of-arm tooling, external and internal
sensors, computer interface, and control computer. Even the pro-
grammed software should be considered as an integral part of the overall
system, since the manner in which the robot is programmed and controlled
can have a major impact on its performance and subsequent range of appli-
cations.
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Figure 1.4: The integration of a mechanical arm, sensing, computation,
user interface and tooling forms a complex robotic system. Many modern
robotic systems have integrated computer vision, force/torque sensing, and
advanced programming and user interface features.

1.2.3  Accuracy and Repeatability

The accuracy of a manipulator is a measure of how close the manipulator
can come to a given point within its workspace. Repeatability is a measure
of how close a manipulator can return to a previously taught point. The pri-
mary method of sensing positioning errors is with position encoders located
at the joints, either on the shaft of the motor that actuates the joint or on
the joint itself. There is typically no direct measurement of the end-effector
position and orientation. One relies instead on the assumed geometry of
the manipulator and its rigidity to calculate the end-effector position from
the measured joint positions. Accuracy is affected therefore by computa-
tional errors, machining accuracy in the construction of the manipulator,
flexibility effects such as the bending of the links under gravitational and
other loads, gear backlash, and a host of other static and dynamic effects.
It is primarily for this reason that robots are designed with extremely high
rigidity. Without high rigidity, accuracy can only be improved by some sort
of direct sensing of the end-effector position, such as with computer vision.

Once a point is taught to the manipulator, however, say with a teach
pendant, the above effects are taken into account and the proper encoder
values necessary to return to the given point are stored by the controlling
computer. Repeatability therefore is affected primarily by the controller
resolution. Controller resolution means the smallest increment of mo-
tion that the controller can sense. The resolution is computed as the total
distance traveled divided by 2", where n is the number of bits of encoder
accuracy. In this context, linear axes, that is, prismatic joints, typically
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have higher resolution than revolute joints, since the straight line distance
traversed by the tip of a linear axis between two points is less than the
corresponding arc length traced by the tip of a rotational link.

In addition, as we will see in later chapters, rotational axes usually result
in a large amount of kinematic and dynamic coupling among the links, with
a resultant accumulation of errors and a more difficult control problem. One
may wonder then what the advantages of revolute joints are in manipulator
design. The answer lies primarily in the inereased dexterity and compactness
of revolute joint designs. For example, Figure 1.5 shows that for the same
range of motion, a rotational link can be made much smaller than a link
with linear motion.

/s

Figure 1.5: Linear vs. rotational link motion showing that a smaller revolute
joint can cover the same distance d as a larger prismatic joint. The tip of a
prismatic link can cover a distance equal to the length of the link. The tip
of a rotational link of length a, by contrast, can cover a distance of 2a by
rotating 180 degrees. )

Thus, manipulators made from revolute joints occupy a smaller working
volume than manipulators with linear axes. This increases the ability of the
manipulator to work in the same space with other robots, machines, and
people. At the same time revolute joint manipulators are better able to
maneuver around obstacles and have a wider range of possible applications.

1.2.4 Wrists and End Effectors

The joints in the kinematic chain between the arm and end effector are
referred to as the wrist. The wrist joints are nearly always all revolute.
It is increasingly common to design manipulators with spherical wrists,
by which we mean wrists whose three joint axes intersect at a common
point, known as the wrist center point. Such a spherical wrist is shown
in Figure 1.6.

The spherical wrist greatly simplifies kinematic analysis, effectively al-
lowing one to decouple the position and orientation of the end effector.
Typically the manipulator will possess three DOF for position, which are
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Wrist Center Point

Figure 1.6: The spherical wrist. The axes of rotation of the spherical wrist
are typically denoted roll, pitch, and yaw and intersect at a point called the
wrist center point.

produced by three or more joints in the arm. The number of DOF for ori-
entation will then depend on the DOF of the wrist. It is common to find
wrists having one, two, or three DOF depending on the application. For
example, the SCARA robot shown in Figure 1.14 has four DOF: three for
the arm, and one for the wrist, which has only a rotation about the final
z-axis.

The arm and wrist assemblies of a robot are used primarily for position-
ing the hand, end effector, and any tool it may carry. It is the end effector
or tool that actually performs the task. The simplest type of end effector
is a gripper, such as shown in Figure 1.7 which is usually capable of only
two actions, opening and closing. While this is adequate for materials
transfer, some parts handling, or gripping simple tools, it is not adequate
for other tasks such as welding, assembly, grinding, etc.

Figure 1.7: Examples of robot grippers. Shown here from left to right are
a two-fingered parallel jaw gripper, a scissor-type gripper, and a vertical
gripper. (Photos courtesy of ASG-Jergen’s, Cleveland Ohio.)

A great deal of research is therefore devoted to the design of special pur-
pose end effectors as well as of tools that can be rapidly changed as the task
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dictates. There is also much research on the development of anthropomor-
phic hands such as that shown in Figure 1.8. Since we are concerned with
the analysis and control of the manipulator itself and not in the particular
application or end effector, we will not discuss the design of end effectors or
the study of grasping and manipulation.

Figure 1.8: A three-fingered anthropomorphic hand developed by Barrett
Technologies. Such grippers allow for more dexterity and the ability to ma-
nipulate objects of various sizes and geometries. (Photo courtesy of Barrett
Technologies. )

1.3 COMMON KINEMATIC ARRANGEMENTS

There are many possible ways to construct kinematic chains using prismatic
and revolute joints. However, in practice, only a few kinematic designs are
used. Here we briefly describe the most typical arrangements.

1.3.1 Articulated Manipulator (RRR)

The articulated manipulator is also called a revolute, elbow, or anthro-
pomorphic manipulator. The ABB IRB1400 articulated arm is shown in
Figure 1.9. In the anthropomorphic design the three links are designated
as the body, upper arm, and forearm, respectively, as shown in Figure 1.9.
The joint axes are designated as the waist (2}, shoulder (z;), and elbow
(z2). Typically, the joint axis zp is parallel to z; and both z; and zy are
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Figure 1.9: The ABB IRB1400 Robot, a six-DOF elbow manipulator (right).
The symbolic representation of this manipulator (left) shows why it is re-
ferred to as an anthropomerphic robot. The links and joints are analogous
to human joints and limbs. (Photo courtesy of ABB.)

Base

perpendicular to zy. The workspace of the revolute manipulator is shown in
Figure 1.10. The revolute manipulator provides for relatively large freedom
of movement in a compact space.

Top

Figure 1.10: Workspace of the elbow manipulator. The elbow manipulator
provides a larger workspace than other kinematic designs relative to its size.

An alternate revolute joint design is the parallelogram linkage such
as the ABB IRB6400, shown in Figure 1.11. The parallelogram linkage is
less dexterous than the elbow manipulator but has several advantages that
make it an attractive and popular design. The most notable feature of the
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parallelogram linkage manipulator is that the actuator for joint 3 is located
on link 1. Since the weight of the motor is born by link 1, links 2 and 3 can
be made more lightweight and the motors themselves can be less powerful.
Also, the dynamics of the parallelogram manipulator are simpler than those
of the elbow manipulator making it easier to control.

Figure 1.11: The ABB IRB6400 manipulator utilizes a parallelogram linkage
design. The motor that actuates the elbow joint is located on the shoulder,
which reduces the weight of the upper arm. A general principle in manip-
ulator design is to locate as much of the mass of the robot away from the
distal links as possible. (Photo courtesy of ABB.)

1.3.2 Spherical Manipulator (RRP)

By replacing the third or elbow joint in the revolute manipulator by a pris-
matic joint, one obtains the spherical manipulator shown in Figure 1.12.
The term spherical manipulator derives from the fact that the joint co-
ordinates coincide with the spherical coordinates of the end effector relative
to a coordinate frame located at the shoulder joint. Figure 1.12 shows the
Stanford Arm, one of the most well-known spherical robots.
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Figure 1.12: The Stanford Arm is an example of a spherical manipulator.
The earliest manipulator designs were spherical robots. (Photo courtesy of
the Coordinated Science Lab, University of Illinois at Urbana-Champaign. )

1.3.3 SCARA Manipulator (RRP)

The SCARA arm (for Selective Compliant Articulated Robot for Assembly)
shown in Figure 1.14 is a popular manipulator, which, as its name suggests;
is tailored for assembly operations. Although the SCARA has an RRP struc-
ture, it is quite different from the spherical manipulator in both appearance
and in its range of applications. Unlike the spherical design, which has z
perpendicular to z1, and z, perpendicular to 22, the SCARA has z, z;, and
zy mutually parallel. Figure 1.13 shows the symbolic representation of the
SCARA arm and Figure 1.14 shows the Adept Cobra Smart600.
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Figure 1.13: Symbolic representation of the SCARA arm.
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Figure 1.14: The Adept Cobra Smart600 SCARA Robot. The SCARA
design is ideal for table top assembly, pick-and-place tasks, and certain types
of packaging applications. (Photo Courtesy of Adept Technology, Inc.)

1.3.4 Cylindrical Manipulator (RPP)

The cylindrical manipulator is shown in Figure 1.15. The first joint is rev-
olute and produces a rotation about the base, while the second and third
joints are prismatic. As the name suggests, the joint variables are the cylin-
drical coordinates of the end effector with respect to the base.

1.3.5 Cartesian Manipulator (PPP)

A manipulator whose first three joints are prismatic is known as a Carte-
sian manipulator. The joint variables of the Cartesian manipulator are the
Cartesian coordinates of the end effector with respect to the base. As might
be expected, the kinematic description of this manipulator is the simplest of
all manipulators. Cartesian manipulators are useful for table-top assembly
applications and, as gantry robots, for transfer of material or cargo. An
example of a Cartesian robot, from Epson, is shown in Figure 1.16.

The workspaces of the spherical, SCARA, cylindrical, and Cartesian
geometries are shown in Figure 1.17
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Figure 1.15: The Seiko RT3300 Robot cylindrical robot. Cylindrical robots
are often used in materials transfer tasks. (Photo courtesy of Epson Robots.)

Figure 1.16: The Epson Cartesian Robot. Cartesian robot designs allow
increased structural rigidity and hence higher precision. Cartesian robots are
often used in pick and place operations. (Photo courtesy of Epson Robots.)
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(@)

() (a)

Figure 1.17: Comparison of the workspaces of the (a) spherical, (b) SCARA,
(¢) cylindrical, and (d) Cartesian robots. The nature of the workspace
dictates the types of application for which each design can be used.
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1.3.6 Parallel Manipulator

A parallel manipulator is one in which some subset of the links form a
closed chain. More specifically, a parallel manipulator has two or more kine-
matic chains connecting the base to the end effector. Figure 1.18 shows the
ABB IRB940 Tricept robot, which is a parallel manipulator. The closed-
chain kinematics of parallel robots can result in greater structural rigidity,
and hence greater accuracy, than open chain robots. The kinematic de-
scription of parallel robots is fundamentally different from that of serial link
robots and therefore requires different methods of analysis.

Figure 1.18: The ABB IRB940 Tricept parallel robot. Parallel robots gen-
erally have much higher structural rigidity than serial link robots. (Photo
courtesy of ABB.)

1.4 OUTLINE OF THE TEXT

A typical application involving an industrial manipulator is shown in Fig-
ure 1.19. The manipulator is shown with a grinding tool that it must use
to remove a certain amount of metal from a surface. In the present text we
are concerned with the following question: What are the basic issues to be
resolved and what must we learn in order to be able to program a robot
to perform such tasks? The ability to answer this question for a full six
degree-of-freedom manipulator represents the goal of the present text. The
answer is too complicated to be presented at this point. We can, however,
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Figure 1.19: Two-link planar robot example. Each chapter of the text dis-
cusses a fundamental concept applicable to the task shown.

use the simple two-link planar mechanism to illustrate some of the major
issues involved and to preview the topics covered in this text.

Suppose we wish to move the manipulator from its home position to
position A4, from which point the robot is to follow the contour of the surface
S to the point B, at constant velocity, while maintaining a prescribed force
F normal to the surface. In so doing the robot will cut or grind the surface
according to a predetermined specification. To accomplish this and even
more general tasks, we must solve a number of problems. Below we give
examples of these problems, all of which will be treated in more detail in
the remainder of the text.

Forwerd Kinematics

The first problem encountered is to describe both the position of the tool
and the locations A and B (and most likely the entire surface §) with respect
to a common coordinate system. In Chapter 2 we describe representations of
coordinate systems and transformations among various coordinate systems.

Typically, the manipulator will be able to sense its own position in some
manner using internal sensors (position encoders located at joints 1 and 2)
that can measure directly the joint angles #; and 6. We also need therefore
to express the positions A and B in terms of these joint angles. This leads
to the forward kinematics problem studied in Chapter 3, which is to
determine the position and orientation of the end effector or tool in terms

14. OUTLINE OF THE TEXT 21

of the joint variables.
It is customary to establish a fixed coordinate system, called the world
or base frame to which all objects including the manipulator are referenced.

In this case we establish the base coordinate frame ogzqyg at the base of the
robot, as shown in Figure 1.20.

»:

Yo

Figure 1.20: Coordinate frames attached to the links of a two-link planar
robot. Each coordinate frame moves as the corresponding link moves. The
mathematical description of the robot motion is thus reduced to a mathe-
matical description of moving coordinate frames.

The coordinates (z,y) of the tool are expressed in this coordinate frame
as

T
¥

ay cos b + a cos(6; + ) (1.1)
a1 sinby + agsin(fy + 6,) (1.2)

in which a; and ay are the lengths of the two links, respectively. Also the
orientation of the tool frame relative to the base frame is given by the
filrectmn cosines of the xp and y; axes relative to the Ty and 7y axes, that
is,

Ty -zg=cos(fi+6); y-zp=— sin(6y + )

Ty-yo =sin(6r +02) 5 g2 -yo= cos(f + ) (13)
which we may combine into a rotation matrix
[ T3 Ty Y2 -Tp :l . cos(6 + fa) —sin(f) + fa)
T2 Y0 Y20 sin(6y +6)  cos(6y + 0,) 14

qulations (11), (1.2), and (1.4) are called the forward kinematic
equations for this arm. For a six-DOF robot these equations are quite
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complex and cannot be written down as easily as for the two-link manipula-
tor. The general procedure that we discuss in Chapter 3 establishes coordi-
nate frames at each joint and allows one to transform systematically among
these frames using matrix transformations. The procedure that we use is
referred to as the Denavit-Hartenberg convention. We then use homo-
geneous coordinates and homogeneous transformations to simplify
the transformation among coordinate frames,

Inverse Kinematlics

Now, given the joint angles f;,05 we can determine the end-effector co-
ordinates = and y. In order to command the robot to move to location A
we need the inverse; that is, we need the joint variables 61,8y in terms of
the z and y coordinates of A. This is the problem of inverse kinematics.
In other words, given 2 and y in Equations (1.1) and (1.2), we wish to solve
for the joint angles. Since the forward kinematic equations are nonlinear, a
solution may not be easy to find, nor is there a unique solution in general.
We can see in the case of a two-link planar mechanism that there may be
no solution, for example if the given (z,y) coordinates are out of reach of
the manipulator. If the given (z,y) coordinates are within the manipula-
tor’s reach there may be two solutions as shown in Figure 1.21, the so-called

" Bibow Dawn
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Figure 1.21: The twe-link elbow robot has two solutions to the inverse
kinematics except at singular configurations, the elbow up solution and the
elbow down solution.

elbow up and elbow down configurations, or there may be exactly one
solution if the manipulator must be fully extended to reach the point. There
may even be an infinite number of solutions in some cases (Problem 1-20).

Consider the diagram of Figure 1.22. Using the law of cosines! we see

'See Appendix A
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Figure 1.22: Solving for the Joint angles of a two-link planar arm.

that the angle 8, is given by

ﬂ+f~ﬁ—ﬁ
—e ok

cosfly = 2.=D (1.5)

2&1@2
We could now determine B2 as 62 = cos™}(D). However, a better way to

ﬁgd 0 is to notice that if cos(6y) is given by Equation (1.5), then sin(6,) is
given as

sin(fy) = +v/1— D2 (1.6)

and, hence, 8, can be found by

L EVI-D?
o — (L7)

The advantage of this latter approach is that both the elbow-up and
e'lbow‘-down solutions are recovered by choosing the negative and positive
signs in Equation (1.7), respectively.

It is left as an exercise (Problem 1-18) to show that @) is now given as

b =t

8 = tan(y/z) - tan~! (ﬂ’_&_) (1.8)

a1 +azcosty

Notice that the angle 6; depends on #. This makes sense physically

since‘ we would expect to require a different value for 01, depending on which
solution is chosen for @,.
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Velocity Kinematics

To follow a contour at constant velocity, or at any prescribed velocity, we
must know the relationship between the tool velocity and the joint velocities.
In this case we can differentiate Equations (1.1) and (1.2) to obtain

T = —aisiné '6'1 ~ agsin{fy + 92)(91 + 32)

. : . 1.9
¥ = ajcosty -t +aycos(fy + 92)(91 + 92) (L)

Using the vector notation z = [ ; ] and f = [ gl ] , We may write these
2

equations as

—apsinf) —apsin(fy +65) —ag s'm(ﬂl + 92) g (1 10)
a1 cosby +aycos(fy +62)  agcos(fy + ) .

= Jé

The matrix J defined by Equation (1.10) is called the Jacobian of the
manipulator and is a fundamental object to determine for any manipulator.
In Chapter 4 we present a systematic procedure for deriving the manipulator
Jacobian.

The determination of the joint velocities from the end-effector velocities
is conceptually simple since the velocity relationship is linear. Thus, the joint
velocities are found from the end-effector velocities via the inverse Jacobian

f = J'% (1.11)
where J~! is given by
J_l _ 1 ap cos(f+62) ag sin(fy-+63)
ajagsinf, | —ajcosth—azcos(fy+8;) —aysinby—agsin(fy+6z)

The determinant of the Jacobian in Equation (1.10) is equal to ajagsinfs.
Therefore, this Jacobian does not have an inverse when #; = 0 or 8y = ,
in which case the manipulator is said to be in a singular configuration,
such as shown in Figure 1.23 for 8 = 0.

The determination of such singular configurations is important, for sev-
eral reasons. At singular configurations there are infinitesimal motions that
are unachievable; that is, the manipulator end effector cannot move in cer-
tain directions. In the above example the end effector cannot move in the
positive zy direction when fy = 0. Singular configurations are also related
to the nonuniqueness of solutions of the inverse kinematics. For example,
for a given end-effector position of the two-link planar manipulator, there

1.4. OUTLINE OF THE TEXT 25

Yo

Xp

7

Figure 1.23: A singular configuration results when the elbow is straight. In
this configuration the two-link robot has only one DOF.

are in general two possible solutions to the inverse kinematics. Note that
a singular configuration separates these two solutions in the sense that the
manipulator cannot go from one to the other without passing through a sin-
gularity. For many applications it is important to plan manipulator motions
in such a way that singular configurations are avoided.

Path Planning and Trajectory Generation

The robot control problem is typically decomposed hierarchically into
three tasks: path planning, trajectory generation, and trajectory
tracking. The path planning problem, considered in Chapter 5, is to deter-
mine a path in task space (or configuration space) to move the robot to a
goal position while avoiding collisions with objects in its workspace. These
paths encode position and orientation information without timing consid-
erations, that is, without considering velocities and accelerations along the
planned paths. The trajectory generation problem, also considered in Chap-
ter 5, is to generate reference trajectories that determine the time history
of the manipulator along a given path or between initial and final configu-
rations. These are typically given in joint space as polynomial functions of
time. We discuss the most common polynomial interpolation schemes used
to generate these trajectories.

Independent Joint Control

Once reference trajectories for the robot are specified, it is the task of the
control system to track them. In Chapter 6 we discuss the motion control
problem. We treat the twin problems of tracking and disturbance
rejection, which are to determine the control inputs necessary to follow, or
track, a reference trajectory, while simultaneously rejecting disturbances
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due to unmodeled dynamic effects such as friction and noise. We first model
the actuator and drive-train dynamics and discuss the design of independent
joint control algorithms. A block diagram of a single-input/single-output
(SISO) feedback control system is shown in Figure 1.24.

Disturbance
Reference . B
Trajectory 4+ Power + utpu
> Compensator — Amplifier [P Plant
Sensor

Figure 1.24: Basic structure of a feedback control system. The compensator
measures the error between a reference and a measured output and produces
a signal to the plant that is designed to drive the error to zero despite the
presences of disturbances.

We detail the standard approaches to robot control based on both fre-
quency domain and state space techniques. We also introduce the notion of
feedforward control for tracking time varying trajectories.

Dynamics

The simple control strategies considered in Chapter 6 are based on the
actuator and drive-train dynamics but ignore the coupling effects due to
the motion of the links. In Chapter 7 we develop techniques based on La-
grangian dynamics for systematically deriving the equations of motion of
rigid-link robots. Deriving the dynamic equations of motion for robots is
not a simple task due to the large number of degrees of freedom and the
nonlinearities present in the system. We also discuss the so-called recur-
sive Newton-Euler method for deriving the robot equations of motion.
The Newton-Euler formulation is well-suited to real-time computation for
both simulation and control.

Multivariable Control

In Chapter 8 we discuss more advanced control techniques based on the
Lagrangian dynamic equations of motion derived in Chapter 7. We introduce
the fundamental notions of computed torque and inverse dynamics as a
means for compensating the complex nonlinear interaction forces among the
links of the manipulator. Robust and adaptive control are also introduced
in using the second method of Lyapunov. Chapter 10 provides some
additional advanced techniques from geometric nonlinear control theory that
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are useful for controlling high performance robots. We also discuss the
control of so-called nonholonomic systems such as mobile robots.

Force Control

In the example robot task above, once the manipulator has reached loca-
tion 4, it must follow the contour S maintaining a constant force normal to
the surface. Conceivably, knowing the location of the object and the shape
of the contour, one could carry out this task using position control alone.
This would be quite difficult to accomplish in practice, however. Since the
manipulator itself possesses high rigidity, any errors in position due to uncer-
tainty in the exact location of the surface or tool would give rise to extremely
large forces at the end effector that could damage the tool, the surface, or
the robot. A better approach is to measure the forces of interaction directly
and use a force control scheme to accomplish the task. In Chapter 9
we discuss force control and compliance, along with common approaches to
force control, namely hybrid control and impedance control.

Computer Vision

Cameras have become reliable and relatively inexpensive sensors in many
robotic applications. Unlike joint sensors, which give information about
the internal configuration of the robot, cameras can be used not only to
measure the position of the robot but also to locate objects robot in the
robot’s workspace. In Chapter 11 we discuss the use of computer vision to
determine position and orientation of objects.

Vision-Based Control

In some cases, we may wish to control the motion of the manipulator
relative to some target as the end effector moves through free space. Here,
force control cannot be used. Instead, we can use computer vision to close
the control loop around the vision sensor. This is the topic of Chapter 12.
There are several approaches to vision-based control, but we will focus on the
method of Image-Based Visual Servo (IBVS). With IBVS, an error measured
in image coordinates is directly mapped to a control input that governs the
motion of the camera. This method has become very popular in recent
years, and it relies on mathematical development analogous to that given in
Chapter 4.

PROBLEMS

1-1 What are the key features that distinguish robots from other forms of
automation such as CNC milling machines?
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1-2 Briefly define each of the following terms: forward kinematics, inverse
kinematics, trajectory planning, workspace, accuracy, repeatability,
resolution, joint variable, spherical wrist, end effector.

1-3 What are the main ways to classify robots?

1-4 Make a list of 10 robot applications. For each application discuss which
type of manipulator would be best suited; which least suited. Justify
your choices in each case.

1-5 List several applications for nonservo robots; for point-to-point robots;
for continuous path robots.

1-6 List five applications that a continuous path robot could do that a
point-to-point robot could not do.

1-7 List five applications for which computer vision would be useful in
robotics.

1-8 List five applications for which either tactile sensing or force feedback
control would be useful in robotics.

1-9 Find out how many industrial robots are currently in operation in
Japan. How many are in operation in the United States? What coun-
try ranks third in the number of industrial robots in use?

1-10 Suppose we could close every factory today and reopen them tomorrow
fully automated with robots. What would be some of the economic
and social consequences of such a development?

1-11 Suppose a law were passed banning all future use of industrial robots.
What would be some of the economic and social consequences of such
an act?

1-12 Discuss applications for which redundant manipulators would be use-
ful.

1-13 Referring to Figure 1.25, suppose that the tip of a single link travels a
distance d between two points. A linear axis would travel the distance
d while a rotational link would travel through an arc length £ as
shown. Using the law of cosines, show that the distance d is given by

d={y/2(1 — cost)
which is of course less than 6. With 10-bit accuracy, £ = 1 meter,

and # = 90°, what is the resolution of the linear link? of the rotational
link?
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Figure 1.25: Diagram for Problem 1-15.

1-14 For the single-link revolute arm shown in Figure 1.25, if the length of
the link is 50 cm and the arm travels 180 degrees, what is the control
resolution obtained with an 8-bit encoder?

1-15 Repeat Problem 1.14 assuming that the 8-bit encoder is located on the
motor shaft that is connected to the link through a 50:1 gear reduction.
Assume perfect gears.

1-16 Why is accuracy generally less than repeatability?

1-17 How could manipulator accuracy be improved using endpoint sensing?
What difficulties might endpoint sensing introduce into the control
problem?

1-18 Derive Equation (1.8).
1-19 For the two-link manipulator of Figure 1.20 suppose a; = a; = 1.

1. Find the coordinates of the tool when 6, = 7 and 6 = %

2. If the joint velocities are constant at by = 1, 6, = 2, what is
the velocity of the tool? What is the instantaneous tool velocity
when 91 = 92 = %?

3. Write a computer program to plot the joint angles as a function
of time given the tool locations and velocities as a fanction of
time in Cartesian coordinates.

4. Suppose we desire that the tool follow a straight line between the
points (0,2) and (2,0) at constant speed s. Plot the time history
of joint angles.

1-20 For the two-link planar manipulator of Figure 1.20 is it possible for
there to be an infinite number of solutions to the inverse kinematic
equations? If so, explain how this can occur.
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1-21 Explain why it might be desirable to reduce the mass of distal links in
a manipulator design. List some ways this can be done. Discuss any
possible disadvantages of such designs.

NOTES AND REFERENCES

We give below some of the important milestones in the history of modern
robotics.

1947 — The first servoed electric powered teleoperator is developed.
1948 — A teleoperator is developed incorporating force feedback.

1949 — Research on numerically controlled milling machine is initiated.
1954 — George Devol designs the first programmable robot

1956 — Joseph Engelberger, a Columbia University physics student, buys
the rights to Devol’s robot and founds the Unimation Company.

1961 — The first Unimate robot is installed in a Trenton, New Jersey plant
of General Motors to tend a die casting machine.

1961 — The first robot incorporating force feedback is developed.
1963 — The first robot vision system is developed.
1971 — The Stanford Arm is developed at Stanford University.

1973 — The first robot programming language (WAVE) is developed at
Stanford.

1974 — Cincinnati Milacron introduced the T3 robot with computer con-
trol.

1975 — Unimation Inc. registers its first financial profit.

1976 — The Remote Center Compliance (RCC) device for part insertion
in assembly is developed at Draper Labs in Boston.

1976 — Robot arms are used on the Viking I and II space probes and land
on Mars.

1978 — Unimation introduces the PUMA robot, based on designs from a
General Motors study.

1979 — The SCARA robot design is introduced in Japan.

1981 — The first direct-drive robot is developed at Carnegie-Mellon Uni-
versity.
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1982 — Fanuc of Japan and General Motors form GM Fanuc to market
robots in North America.

1983 — Adept Technology is founded and successfully markets the direct-
drive robot.

1986 — The underwater robot, Jason, of the Woods Hole Oceanographic
Institute, explores the wreck of the Titanic, found a year earlier by
Dr. Robert Barnard.

1988 — Staubli Group purchases Unimation from Westinghouse.
1988 — The IEEE Robotics and Automation Society is formed.

1993 — The experimental robot, ROTEX, of the German Aerospace Agency
(DLR) was flown aboard the space shuttle Columbia and performed
a variety of tasks under both teleoperated and sensor-based offline
programmed modes.

1996 — Honda unveils its Humanoid robot; a project begun in secret in
1986.

1997 — The first robot soccer competition, RoboCup-97, is held in Nagoya,
Japan and draws 40 teams from around the world.

1997 — The Sojourner mobile robot travels to Mars aboard NASA’s Mars
PathFinder mission.

2001 — Sony begins to mass produce the first household robot, a robot
dog named Aibo.

2001 — The Space Station Remote Manipulation System (SSRMS) is
launched in space on board the space shuttle Endeavor to facilitate
continued construction of the space station.

2001 — The first telesurgery is performed when surgeons in New York
perform a laparoscopic gall bladder removal on a woman in Strasbourg,
France.

2001 — Robots are used to search for victims at the World Trade Center
site after the September 11th tragedy.

2002 — Honda's Humanoid Robot ASIMO rings the opening bell at the
New York Stock Exchange on February 15th.

2005 — ROKVISS (Robotic Component Verification on board the Interna-
tional Space Station), the experimental teleoperated arm built by the
German Aerospace Center (DLR), undergoes its first tests in space.
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Many books have been written about basic and advanced topics in
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e H. Asada and J-J. Slotine. Robot Analysis and Control. Wiley, New
York, 1986.

o G. A. Bekey, Autonomous Robots. MIT Press, Cambridge, MA, 2005.

e M. Brady et al,, editors. Robot Motion: Planning and Control. MIT
Press, Cambridge, MA, 1983.

¢ H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Cambridge, MA, 2005.

o J. Craig. Introduction to Robotics: Mechanics and Control. Addison
Wesley, Reading, MA, 1986.

o R. Dorf. Robotics and Automated Manufacturing. Reston, VA, 1983.
e J. Engleberger. Robotics in Practice. Kogan Page, London, 1980.

e K.S. Fu, R. C. Gonzalez, and C.S.G. Lee. Robotics: Control Sensing,
Vision, and Intelligence. McGraw-Hill, St Louis, 1987.

e B. K. Ghosh, N. Xi and T. J. Tarn. Control in Robotics and Automation:
Sensor-Based Integration, Academic Press, San Diego, CA, 1999.

e T. R. Kurfess. Robotics and Automation Handbook, CRC Press, Boca
Raton, FL, 2005.

o J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, 1991.

o M. T. Mason. Mechanics of Robotic Manipulation, MIT Press, Cam-
bridge, MA, 2001.

e R.M. Murray, Z. Li, and $.8. Sastry. A Mathematical Introduction to
Robotics. CRC Press, Boca Raton, FL, 1994.

e S. B. Niku. Introduction to Robetics: Analysis, Systems, Applications.
Prentice Hall, Upper Saddle River, NJ, 2001.

o R. Paul. Robot Muanipulators: Mathematics, Programming and Control.
MIT Press, Cambridge, MA, 1982.

o L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipula-
tors, Znd Edition, Springer-Verlag, London, 2000.

e M. Shahinpoor. Robot Engineering Tertbook. Harper and Row, New
York, 1987.

o W.Snyder. Industrial Robots: Computer Interfacing and Control. Prentice-
Hall, Englewood Cliffs, NJ, 1985.
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There is a great deal of ongoing research in robotics. Current research
results can be found in journals such as

o IEEE Transactions on Robotics (previously IEEE Transactions on Robotics
and Automation)

* IEEE Robotics and Automation Magazine
o International Journal of Robotics Research
® Robotics and Autonomous Systems

e Journal of Robotic Systems

® Robotica

e Journal of Intelligent and Robotic Systems
o Autonomous Robots

o Advanced Robotics



Chapter 2

RIGID MOTIONS AND
HOMOGENEOUS
TRANSFORMATIONS

A. large part of robot kinematics is concerned with establishing various
coordinate frames to represent the positions and orientations of rigid ob-
Jects, and with transformations among these coordinate frames. Indeed, the
geometry of three-dimensional space and of rigid motions plays a central role
in all aspects of robotic manipulation. In this chapter we study the opera-
tions of rotation and translation, and introduce the notion of homogeneous
transformations.! Homogeneous transformations combine the operations of
rotation and translation into a single matrix multiplication, and are used
in Chapter 3 to derive the so-called forward kinematic equations of rigid
manipulators.

We begin by examining representations of points and vectors in a Eu-
clidean space equipped with multiple coordinate frames. Following this, we
introduce the concept of a rotation matrix to represent relative orientations
among coordinate frames. Then we combine these two concepts to build
homogeneous transformation matrices, which can be used to simultaneously
represent the position and orientation of one coordinate frame relative to
another. Furthermore, homogeneous transformation matrices can be used
to perform coordinate transformations. Such transformations allow us to
represent various quantities in different coordinate frames, a facility that we
will often exploit in subsequent chapters.

'Since we make extensive use of elementary matrix theory, the reader may wish to
review Appendix B before beginning this chapter.
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Figure 2.1: Two coordinate frames, a point p, and two vectors v; and vs.

2.1 REPRESENTING POSITIONS

Before developing representation schemes for points and vectors, it is in-
structive to distinguish between the two fundamental approaches to geo-
metric reasoning: the synthetic approach and the analytic approach. In
the former, one reasons directly about geometric entities (e.g., points or
lines), while in the latter, one represents these -entities using coordinates
or equations, and reasoning is performed via algebraic manipulations. The
latter approach requires the choice of a reference coordinate frame. A co-
ordinate frame consists of an origin (a single point in space), and two or
three orthogonal coordinate axes, for two- and three-dimensional spaces,
respectively.

Consider Figure 2.1, which shows two coordinate frames that differ in
orientation by an angle of 45°. Using the synthetic approach, without ever
assigning coordinates to points or vectors, one can say that zg is perpendic-
ular to yg, or that v; x vy defines a vector that is perpendicular to the plane
containing v; and vy, in this case pointing out of the page.

In robotics, one typically uses analytic reasoning, since robot tasks are
often defined using Cartesian coordinates. Of course, in order to assign
coordinates it is necessary to specify a reference coordinate frame. Consider
again Figure 2.1. We could specify the coordinates of the point p with respect
to either frame opzpyp or frame o01z1y;. In the former case, we might assign
to p the coordinate vector [5, 6/, and in the latter case [-2.8,4.2)7. So that
the reference frame will always be clear, we will adopt a notation in which
a superscript is used to denote the reference frame. Thus, we would write

SHEEE
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Geometrically, a point corresponds to a specific location in space. We
stress here that p is a geometric entity, a point in space, while both p° and
p* are coordinate vectors that represent the location of this point in space
with respect to coordinate frames ogzqyy and oyzy3, respectively.

Since the origin of a coordinate frame is just a point in space, we can
assign coordinates that represent the position of the origin of one coordinate
frame with respect to another. In Figure 2.1, for example, we have

10 ~106
O?=[5]’ "52[ 3.5]

In cases where there is only a single coordinate frame, or in which the
reference frame is obvious, we will often omit the superscript. This is a slight
abuse of notation, and the reader is advised to bear in mind the difference
between the geometric entity called p and any particular coordinate vector
that is assigned to represent p. The former is independent of the choice
of coordinate frames, while the latter obviously depends on the choice of
coordinate frames.

While a point corresponds to a specific location in space, a vector specifies
a direction and a magnitude. Vectors can be used, for example, to represent
displacements or forces. Therefore, while the point p is not equivalent to
the vector v, the displacement from the origin og to the point p is given by
the vector v;. In this text, we will use the term vector to refer to what are
sometimes called free vectors, that is, vectors that are not constrained to be
located at a particular point in space. Under this convention, it is clear that
points and vectors are not equivalent, since points refer to specific locations
in space, but a vector can be moved to any location in space. Under this
convention, two vectors are equal if they have the same direction and the
same magnitude.

When assigning coordinates to vectors, we use the same notational con-
vention that we used when assigning coordinates to points. Thus, v; and vy
are geometric entities that are invariant with respect to the choice of coordi-
nate frames, but the representation by coordinates of these vectors depends
directly on the choice of reference coordinate frame. In the example of Fig-
ure 2.1, we would obtain

3 7T ~5.1 ~2.89
o[i] a-[E) e[ 4]

In order to perform algebraic manipulations using coordinates, it is es-
sential that all coordinate vectors be defined with respect to the same coor-
dinate frame. In the case of free vectors, it is enough that they be defined
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with respect to “parallel” coordinate frames, that is, frames whose respec-
tive coordinate axes are parallel, since only their magnitude and direction
are specified and not their absolute locations in space.

Using this convention, an expression of the form v} +v2, where v} and v3
are as in Figure 2.1, is not defined since the frames ogzgyy and 0171y are not
parallel. Thus, we see a clear need not only for a representation system that
allows points to be expressed with respect to various coordinate frames, but
also for a mechanism that allows us to transform the coordinates of points
from one coordinate frame to another. Such coordinate transformations are
the topic for much of the remainder of this chapter.

2.2 REPRESENTING ROTATIONS

In order to represent the relative position and orientation of one rigid body
with respect to another, we will attach coordinate frames to each body, and
then specify the geometric relationships between these coordinate frames.
In Section 2.1 we saw how one can represent the position of the origin of
one frame with respect to another frame. In this section, we address the
problem of describing the orientation of one coordinate frame relative to
another frame. We begin with the case of rotations in the plane, and then
generalize our results to the case of orientations in a three-dimensional space.

2.2.1 Rotation in the Plane

Figure 2.2 shows two coordinate frames, with frame 01214 being obtained
by rotating frame opzoyo by an angle 6. Perhaps the most obvious way to
represent the relative orientation of these two frames is to merely specify
the angle of rotation #. There are two immediate disadvantages to such a
representation. First, there is a discontinuity in the mapping from relative
orientation to the value of # in a neighborhoed of # = 0. In particular,
for § = 27 — ¢, small changes in orientation can produce large changes in
the value of §, for example, a rotation by ¢ causes § to “wrap around” to
zero. Second, this choice of representation does not scale well to the three-
dimensional case.

A slightly less obvious way to specify the orientation is to specify the
coordinate vectors for the axes of frame o3z with respect to coordinate
frame opzoyp:

RY = [29 | o]]

in which z{ and 49 are the coordinates in frame opzoye of unit vectors z;
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Figure 2.2: Coordinate frame o1z19; is oriented at an angle 6 with respect
to ogzoyo.

and y;, respectively.? A matrix in this form is called a rotation matrix.
Rotation matrices have a number of special properties that we will discuss
below.

In the two-dimensional case, it is straightforward to compute the entries
of this matrix. As illustrated in Figure 2.2,

mg_[cosﬂ]’ y(l]z[—sinHJ

sin @ cost!
which gives

o | cos —sind

P= [ sinf  cosf ] (21)

Note that we have continued to use the notational convention of allowing
the superscript to denote the reference frame. Thus, RY is a matrix whose
column vectors are the coordinates of the unit vectors along the axes of
frame 0121y; expressed relative to frame opzyyy.

Although we have derived the entries for R} in terms of the angle 6,
it is not necessary that we do so. An alternative approach, and one that
scales nicely to the three-dimensional case, is to build the rotation matrix by
projecting the axes of frame 0,21y, onto the coordinate axes of frame opzgyg.
Recalling that the dot product of two unit vectors gives the projection of

*We will use x;, ¥; to denote both coordinate axes and unit vectors along the coordinate
axes depending on the context.
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one onto the other, we obtain

0 I1-Zp 0
Ty= 5 =
! [zl-yo] N1 yew

?}1'930]

which can be combined to obtain the rotation matrix

RY— [xl'rﬂo yI'EU]
=
1Yo Y%

Thus, the columns of R{f specify the direction cosines of the coordinate axes
of o1z relative to the coordinate axes of ogzoyg. For example, the first
column [z; - Zg, 71 - y0]7 of RY specifies the direction of 1 relative to the
frame opzoyo. Note that the right-hand sides of these equations are defined in
terms of geometric entities, and not in terms of their coordinates. Examining
Figure 2.2 it can be seen that this method of defining the rotation matrix
by projection gives the same result as was obtained in Equation (2.1).

If we desired instead to describe the orientation of frame 0pZoYo Wwith
respect to the frame oyz1y; (that is, if we desired to use the frame o;z3
as the reference frame), we would construct a rotation matrix of the form

1_ [ To-T1 YT
By [5'30'311 yﬂ'yl]

Since the dot product is commutative, (that is, z; - Y; = ¥; - 1i), we see that
Ry = (R))"

In a geometric sense, the orientation of oprgyy with respect to the frame
01211 18 the inverse of the orientation of o121y, with respect to the frame
0gToYo. Algebraically, using the fact that coordinate axes are mutually or-
thogonal, it can readily be seen that

(R)" = (&)™

The column vectors of R{ are of unit length and mutually orthogonal
(Problem 2-4). Such a matrix is said to be orthogonal. It can also be shown
(Problem 2-5) that det RY = +1. If we restrict ourselves to right-handed
coordinate frames, as defined in Appendix B, then det R? = +1 (Problem
2-5). It is customary to refer to the set of all such n x n matrices by the
symbol S0(n), which denotes the Special Orthogonal group of order n.
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For any R € S0O(n) the following properties hold.

e RT = R~' € 30(n)

e The columns (and therefore the rows) of R are mutually orthogonal
e Each column (and therefore each row) of R is a unit vector

e detR=1

To provide further geometric intuition for the notion of the inverse of a
rotation matrix, note that in the two-dimensional case, the inverse of the
rotation matrix corresponding to a rotation by angle # can also be easily
computed simply by constructing the rotation matrix for a rotation by the
angle —#:

cos(—0) —sin(~0) | [ cos® sin | [cos# —sing "
sin(—f) cos(—6) | | —sinf cos@ | | sinf cosd

2.2.2 Rotations in Three Dimensions

The projection technique described above scales nicely to the three-dimensional
case. In three dimensions, each axis of the frame o;z1y17; is projected onto
coordinate frame opzoypzp. The resulting rotation matrix is given by

1Ty N1-Tp 21T
0
B=|z1-w n-w 2%
Tz P A

As was the case for rotation matrices in two dimensions, matrices in this
form are orthogonal, with determinant equal to 1. In this case, 3 x 3 rotation
matrices belong to the group SO(3).

Example 2.1

Suppose the frame 01713121 is rotated through an angle 6 about the zo-
azis, and we wish to find the resulting transformation matriz R). By con-
vention, the right hand rule (see Appendiz B) defines the positive sense for
the angle 6 to be such that rotation by  about the z-azis would advance a
right-hand threaded screw along the positive z-azis. From Figure 2.3 we see
that

129 =cosf, -39 = —sinf,

$1-yg=sin9, yl'y0=C089
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2, 21

Figure 2.3: Rotation about z by an anéle 6.

and
form = 1

while all other dot products are zero. Thus, the rotation matriz R‘I] has a
particularly simple form in this case, namely

cosf —sinf 0
R = |sinf cosf 0 (2.2)
0 0 1

The rotation matrix given in Equation (2.2) is called a basic rotation
matrix (about the z-axis). In this case we find it useful to use the more
descriptive notation R, , instead of R{ to denote the matrix. Tt is easy to
verify that the basic rotation matrix R, ; has the properties

Rz,GRz,qb = Rz,9+¢ (24)
which together imply
-1
(Rg)” = Rus (25)

Similarly, the basic rotation matrices representing rotations about the z
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and y-axes are given as (Problem 2-8)

1 0 0
0 cosf —sind (2.6)
| 0 sinf  cosf |

Rz 9

Il

[ cos® 0 sind ]
Ry,g = 0 1 0 (2.7)
| —sind 0 cosé J

which also satisfy properties analogous to Equations (2.3)~(2.5).

Example 2.2

)

I

.

4500

Iy ——

Yo, 21

P
¥

h
Figure 2.4: Defining the relative orientation of two frames.

Consider the frames ogzoyozg and oyz1y1 2, shown in Figure 2.4. Project-
ing the unit vectors x1,y1, 21 onto g, yo, 20 gives the coordinates of 21,1, 71
in the opToypzg frame. We see that the coordinates of Ty, v, and 2 are
given by

1 1
V2 V2
1= 0 |, ;= 0 , za=1]1
1 -1
V2 V2

The rotation matriz R? specifying the orientation of oyzyyy2z1 relative to
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o0ToYozo has these as its column vectors, that is,

1 1
N R
Rl =10 0 1
1 -1
v

2.3 ROTATIONAL TRANSFORMATIONS

Zp

Z;

Xy
Figure 2.5: Coordinate frame attached to a rigid body.

Figure 2.5 shows a rigid object S to which a coordinate frame 01T1Y121
is attached. Given the coordinates p' of the point p (in other words, given
the coordinates of p with respect to the frame 01Z1Y121), we wish to deter-
mine the coordinates of p relative to a fixed reference frame 00ZoYozo. The
coordinates p! = [u,v,w]” satisfy the equation

P =ur + vy +wz

In a similar way, we can obtain an expression for the coordinates 0 by
projecting the point p onto the coordinate axes of the frame 00ToYozg, giving

. D-Tp
P=1P%
Pz

Combining these two equations we obtain
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Figure 2.6: The block in (b) is obtained by rotating the block in (a) by
about z.

r(u:cl-l-vyl—l-‘wzl)-zg
p = | (uz+vy+wza) -y
| (uzy + oy +wz)- 2
[ uzy -z +vy1 20 + W - T
= ury - Yo + VY1 Yo + wa - Yo
| uTy-2p + Uy -2 +wz - 2
—Il'ﬂ:ﬂ Y1-Tp 21-Zg
= T1-¥% ¥Yi-Yo 21-Yo
L %1720 i@ Z1-&

E e 8 4 )

But the matrix in this final equation is merely the rotation matrix R}, which
leads to
P’ = Rip' (28)

Thus, the rotation matrix RY can be used not only to represent the
orientation of coordinate frame oyz;y;z; with respect to frame oyzoygzg,
but also to transform the coordinates of a point from one frame to another.
If a given point is expressed relative to oz1y12; by coordinates p', then
R?pl represents the same point expressed relative to the frame opzoyo2o.

We can also use rotation matrices to represent rigid motions that cor-
respond to pure rotation. Consider Figure 2.6. One corner of the block in
Figure 2.6(a) is located at the point p, in space. Figure 2.6(b) shows the
same block after it has been rotated about zg by the angle m. In Figure
2.6(b), the same corner of the block is now located at point p, in space. It
is possible to derive the coordinates for py given only the coordinates for p,
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and the rotation matrix that corresponds to the rotation about zy. To see
how this can be accomplished, imagine that a coordinate frame is rigidly at-
tached to the block in Figure 2.6(a), such that it is coincident with the frame
opzoYozo- After the rotation by 7, the block’s coordinate frame, which is
rigidly attached to the block, is also rotated by 7. If we denote this rotated
frame by o1z1y121, we obtain

-1 00
R=R,=]| 0 -10
0 01

In the local eoordinate frame 01z1y12), the point p, has the coordinate
representation p,}. To obtain its coordinates with respect to frame opzpypzo,
we merely apply the coordinate transformation Equation (2.8), giving

0 1
o= Rz,vrpb

It is important to notice that the local coordinates pg of the corner of the
block do not change as the block rotates, since they are defined in terms
of the block’s own coordinate frame. Therefore, when the block’s frame
is aligned with the reference frame ogzgyozo (that is, before the rotation
is performed), the coordinates p}, equals pl, since before the rotation is
performed, the point p, is coincident with the corner of the block. Therefore,
* we can substitute p? into the previous equation to obtain

0 0
Py = Rz‘wpa

This equation shows how to use a rotation matrix to represent a rotational
~motion. In particular, if the point py is obtained by rotating the point p, as
defined by the rotation matrix R, then the coordinates of p, with reapect to
the reference frame are given by

= Rp?

This same approach can be used to rotate vectors with respect to a coordi-
nate frame, as the following example illustrates.

Example 2.3
The vector v with coordinates v* = [0,1,1T is rotated about yo by § as
shown in Figure 2.7. The resulting vector vy has coordinates given by

o = Ry:%vo (2.9)
00170 1

= 0o1offl1]=]1 (2.10)
-100/]|1 0
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Zy

Xo

Figure 2.7: Rotating a vector about axis yy.

--

Thus, a third interpretation of a rotation matriz R is as an operator
acting on vectors in o fired frame. In other words, instead of relating the
coordinates of a fized vector with respect to two different coordinate frames,
Equation (2.9) can represent the coordinates in opzoyozg of a vector vy that
is obtained from a vector v by a given rotation.
©

As we have seen, rotation matrices can serve several roles. A rotation
matrix, either R € SO(3) or R € 50(2), can be interpreted in three distinct

ways:

cc—ré')

E.Lﬁ?rfx: h:

1. It represents a coordinate transformation relating the coordinates of a
point p in two different frames.

2. It gives the orientation of a transformed coordinate frame with respect
to a fixed coordinate frame.

3. It is an operator taking a vector and rotating it to give a new vector
in the same coordinate frame.

The particular interpretation of a given rotation matrix R will be made clear
by the context.
2.3.1 Similarity Transformations

A coordinate frame is defined by a set of basis vectors, for example, unit
vectors along the three coordinate axes. This means that a rotation matrix,
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as a coordinate transformation, can also be viewed as defining a change of
basis from one frame to another. The matrix representation of a general
linear transformation is transformed from one frame to another using a
so-called similarity transformation.® For example, if A is the matrix
representation of a given linear transformation in ogzgypzg and B is the
representation of the same linear transformation in 0y2)y,2; then A and B
are related as

B =(R)'4R? d (2.11)

where R? is the coordinate transformation between frames o;z;y;2; and
00ToYozo- In particular, if A itself is a rotation, then so is B, and thus
the use of similarity transformations allows us to express the same rotation
easily with respect to different frames,

Example 2.4

Henceforth, whenever convenient we use the shorthand notation ¢y =
cost, sp = sin@ for trigonometric functions. Suppose frames opToyozo and
o121Y121 -are related by the rotation

001
RS 010
-1 00

If A= R,y relative to the frame opzoyoz, then, relative to frame 01217
we have

1 0 0
B = R)TUAR=|0 ¢ s
0 -89 Cg

In other words, B is a rotation about the zy-azis but expressed relative to
the frame oyz1y121. This notion will be useful below and in later sections.
6

24 COMPOSITION OF ROTATIONS

In this section we discuss the composition of rotations. It is important for
subsequent chapters that the reader understand the material in this section
thoroughly before moving on.

3See Appendix B.
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24.1 Rotation with Respect to the Current Frame

Recall that the matrix RY in Equation (2.8) represents a rotational transfor-
mation between the frames ogzoypzy and oyz13121. Suppose we now add a
third coordinate frame 0az9192; related to the frames 00ToYozo and 01z1y1 21
by rotational transformations. A given point p can then be represented by
coordinates specified with respect to any of these three frames: 20, p!, and
p%. The relationship among these representations of p is

" = Rlp! (2.12)
» = Rlp? (2.13)
0 _ 0,2

P = Ryp (2.14)

where each R; is a rotation matrix. Substituting Equation (2.13) into Equa-
tion (2.12) gives

P = RIR}p (2.15)

Note that R} and R) represent rotations relative to the frame 00Z0Y020
while R% represents a rotation relative to the frame ojxyy1z;. Comparing
Equations (2.14) and (2.15) we can immediately infer

R =mR (2.16)

Equation (2.16) is the composition law for rotational transformations. It
states that, in order to transform the coordinates of a point p from its
representation p? in the frame oazoys2; to its representation p” in the frame
0000z, We may first transform to its coordinates p! in the frame 01T1Y121
using R} and then transform p! to p using .

We may also interpret Equation (2.16) as follows. Suppose that ini-
tially all three of the coordinate frames coincide. We first rotate the frame
02T2y22y rtelative to opzoyo2e according to the transformation RY. Then,
with the frames oyz1y12) and 022952 coincident, we rotate 09T 2y rela-
tive to o1z1y12; according to the transformation R}. The resulting frame,
03T2yz22 has orientation with respect to ogzoyozo given by RR}. We call
the frame relative to which the rotation occurs the current frame.

Example 2.5
Suppose a rotation malriz R represents a rotation of angle ¢ about the
current y-axis followed by o rotation of angle @ about the current z-azis as
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Z5, 2

Ve
Xg o Yo yi

Fx, Yo

Figure 2.8: Composition of rotations about current axes.

shown in Figure 2.8. Then the matriz R is given by '

R = R R, (2.17)

[ cg 0 s cg —s¢ 0
= | 0 10]||s e o
L —3¢ 0 :’.‘¢ 0 0 ¥
[ coco —cpsp sg
= sp ca 0
| —5¢Co 5459 Cp

It is important to remember that the order in which a sequence of ro-
tations is performed, and consequently the order in which the rotation ma-
trices are multiplied together, is crucial. The reason is that rotation, unlike
position, is not a vector quantity and so rotational transformations do not
commute in general. '

Example 2.6

Suppose that the above rotations are performed in the reverse order, that
is, first a rotation about the current z-azis followed by o rotation about the
current y-azis. Then the resulting rotation malriz is given by

R = R,oR, 4 (2.18)
[ cp —s4 0 cg 0 s4

= sg ¢ 0 0 1 0

L0 0 1 —55 0 ¢y

[ cocs —sp cosy

= .S‘a(.‘¢ Cp 535¢
[ =55 0 ¢
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Comparing Equations (2.17) and (2.18) we see that R # R/,
<

2.4.2 Rotation with Respect to the Fixed Frame

Many times it is desired to perform a sequence of rotations, each about a
given fixed coordinate frame, rather than about successive current frames.
For example we may wish to perform a rotation about zq followed by a
rotation about yo (and not 1!). We will refer to ogzqypzo as the fixed
frame. In this case the composition law given by Equation (2.16) is not
valid. It turns out that the correct composition law in this case is simply to
multiply the successive rotation matrices in the reverse order from that given
by Equation (2.16). Note that the rotations themselves are not performed
in reverse order. Rather they are performed about the fixed frame instead
of about the current frame.

To see this, suppose we have two frames ogzoypzg and 012132 related
by the rotational transformation R}. If R € SO(3) represents a rotation
relative to opToyozo, we know from Section 2.3.1 that the representation
for R in the current frame 0121912 is given by (RY)~'RR{. Therefore,
applying the composition law for rotations about the current axis yields

R = B [(R)"RR) = RRS (2.19)

Thus, when a rotation R is performed with respect to the world coordi-
nate frame, the current rotation matrix is premultiplied by R to obtain the
desired rotation matrix.

Example 2.7 Rotations about Fixed Axes

Figure 2.9: Composition of rotations about fixed axes.

Referring to Figure 2.9, suppose that o rotation matriz R represents a
rotation of angle ¢ about yy followed by a rotation of angle 6 about the
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fized 9. The second rotation about the fized axis is given by R, R, oRy 5
which is the basic rotation about the z-azis expressed relative to the frame
o1zt 21 using a similarity transformation. Therefore, the composition rule
for rotational transformations gives us

R=Ry4[R, 4R 4R, ] =R gR, 4 (2.20)

It is not necessary to remember the above derivation, only to note by com-
paring Equation (2.20) with Equation (2.17) that we obtein the same basic
rotation matrices, but in the reverse order.

<

2.4.3 Rules for Composition of Rotational Transformations

We can summarize the rule of composition of rotational transformations
by the following recipe. Given a fixed frame ogzgypz and a current frame
01213121, together with rotation matrix RY relating them, if a third frame
0T2Y277 is obtained by a rotation R performed relative to the current
frame then postmultiply R by R = R} to obtain

¥ = RiRl (2.21)

If the second rotation is to be performed relative to the fixed frame then
it is both confusing and inappropriate to use the notation R} to represent
this rotation. Therefore, if we represent the rotation by R, we premultiply
R? by R to obtain

R = RR (2.22)

In each case R) represents the transformation between the frames 00T0Y020
and 0y9y222. The frame 0y91p2; that results from Equation (2.21) will be
different from that resulting from Equation (2.22).

Using the above rule for composition of rotations, it is an easy matter
to determine the result of multiple sequential rotational transformations.

Example 2.8
Suppose R is defined by the following sequence of basic rotations in the
order specified:

1. A rotation of 8 about the current z-azis
2. A rotation of ¢ about the current z-axis

3. A rotation of & about ihe fired z-axis
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4. A rotation of § about the current y-azis
5. A rotation of & about the fired z-azis

In order to determine the cumulative effect of these rotations we simply begin
with the first rotation R, g and pre- or postmultiply as the case may be to
obtain

R=R;5R; oR; 4R, 3Ry 5 (2.23)

2.5 PARAMETERIZATIONS OF ROTATIONS

The nine elements r;; in a general rotational transformation R € SO(3) are
not independent quantities. Indeed a rigid body possesses at most three ro-
tational degrees of freedom, and thus at most three quantities are required to
specify its orientation. This can be easily seen by examining the constraints
that govern the matrices in SO(3):

2
Z Tij
i

TTy e vy = 0, i#j (2.25)

I

1, je{1,2,3} (2.24)

Equation (2.24) follows from the fact that the columns of a rotation matrix
are unit vectors, and Equation (2.25) follows from the fact that columns of a
rotation matrix are mutually orthogonal. Together, these constraints define
six independent equations with nine unknowns, which implies that there are
three free variables.

In this section we derive three ways in which an arbitrary rotation can
be represented using only three independent quantities: the Euler-angle
representation, the roll-pitch-yaw representation, and the axis/angle rep-
resentation.

2.5.1 Euler Angles

A common method of specifying a rotation matrix in terms of three in-
dependent quantities is to use the so-called Euler angles. Consider the
fixed coordinate frame opzpypzg and the rotated frame 0171121 shown in
Figure 2.10. We can specify the orientation of the frame 01Z1Y121 relative
to the frame opzoyo2y by three angles (4,6, 1), known as Euler angles, and
obtained by three successive rotations as follows. First rotate about the
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zﬂ: za

XY g

" ©

Figure 2.10: Euler angle representation.

z-axis by the angle ¢. Next rotate about the current y-axis by the angle
§. Finally rotate about the current z-axis by the angle ¢. In Figure 2.10,
frame 0,7,y,7, Tepresents the new coordinate frame after the rotation by
¢, frame opzyys2), represents the new coordinate frame after the rotation by
8, and frame 01x1y;7 represents the final frame, after the rotation by .
Frames 0,%4Ya2, and opz;y25 are shown in the figure only to help visualize
the rotations.

In terms of the basic rotation matrices the resulting rotational transfor-
mation can be generated as the product

Rzvyz = R, R 4R, ,

[ Cp —Sp 0 cg 0 Sp Cp —S8y 0
= 86 Cp 0 0 1 0 Sy G 0
L0 0 1 —s55 0 ¢ 0 0 1
[ CopCpCy, — S¢5y —CpCSy — SpCyy  CpSg
= | speacy tcpsy —84casy+cocy S48 (2.26)
L Sy 95y cg

The matrix Rzy z in Equation (2.26) is called the ZY Z-Euler angle trans-
formation.

The more important and more difficult problem is to determine for a
particular R = (r;;) the set of Euler angles ¢, 8, and 1, that satisfy

CotoCy — SpSp  —CyCasy — SyCy CySp
R= | spcoey +cpsy —s4c95y+cocy Sp5 (2.27)
—59Cy $p5y Cy

for a matrix R € SO(3). This problem will be important later when we
address the inverse kinematics problem for manipulators in Section 3.3.
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To find a solution for this problem we break it down into two cases. First,
suppose that not both of ry3, rog are zero. Then from Equation (2.26) we
deduce that sy # 0, and hence that not both of r3;, r3; are zero. If not both
r13 and ra3 are zero, then r33 # +1, and we have cg = ry3, 59 = +1/1 — T3

50
f = Atan2 (1'33, V1- T%a) (2.28)
§ = Atan?2 (m,—,/l - r§3) (2.29)

where the function Atan2 is the two-argument arctangent function de-
fined in Appendix A.
If we choose the value for 6 given by Equation (2.28), then sp > 0, and

or

¢ = Atan2(ri3,ro3) (2.30)
W = Atan2(—r31,r32) (2.31)
If we choose the value for § given by Equation (2.29), then sy < 0, and
¢ = Atan2(-r3,—73) (2.32)
¥ = Atan?(rgl, —T32) (233)

Thus, there are two solutions depending on the sign chosen for 8.
Ifri3 = ra3 = 0, then the fact that R is orthogonal implies that ra3 = %1,
and that r3; = r3; = 0. Thus, R has the form

oz 0
B = o1 Toe 0 (2.34)
0 0 +1

Hrss =1, then g = 1 and sy = 0, so that # = 0. In this case, Equation
(2.26) becomes

Colyp — SpSy  —CpSyp — Sgcy 0 Cory —Spy 0
SgCy a8y —Sysytepey 0| = | Spay cprp 0
0 0 1 0 0 1

Thus, the sum ¢ + 1) can be determined as

o+ = Atan2{r11, ?‘2]) = Atan?(ru, —7'12) (235)
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Since only the sum ¢+ 1 can be determined in this case, there are infinitely
many solutions. In this case, we may take ¢ = 0 by convention. If ra3 = -1,
then ¢y = ~1 and sy = 0, so that # = w. In this case Equation (2.26)
becomes

—Cpyp —54-yp O ri1 ri2 0
S¢—p Cp—yp O = o1 9o 0 (2.36)
0 0 -1 0 0 -1

.

The solution is thus
¢—1 = Atan2(-ry3,-ri) . (2.37)
As before there are infinitely many solutions.

2.5.2 Roll, Pitch, Yaw Angles

A rotation matrix R can also be described as a product of successive rota-
tions about the principal coordinate axes zy,yg, and zp taken in a specific
order. These rotations define the roll, pitch, and yaw angles, which we
shall also denote ¢, 8,1, and which are shown in Figure 2.11.

&

Roll

Yaw ”

Pitch
Iy
Figure 2.11: Roll, pitch, and yaw angles.
We specify the order of rotation as z —y — z, in other words, first a yaw

about xp through an angle 4, then pitch about the yy by an angle 6, and
finally roll about the zg by an angle ¢.* Since the successive rotations are

4t should be noted that other conventions exist for naming the roll, pitch, and yaw
angles.
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relative to the fixed frame, the resulting transformation matrix is given by

R, 4By oBe g

cp —55 0 cg 0 s 1 0 0

34 Cp 0 0 10 0 Gy Sy

0 0 1 —s9 0 ¢ 0 55 ¢y

CoCo  —S5pCp +Co3Sy  SySy +Cpsacy

S48 CoCy + 34898y  —CySy + 545Cy (2.38)
—39 Cosy Cocy

R

Of course, instead of yaw-pitch-roll relative to the fixed frames we could
also interpret the above transformation as roll-pitch-yaw, in that order, each
taken with respect to the current frame. The end result is the same matrix
as in Equation (2.38).

The three angles ¢, f, and 9 can be obtained for a given rotation matrix
using a method that is similar to that used to derive the Euler angles above.

2.5.3 Axis/Angle Representation

Rotations are not always performed about the principal coordinate axes.
We are often interested in a rotation about an arbitrary axis in space. This
provides both a convenient way to describe rotations, and an alternative
parameterization for rotation matrices. Let k = [k;, ky, icz]T, expressed in
the frame oyzoyp2g, be a unit vector defining an axis. We wish to derive the
rotation matrix Ry o representing a rotation of # about this axis.

There are several ways in which the matrix R, , can be derived. One
approach is to note that the rotational transformation B = R, R, 5 will
bring the world z-axis into alignment with the vector k. Therefore, a rotation

about the axis k can be computed using a similarity transformation as

Ry = RR,4R™ (2.39)
R, oRypR, oy R, o (2.40)

From Figure 2.12 we see that

ky ks
sinag = —— cosa= ———— (2.41)
N NGRS
sinB=/kX+k2 cosf=k, (2.42)
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Figure 2.12: Rotation about an arbitrary axis.

Note that the final two equations follow from the fact that k is a unit vector.
Substituting Equations (2.41) and (2.42) into Equation (2.40), we obtain
after some lengthy calculation (Problem 2-17)

K2vg+cg | kokyvg — kasg | kokyug + kysg
Rk"g = | kehyug + k.sg k:vg + cg kykzvg — kzsg (2.43)
kpk,vg — kysg kykz'vg + k.3 kfvg + ey

where vg = vers § =1 — ¢p.
In fact, any rotation matrix R € S0(3) can be represented by a single
rotation about a suitable axis in space by a suitable angle,

R = Rk,a (244}

where k is a unit vector defining the axis of rotation, and @ is the angle
of rotation about k. The pair (k,0) is called the axis/angle representa-
tion of R. Given an arbitrary rotation matrix R with components Tij, the
equivalent angle f and equivalent axis k are given by the expressions

0 = cos! (T11+T22+T33—1)
2

and

1 38— 723
k= — = :
Seng | BT TH (2.45)
T21 —T12
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These equations can be obtained by direct manipulation of the entries of
the matrix given in Equation (2.43). The axis/angle representation is not
unique since a rotation of —f about —k is the same as a rotation of # about
k, that is,

Rrp = Ry o (2.46)
If 6 = 0 then R is the identity matrix and the axis of rotation is undefined.
Example 2.9

Suppose R is generated by a rotation of 90° about zy followed by a rota-
tion of 30° about yy followed by a rotation of 60° about xg. Then

R = R:c.SORy,S{JRz,QO (2~47)
§ ~53 3§
= 1 ._ﬁ _3
i1
2 1 F

We see that Tr(R) = 0 and hence the equivalent angle is given by Equation
(2.45) as

§ = cos! (—%)=120° (2.48)

The equivalent axis is given from Equation (2.45) as

1 L 131  1f
- [ﬁrz\/g 2:2\/?—’4' 2} (249)
o .

The above axis/angle representation characterizes a given rotation by
four quantities, namely the three components of the equivalent axis k and
the equivalent angle §. However, since the equivalent axis k is given as
a unit vector only two of its components are independent. The third is
constrained by the condition that k is of unit length. Therefore, only three
independent quantities are required in this representation of a rotation R.
We can represent the equivalent axis/angle by a single vector r as

T = [rayry,ra]” = [Oks, Oky, 0k,]T (2.50)

Note, since & is a unit vector, that the length of the vector r is the equivalent
angle 8 and the direction of r is the equivalent axis k.

One should be careful to note that the representation in Equation (2.50)
does not mean that two axis/angle representations may be combined using
standard rules of vector algebra, as doing so would imply that rotations
commute which, as we have seen, is not true in general.
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2.6 RIGID MOTIONS

‘We have now seen how to represent both positions and orientations. We
combine these two concepts in this section to define a rigid motion and,
in the next section, we derive an efficient matrix representation for rigid
motions using the notion of homogeneous transformation.

Definition 2.1 A rigid motion is an ordered pair (d,R) where d € R®
and R € SO(3). The group of all rigid motions is khown as the Special
Euclidean Group and is denoted by SE(3). We see then that SE(3) =
R? x 50(3).

A rigid motion is a pure translation together with a pure rotation.” Let
R{f be the rotation matrix that specifies the orientation of frame o1z19: 21
with respect to opToypzo, and d be the vector from the origin of frame
00ZoYo% to the origin of frame 0;z1y121. Suppose the point p is rigidly
attached to coordinate frame 01213121, with local coordinates p'. We can
express the coordinates of p with respect to frame ogzgyozp using

P’ =Rp +d (2.51)

Now consider three coordinate frames opzgypzo, 01719121, and oazays20.
Let dy be the vector from the origin of ogzoye2e to the origin of oyz1y121
and dy be the vector from the origin of 0121921 to the origin of oazayze. If
the point p is attached to frame osz2y229 with local coordinates p?, we can
compute its coordinates relative to frame ogzoypzg using

p' = RY+d} (2.52)

and

Il

P = Rp'+dl (2.53)
The composition of these two equations defines a third rigid motion, which
we can describe by substituting the expression for p! from Equation (2.52)
into Equation (2.53)

’° = RIR}p*+ R+ (2.54)

®The definition of rigid motion is sometimes broadened to include reflections, which
correspond to detR = —1. We will always assume in this text that detR = +1 so that
R € 50(3).
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Since the relationship between p° and p® is also a rigid motion, we can
equally describe it as

P = B+ (2:55)
Comparing Equations (2.54) and (2.55) we have the relationships

R} = RiR; (2.:56)

& = 4+Rd} (2.57)

Equation (2.56) shows that the orientation transformations can simply be
multiplied together and Equation (2.57) shows that the vector from the
origin dg to the origin 0; has coordinates given by the sum of d (the vector
from oy to 0 expressed with respect to opzoypze) and Rd} (the vector from
01 to 09, expressed in the orientation of the coordinate frame ogzgy02o).

2.7 HOMOGENEOUS TRANSFORMATIONS

One can easily see that the calculation leading to Equation (2.54) would
quickly become intractable if a long sequence of rigid motions were con-
sidered. In this section we show how rigid motions can be represented in
matrix form so that composition of rigid motions can be reduced to matrix
multiplication as was the case for composition of rotations.

In fact, a comparison of Equations (2.56) and (2.57) with the matrix
identity

R &1[R &) _ [RR REZ+d
[01 1]H0 11}‘[10 i (2:8)

where 0 denotes the row vector (0,0,0), shows that the rigid motions can
be represented by the set of matrices of the form

H = [*3’ ‘li] ReSO@), deR’ (2.50)

Transformation matrices of the form given in Equation (2.59) are called
homogeneous transformations. A homogeneous transformation is there-
fore nothing more than a matrix representation of a rigid motion and we
will use SE(3) interchangeably to represent both the set of rigid motions
and the set of all 4 x 4 matrices H of the form given in Equation (2.59).

Using the fact that R is orthogonal it is an easy exercise to show that
the inverse transformation H~! is given by

T _pT
H! = [‘g }fdJ (2.60)
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In order to represent the transformation given in Equation (2.51) by
a matrix multiplication, we must augment the vectors p? and p! by the
addition of a fourth component of 1 as follows,

[ ”10 ] (2.61)
[ ”’11 ] (2.62)

The vectors P° and P! are known as homogeneous representations of
the vectors p° and p', respectively. It can now be seen directly that the
transformation given in Equation (2.51) is equivalent to the (homogeneous)
matrix equation

PO

1l

Pl

P’ = Hp! (2.63)

A set of basic homogeneous transformations generating SE(3) is
given by

(100 a] (1 0 00
0100 0 co —84 0
Trans; , = 0010l Rofy,, = 0 su ¢ 0 (2.64)
(000 1] 0 0 01
(100 0] [ cs 0 s3 0]
01068 01 00
Tansys= | g gy g |» Rota=| o g o o] @99
(000 1 | 00 01|
(100 0] [ ¢y =3, 0 0]
. 0100 | sy (',1[]0
Tansze=1p g1 | Boa=|"g 919 (@6
(000 1] [0 001

for translation and rotation about the z,y, z-axes, respectively.
The most general homogeneous transformation that we will consider may
be written now as

Ny Sz Gy di

HO = Ny Sy Oy dy . n s a d] (267)
L n, 8 a; d,
0 0 0 1
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In the above equation n = [ng, ny, n 27 is a vector representing the direction
of z1 in the oyzoyozg frame, s = [s;, 3y, .sz]T represents the direction of
Y1, and @ = [a;,8y,a,]7 represents the direction of 2;. The vector d =
[dz, dy, d.]T represents the vector from the origin og to the origin o; expressed
in the frame opzoypzp. The rationale behind the choice of letters n, s, and
a is explained in Chapter 3.

The same interpretation regarding composition and ordering of transfor-
mations holds for 4 x 4 homogeneous transformations as for 3 x 3 rotations.
Given a homogeneous transformation HY relating two frames, if a second
rigid motion, represented by H € SE(3) is performed relative to the current
frame, then

H)=H)H

whereas if the second rigid motion is performed relative to the fixed frame,
then

HY = HHY

Example 2.10

The homogeneous transformation matriz H that represents a rotation by
angle o about the current z-azis followed by a translation of b units along the
current z-azis, followed by a translation of d units along the current z-axis,
Jollowed by a rotation by angle 0 about the current z-azis, s given by

H = Rot_,:,n’ﬁmnsz_b ﬂ‘ansz,dROtz’g

Cg —Sy 0 b
CaS9 Caly —Sq —dsq
5289 SaCy Ca  deg

0 0 0 1

2.8 SUMMARY

In this chapter, we have seen how matrices in SE(n) can be used to represent
the relative position and orientation of two coordinate frames for n = 2, 3.
We have adopted a notional convention in which a superscript is used to
indicate a reference frame. Thus, the notation p® represents the coordinates
of the point p relative to frame 0.
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The relative orientation of two coordinate frames can be specified by
a rotation matrix, B € SO(n), with n = 2,3. In two dimensions, the
orientation of frame 1 with respect to frame 0 is given by

Ro%[ﬁl'ﬁo yl‘Iu]

[ cosf —sind ]
: 1Y Y%

sinf@  cosd

in which @ is the angle between the two coordinate frames. In the three-
dimensional case, the rotation matrix is given by G

; TyoTo Y-To 21T
Ri=|zi'% -t 2%
12 -2 1%

In each case, the columns of the rotation matrix are obtained by projecting
an axis of the target frame (in this case, frame 1) onto the coordinate axes
of the reference frame (in this case, frame 0).

The set of n x n rotation matrices is known as the special orthogonal
group of order n, and is denoted by SO(n). An important property of these
matrices is that R~! = R7 for any R € SO(n).

Rotation matrices can be used to perform coordinate transformations
between frames that differ only in orientation. We derived rules for the
composition of rotational transformations as

R} = RIR

for the case where the second transformation, R, is performed relative to
the current frame and

® - RE

for the case where the second transformation, R, is performed relative to
the fixed frame.

In the three-dimensional case, a rotation matrix can be parameterized
using three angles. A common convention is to use the Euler angles (¢, 0, 1),
which correspond to successive rotations about the z, y, and z axes. The
corresponding rotation matrix is given by

R(év g, 1/')) == Rz,¢Ry,9Rz,1b

Roll, pitch, and yaw angles are similar, except that the successive rotations
are performed with respect to the fixed, world frame instead of being per-
formed with respect to the current frame.
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Homogeneous transformations combine rotation and translation. In the _
three-dimensional case, a homogeneous transformation has the form
R d

H:[U 1

J ,R€S50(3), dcR®
The set of all such matrices comprises the set SE(3), and these matrices
can be used to perform coordinate transformations, analogous to rotational
transformations using rotation matrices.

Homogeneous transformation matrices can be used to perform coordinate
transformations between frames that differ in orientation and translation.
We derived rules for the composition of rotational transformations as

H} = HH

for the case where the second transformation, H, is performed relative to
the current frame and

Hy = HH]

for the case where the second transformation, H, is performed relative to
the fixed frame.

PROBLEMS

2-1 Using the fact that v; - v = vT vy, show that the dot product of two
free vectors does not depend on the choice of frames in which their
coordinates are defined.

2-2 Show that the length of a free vector is not changed by rotation, that
is, that |lo] = |Ro]|.

 2-3 Show that the distance between points is not changed by rotation, that
is, [lp1 ~ pal| = | Rpy — Rpa.
2-4 If a matrix R satisfies RTR = I, show that the column vectors of R
are of unit length and mutually perpendicular.

2-5 If a matrix R satisfies RTR = I, then
a) Show that det R = +1
b) Show that det R = -+1 if we restrict ourselves to right-handed co-
ordinate frames.

2-6 Verify Equations (2.3)-(2.5).
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2-T A group is a set X together with an operation * defined on that set
such that
e+ € X forallzyzpe X
o (1% T3) * &3 = 21 * (23 * 73)
o There exists an element I € X such that Iz =z =z for all

ze€X
e For every x € X, there exists some element y € X such that
gxy=grz=T

Show that SO(n) with the operation of matrix multiplication is a
group. :

2-8 Derive Equations (2.6) and (2.7).

2-9 Suppose A is a 2 X 2 rotation matrix. In other words ATA = I and
det A = 1. Show that there exists a unique @ such that A is of the
form

cosfd —sind
# = [Sinﬂ cosf }

2-10 Consider the following sequence of rotations:

1. Rotate by ¢ about the world z-axis.
2. Rotate by @ about the current z-axis.
3. Rotate by 9 about the world y-axis.

Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

2-11 Consider the following sequence of rotations:

1. Rotate by ¢ about the world z-axis.
2. Rotate by 8 about the world z-axis.
3. Rotate by 1 about the current z-axis.

Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

2-12 Consider the following sequence of rotations:

1. Rotate by ¢ about the world z-axis.
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2. Rotate by # about the current z-axis,
3. Rotate by ¢ about the current z-axis.
4. Rotate by a about the world z-axis.

Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

o 2-13 Consider the following sequence of rotations:

1. Rotate by ¢ about the world z-axis.
2. Rotate by @ about the world z-axis.
3. Rotate by 1 about the current z-axis.
4. Rotate by a about the world z-axis.

Write the matrix product that will give the resulting rotation matrix
(do not perform the matrix multiplication).

2-14 If the coordinate frame o011 y1 21 is obtained from the coordinate frame
00ToYozo by a rotation of § about the z-axis followed by a rotation of
7 about the fixed y-axis, find the rotation matrix R representing the
composite transformation. Sketch the initial and final frames.

215 Suppose that three coordinate frames 01713121, 02227229, and 03T3Y373
are given, and suppose

Lo 0 00 -1
R;\:oé—s?,}z;:olo
0 £ 1 10 0

Find the matrix R3.

216 Derive equations for the roll, pitch, and yaw angles corresponding to
the rotation matrix R = (ry;).

2-17 Verify Equation (2.43).
2-18 Verify Equation (2.45).

2-19 If R is a rotation matrix show that +1 is an eigenvalue of R. Let k be
a unit eigenvector corresponding to the eigenvalue +1. Give a physical
interpretation of k.

220 Let k= —[1,1,1]7, 6 = 90°. Find R, ,.
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221 Show by direct calculation that Ry ; given by Equation (2.43) is equal
to R given by Equation (2.47) if § and k are given by Equations (2.48)
and (2.49), respectively.

2-22 Compute the rotation matrix given by the product
Rao Ry, ¢ Roz Ry Rz -0

2-23 Suppose R represents a rotation of 90° about yg fo]lowed by a rotation
of 45° about z;. Find the equivalent axis/angle to represent R. Sketch
the initial and final frames and the equivalent axis vector k.

2-24 Find the rotation matrix corresponding to the Euler angles ¢ = %
8 =0, and ¢ = 7. What is the direction of the z; axis relative to the
base frame?

2-25 Section 2.5.1 described only the Z-Y-Z Euler angles. List all possible
sets of Euler angles. Is it possible to have Z-Z-Y Euler angles? Why
or why not?

2-26 Unit magnitude complex numbers a + b with a® + b2 = 1 can be used
to represent orientation in the plane. In particular, for the complex
number a + b, we can define the angle § = Atan2(a,b). Show that
multiplication of two complex numbers corresponds to addition of the
corresponding angles.

2-27 Show that complex numbers together with the operation of complex
multiplication define a group. What is the. identity for the group?
What is the inverse for a + b7

2-28 Complex numbers can be generalized by defining three independent
square roots for —1 that obey the multiplication rules

-1 = #=72=p

i = jk=—kj
j o= ki=—ik,
ko= ij=—ji

Using these, we define a quaternion by Q = qp+iqy +jg +kga, which
is typically represented by the 4-tuple (g9, q1,¢2,¢3). A rotation by 8
about the unit vector n = [ng, ny,n,|7 can be represented by the unit
quaternion @ = (cos g, T Sin g,nysm g,nz sm ) Show that such a
quaternion has unit norm, that is, g% + ¢? + g3 + g2 = 1.
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229 Using Q = (cos §,nysin,nysin g, n,sin §), and the results from Sec-
tion 2.5.3, determine the rotation matrix R that corresponds to the
rotation represented by the quaternion (go, 1, g2, g3).

2-30 Determine the quaternion ) that represents the same rotation as given
by the rotation matrix R.

2-31 The quaternion Q = (go, 41, g2, g3) can be thought of as having a scalar
component go and a vector component ¢ = [g1,g2,q3]” . Show that the
product of two quaternions, Z = XY is given by

Zy = ZoYo— ITy
z ToY + Yo + T X Y,

Il

Hint: Perform the multiplication (zo+iz1 + jza+kzs) (yo+iy: +jye +
kys) and simplify the result.

2-32 Show that Qy = (1,0,0,0) is the identity element for unit quaternion
multiplication, that is, QQ; = Q;Q = @ for any unit quaternion Q.

2-33 The conjugate * of the quaternion @ is defined as

Q* = (qaa —q1,—42, UQ3)
Show that Q* is the inverse of @, that is, @*Q = QQ* = (1,0,0,0).

2-34 Let v be a vector whose coordinates are given by [vz,vy,v,]7. If the
quaternion.() represents a rotation, show that the new, rotated coor-
dinates of y are given by Q(0, vz, vy, v,)Q", in which (0, vz, vy,v;) is a
quaternion with zero as its real component.

2-35 Let the point p be rigidly attached to the end effector coordinate frame
with local coordinates (z,y, z). If Q specifies the orientation of the end
effector frame with respect to the base frame, and T is the vector from
the base frame to the origin of the end effector frame, show that the
coordinates of p with respect to the base frame are given by

Q(0,z,y,2)Q" +T (2.68)
in which (0,z,y,2) is a quaternion with zero as its real component.

2-36 Verify Equation (2.60).
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2-37 Compute the homogeneous transformation representing a translation

of 3 units along the z-axis followed by a rotation of § about the current
z-axis followed by a translation of 1 unit along the fixed y-axis. Sketch
the frame. What are the coordinates of the origin o; with respect to
the original frame in each case?

s 238 Consider the diagram of Figure 2.13. Find the homogeneous transfor-

X 2-39

2-40

2-41

s 2[
2
1
5 I T 1 Zg ..........
45° Xp

/- X2 1 b7
2

Figure 2.13: Diagram for Problem 2-38.

mations HY, H), H] representing the transformations among the thr
frames shown. Show that HY = HY, H1. '

Consider the diagram of Figure 2.14. A robot is set up 1 meter from
a table. The table top is 1 meter high and 1 meter square. A frame
0121y121 is fixed to the edge of the table as shown. A cube measuring
20 cm on a side is placed in the center of the table with frame ogmgygég
established at the center of the cube as shown. A camera is situated
directly above the center of the block 2 meters above the table top
with frame 03z3y323 attached as shown. Find the homogeneous trans-
formations relating each of these frames to the base frame ogzgypzo.
Find the homogeneous transformation relating the frame oszay229 to
the camera frame o3z3ys323.

In Problem 2-39, suppose that, after the camera is calibrated, it is ro-
tated 90° about z3. Recompute the above coordinate transformations.

If the block on the table is rotated 90° about zp and moved so that
its center has coordinates [0, .8,.1]T relative to the frame ojzyy1721,
compute the homogeneous transformation relating the block frame to
the camera frame; the block frame to the base frame.

PROBLEMS s 7

X
¥3 s

Z3

Figure 2.14: Diagram for Problem 2-39.

2-42 Consult an astronomy book to learn the basic details of the Earth’s

rotation about the sun and about its own axis. Define for the Earth
a local coordinate frame whose z-axis is the Earth’s axis of rotation.
Define £ = 0 to be the exact moment of the summer solstice, and the
global reference frame to be coincident with the Earth’s frame at time
t = 0. Give an expression R(t) for the rotation matrix that represents
the instantaneous orientation of the earth at time ¢. Determine as
a function of time the homogeneous transformation that specifies the
Earth’s frame with respect to the global reference frame.

2-43 In general, multiplication of homogeneous transformation matrices is

not commutative. Consider the matrix product
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H= Rotz,a'Ikansx,b’I‘ra.nsz,dRot,,a

Determine which pairs of the four matrices on the right hand side
commute. Explain why these pairs commute. Find all permutations
of these four matrices that yield the same homogeneous transformation
matrix, H.

NOTES AND REFERENCES

Rigid body motions and the groups SO(n) and SE(n) are often addressed
in mathematics books on the topic of linear algebra. Standard texts for this
material include (8], [23], and [40]. These topics are also often covered in
applied mathematics texts for physics and engineering, such as [108], [119],
and [139]. In addition to these, a detailed treatment of rigid body motion
developed with the aid of exponential coordinates and Lie groups is given
in [93].

Chapter 3

FORWARD AND INVERSE
KINEMATICS

In this chapter we consider the forward and inverse kinematics for serial
link manipulators. The problem of kinematics is to describe the motion
of the manipulator without consideration of the forces and torques causing
the motion. The kinematic description is therefore a geometric one. We
first consider the problem of forward kinematics, which is to determine
the position and orientation of the end effector given the values for the
joint variables of the robot. The problem of inverse kinematics is to
determine the values of the joint variables given the end effector’s position
and orientation.

3.1 KINEMATIC CHAINS

As described in Chapter 1, a robot manipulator is composed of a set of links
connected together by joints. The joints can either be very simple, such
as a revolute joint or a prismatic joint, or they can be more complex, such
as a ball and socket joint (recall that a revolute joint is like a hinge that
allows a relative rotation about a single axis, and a prismatic joint permits
a linear motion along a single axis, namely an extension or retraction).
The difference between the two situations is that in the first instance the
joint has only a single degree-of-freedom of motion: the angle of rotation
in the case of a revolute joint, and the amount of linear displacement in
the case of a prismatic joint. In contrast, a ball and socket joint has two
degrees of freedom. In this book it is assumed throughout that all joints
have only a single degree of freedom. This assumption does not involve any
real loss of generality, since joints such as a ball and socket joint (two degrees
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of freedom) or a spherical wrist (three degrees of freedom) can always be
thought of as a succession of single degree-of-freedom joints with links of
length zero in between.

With the assumption that each joint has a single degree-of-freedom, the
action of each joint can be described by a single real number: the angle of
rotation in the case of a revolute joint or the displacement in the case of a
prismatic joint.

A robot manipulator with n joints will have n + 1 links, since each joint
connects two links. We number the joints from 1 to n, and we number the
links from 0 to n, starting from the base. By this convention, joint i connects
link 4 — 1 to link . We will consider the location of joint i to be fixed with
respect to link i — 1. When joint 1 is actuated, link i moves. Therefore, link
0 (the first link) is fixed, and does not move when the joints are actuated.
Of course the robot manipulator could itself be mobile (e.z., it could be
mounted on a mobile platform or on an autonomous vehicle), but we will
not consider this case in the present chapter, since it can be handled easily
by slightly extending the techniques presented here.

With the i*® joint, we associate a joint variable, denoted by g;. In the
case of a revolute joint, g; i3 the angle of rotation, and in the case of a
prismatic joint, ¢; is the joint displacement:

#; if joint i is revolute
= { J (3.1)

d; if joint i is prismatic

To perform the kinematic analysis, we attach a coordinate frame rigidly
to each link. In particular, we attach o;z;y;z to link 4. This means that,
whatever motion the robot executes, the coordinates of each point on link
i are constant when expressed in the i coordinate frame. Furthermore,
when joint 4 is actuated, link 4 and its attached frame, o;7;y;%, experience
a resulting motion. The frame opzgypzp, which is attached to the robot
base, is referred to as the inertial frame. Figure 3.1 illustrates the idea of
attaching frames rigidly to links in the case of an elbow manipulator.

Now, suppose A; is the homogeneous transformation matrix that gives
the position and orientation of 0;z;y;2; with respect to 0;_1Zi_1%i-12i-1.
The matrix A; is not constant, but varies as the configuration of the robot
is changed. However, the assumption that all joints are either revolute or
prismatic means that A; is a function of only a single joint variable, namely
¢;. In other words,

A = Afw) 52

The homogeneous transformation matrix that expresses the position and
orientation of 0;T;y;z; with respect to o;z;y;2; is called a transformation
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Figure 3.1: Coordinate frames attached to elbow manipulator.

matrix, and is denoted by T; From Chapter 2 we see that

‘ A,L'.;.IA-H.Q S AjﬁlAj ifi < J
=i I ifi=j (3.3)
) ifj>i

By the manner in which we have rigidly attached the various frames
to the corresponding links, it follows that the position of any point on the
end effector when expressed in frame n is a constant independent of the
configuration of the robot. We denote the position and orientation of the
end effector with respect to the inertial or base frame by a three-vector o)
(which gives the coordinates of the origin of the end-effector frame with
respect to the base frame) and the 3 x 3 rotation matrix RS, and define the
homogeneous transformation matrix

(3.4)

Then the position and orientation of the end effector in the inertial frame
are given by

H = T9=Ai(g)- Anlgn) (3.5)

Each homogeneous transformation A; is of the form

R gt
- [ E J (3.6)
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Hence, for i < j

I = Ai+1"'Aj=[}[2)} 01’] (3.7)

The matrix R; expresses the orientation of 0;z;y;2; relative to o;ziyiz
and is given by the rotational parts of the A-matrices as

= R RJJ;“l 2 (3.8)_

The coordinate vectors o} are given recursively by the formula
3 : o
D} = 0}_1 + R;_IO';- (39)

These expressions will be useful in Chapter 4 when we study Jacobian ma-
trices.

In principle, that is all there is to forward kinematics; determine the
functions A;(g;), and multiply them together as needed. However, it is pos-
sible to achieve a considerable amount of streamlining and simplification by
introducing further conventions, such as the Denavit-Hartenberg represen-
tation of a joint, and this is the objective of the next section.

3.2 THE DENAVIT-HARTENBERG CONVENTION

In this section we develop the forward or configuration kinematics for
rigid robots. The forward kinematics problem is concerned with the re-
lationship between the individual joints of the robot manipulator and the
position and orientation of the tool or end effector. The joint variables are
the angles between the links in the case of revolute or rotational joints, and
the link extension in the case of prismatic or sliding joints.

We will develop a set of conventions that provide a systematic procedure
for performing this analysis. It is, of course, possible to carry out forward
kinematics analysis even without respecting these conventions, as we did for
the two-link planar manipulator example in Chapter 1. However, the kine-
matic analysis of an n-link manipulator can be extremely complex and the
conventions introduced below simplify the analysis considerably. Moreover,
they give rise to a universal language with which engineers can communicate.

A commonly used convention for selecting frames of reference in robotic
applications is the Denavit-Hartenberg, or DH convention. In this conven-
tion, each homogeneous transformation A; is represented as a product of
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four basic transformations

A; = Rot,g 'Iiransz,J;"Ihﬁr.nsz o note o, (3.10)

cg; —5p, 1000
_ | S8 ey 0 0 0100
B 0 0 10 0014
0 0 01 0001

100 g 1 0 0 0

2 0100 0 co; —84 0

0010 0 80 €y O

0001 00 0 1

Co;  —50:Ca;  59,8; GiCy;
38, C4;Co; —C;Sa; GiSp,
0 Sy Coy d;
0 0 0

where the four quantities 8;, a;, d;, o; are parameters associated with link
¢ and joint i. The four parameters a;, o, d;, and 6; in Equation (3.10) are
generally given the names link length, link twist, link offset, and joint
angle, respectively. These names derive from specific aspects of the geo-
metric relationship between two coordinate frames, as will become apparent
below. Since the matrix 4; is a function of a single variable, three of the
above four quantities are constant for a given link, while the fourth param-
eter, 6; for a revolute joint and d; for a prismatic joint, is the joint variable.

From Chapter 2 one can see that an arbitrary homogeneous transforma-
tion matrix can be characterized by six numbers, such as, for example, three
numbers to specify the fourth column of the matrix and three Euler angles
to specify the upper left 3 x 3 rotation matrix. In the DH representation, in
contrast, there are only four parameters. How is this possible? The answer
is that, while frame i is required to be rigidly attached to link i, we have
considerable freedom in choosing the origin and the coordinate axes of the
frame. For example, it is not necessary that the origin, o;, of frame i be
placed at the physical end of link i. In fact, it is not even necessary that
frame i be placed within the physical link. Frame i could lie in free space so
long as frame i is rigidly attached to link i. By a clever choice of the origin
and the coordinate axes, it is possible to cut down the number of parameters
needed from six to four (or even fewer in some cases). In Section 3.2.1 we
will show why, and under what conditions, this can be done, and in Section
3.2.2 we will show exactly how to make the coordinate frame assignments.



78 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

3.2.1 Existence and Uniqueness Issues

Clearly it is not possible to represent any arbitrary homogeneous transfor-
mation using only four parameters. Therefore, we begin by determining just
which homogeneous transformations can be expressed in the form given by
Equation (3.10). Suppose we are given two frames, denoted by frames 0
and 1, respectively. Then there exists a unique homogeneous transforma-
tion matrix A that takes the coordinates from frame 1 into those of frame
0. Now, suppose the two frames have the following two additional features.

(DH1) The axis z; is perpendicular to the axis z.
(DH2) The axis z; intersects the axis zg.

These two properties are illustrated in Figure 3.2. Under these condi-
tions, we claim that there exist unique numbers q, d, 8, a such that

A = Rot,¢Trans, 4Trans; ;Rot. 4 (3.11)

Of course, since § and « are angles, we really mean that they are unique to
within a multiple of 2r. To show that the matrix A can be written in this

form, write A4 as
0
A = {]gf "11] (3.12)
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If (DH1) is satisfied, then ; is perpendicular to #p and we have z1-z9 = 0.
Expressing this constraint with respect to dgzoypzo, using the fact that the
first column of RY is the representation of the unit vector x1 with respect
to frame 0, we obtain

J = mg-zg
0
= [r,ra,ra] | 0 | =y
1

Since r3; = 0, we now need only show that there exist unique angles § and
a such that

Cs —389Ce SySqa
R(l] = Rx,ﬂRz,u = | % Cgta —CYSa (313)
0 s, Ca
The only information we have is that 73, = 0, but this is enough. First,

since each row and column of R} must have unit length, r3; = 0 implies
that

2 .2

rll + T21 = 1,
2 .2

33+ 733 1

Hence, there exist unique # and o such that

{ri1,721) = (c0,90),  (r33,732) = (Cary Sar)

Once 0 and o are found, it is routine to show that the remaining elements
of R} must have the form shown in Equation (3.13), using the fact that R}
is a rotation matrix.

Next, assumption (DH2) means that the displacement between o, and 0,
can be expressed as a linear combination of the vectors zg and z;. This can
be written as o, = 0y + dzg + ar;. Again, we can express this relationship
in the coordinates of ogzgypzg, and we obtain

o] = 08+dzg+az:g
|-0 0 Cg
= 0| 4+d| 0| +a] s
L 0 1 0
rﬂCo
= asg
| d
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Combining the above results, we obtain Equation (3.10) as claimed.
Thus, we see that four parameters are sufficient to specify any homogeneous
transformation that satisfies the constraints (DH1) and (DH2).

Now that we have established that each homogeneous transformation
matrix satisfying conditions (DH1) and (DH2) above can be expressed as
in Equation (3.10), we can give a physical interpretation to each of these
four quantities. The parameter a is the distance between the axes z; and
21, and is measured along the axis z1. The angle o is the angle between the
axes zg and z;, measured in a plane normal to z;. The positive sense for
is determined from z to z; by the right hand rule as shown in Figure 3.3.
The parameter d is the distance from the origin o, to the intersection of the

Z,- Z:‘-.’

Figure 3.3: Positive sense for o; and 8.

oy axis with 29 measured along the zy axis. Finally, @ is the angle from
to x; measured in a plane normal to zy. These physical interpretations will
prove useful in developing a procedure for assigning coordinate frames that
satisty the constraints (DH1) and (DH2), and we now turn our attention to
developing such a procedure.

3.2.2 Assigning the Coordinate Frames

For a given robot manipulator, one can always choose the frames 0,...,7n in
such a way that the above two conditions are satisfied. In certain circum-
stances, this will require placing the origin o, of frame i in a location that
may not be intuitively satisfying, but typically this will not be the case. In
reading the material below, it is important to keep in mind that the choices
of the various coordinate frames are not unique, even when constrained by
the requirements above. Thus, it is possible that different engineers will de-
rive differing, but equally correct, coordinate frame assignments for the links
of the robot. It is very important to note, however, that the end result (i.e.,
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the matrix T7) will be the same, regardless of the assignment of interme-
diate DH frames (assuming that the coordinate frames for link n coincide).
We will begin by deriving the general procedure. We will then discuss var-
ious common special cases for which it is possible to further simplify the
homogeneous transformation matrix.

To start, note that the choice of z is arbitrary. In particular, from
Equation (3.13), we see that by choosing o; and 6 appropriately, we can
obtain any arbitrary direction for z;. Thus, for our first step, we assign the
axes 20,..., 2,1 In an intuitively pleasing fashion. Specifically, we assign z;
to be the axis of actuation for joint i + 1. Thus, 2 is the axis of actuation
for joint 1, z is the axis of actuation for joint 2, etc. There are two cases to
consider: (i) if joint i+ 1 is revolute, 2 is the axis of revolution of joint i 4-1;
(if) if joint i + 1 is prismatic, 2; is the axis of translation of joint i+ 1. At
first it may seem a bit confusing to associate z; with joint ¢ + 1, but recall
that this satisfies the convention that we established above, namely that
when joint ¢ is actuated, link 7 and its attached frame, o;z;1; 2, experience
a resulting motion.

Once we have established the z-axes for the links, we establish the base
frame. The choice of a base frame is nearly arbitrary. We may choose the
origin g, of the base frame to be any point on zy. We then choose Tg, Yo in
any convenient manner so long as the resulting frame is right-handed. This
sets up frame 0.

Once frame 0 has been established, we begin an iterative process in which
we define frame i using frame 7 — 1, beginning with frame 1. Figure 3.4 will
be useful for understanding the process that we now describe.

IZg'

Joint 4
Zi

e}

Joint 7 — 1

Figure 3.4: Denavit-Hartenberg frame assignment.

In order to set up frame 1 it is convenient to consider three cases: (i) the
axes z-1, % are not coplanar, (i) the axes z;_y, z intersect, (iii) the axes
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%1, 2 are parallel. Note that in both cases (ii) and (iii) the axes z;—_; and
# are coplanar. This situation is in fact quite common, as we will see in
Section 3.2.3. We now consider each of these three cases.

(i) 2—; and z; are not coplanar: If z;_; and 2; are not coplanar, then
there exists a unique shortest line segment from z;_1 to 2;, perpendicular
to both z;_; to z. This line segment defines x;, and the point where it
intersects z; is the origin o;. By construction, both conditions (DH1) and
(DH2) are satisfied and the vector from o;_, to o, is a linear combination of
21 and z;. The specification of frame i is completed by choosing the axis
Y; to form a right-handed frame. Since assumptions (DH1) and (DH2) are
satisfied, the homogeneous transformation matrix A; is of the form given in
Equation (3.10).

(ii) zi-1 is parallel to z;: If the axes z;_1 and z; are parallel, then there are
infinitely many common normals between them and condition (DH1) does
not specify z; completely. In this case we are free to choose the origin o;
anywhere along 2;. One often chooses o, to simplify the resulting equations.
The axis z; is then chosen either to be directed from o, toward z;_;, along
the common normal, or as the opposite of this vector. A common method
for choosing o, is to choose the normal that passes through o, ; as the z;
axis; o; is then the point at which this normal intersects z. In this case, d;
would be equal to zero. Once x; is fixed, y; is determined, as usual by the
right hand rule. Since the axes z;_; and z; are parallel, o; will be zero in
this case.

(iif) z_, intersects z: In this case z; is chosen normal to the plane
formed by z; and z;_;. The positive direction of z; is arbitrary. The most
natural choice for the origin o, in this case is at the point of intersection of
z; and z;_,. However, any convenient point along the axis z suffices. Note
that in this case the parameter a; will be zero.

This constructive procedure works for frames 0,...,n — 1 in an n-link
robot. To complete the construction it is necessary to specify frame n.
The final coordinate system 0,Z,Yn2, is commonly referred to as the end
effector or tool frame (see Figure 3.5). The origin o, is most often placed
symmetrically between the fingers of the gripper. The unit vectors along the
Tn, Un, and 2z, axes are labeled as n, s, and a, respectively. The terminology
arises from the fact that the direction a is the approach direction, in the
sense that the gripper typically approaches an object along the e direction.
Similarly the s direction is the sliding direction, the direction along which

™
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the fingers of the gripper slide to open and close, and n is the direction
normal to the plane formed by a and s.

n=a
Figure 3.5: Tool frame assignment.

In most contemporary robots the final joint motion is a rotation of the
end effector by 6, and the final two joint axes, z,_; and Zn, coincide. In
this case, the transformation between the final two coordinate frames is a
translation along 2, by a distance d, followed (or preceded) by a rotation
of 8, about z,_;. This is an important observation that will simplify the
computation of the inverse kinematics in the next section.

Finally, note the following important fact. In all cases, whether the joint
in question is revolute or prismatic, the quantities a; and oy are always
constant for all i and are characteristic of the manipulator. If joint 4 is pris-
matic, then 6 is also a constant, while d; is the #** joint variable. Similarly,
if joint ¢ is revolute, then d; is constant and 6; is the i*h joint variable.

3.2.3 Examples

In the DH convention the only variable angle is 4, so we simplify notation
by writing ¢; for cos6;, etc. We also denote 8; + 82 by 12, and cos(f + 83)
by ¢12, and so on. In the following examples it is important to remember
that the DH convention, while systematic, still allows considerable freedom
in the choice of some of the manipulator parameters. This is particularly
true in the case of parallel joint axes or when prismatic joints are involved.

Example 3.1 Planar Elbow Manipulator

Consider the two-link planar arm of Figure 3.6. The joint azes zy and
2 are normal fo the page. We establish the base frame opzoypzo as shown.
The origin is chosen at the point of intersection of the 2 azis with the page
and the direction of the xy axis is completely arbitrary. Once the base frame
is established, the 0121121 frame is fized as shown by the DH convention,
where the origin o, has been located at the intersection of 21 and the page.
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Y3 X2

Figure 3.6: Two-link planar manipulator. The z-axes all point out of the
page, and are not shown in the figure.

Table 3.1: DH parameters for 2-link planar manipulator.
Link a; | o d1 3,'
1 ap 0 0 ;
2 aa 0 0 65

* variable

The final frame oyxaynzy is fized by choosing the origin o, at the end of
link 2 as shoum. The DH parameters are shown in Table 3.1.

The A-matrices are determined from Equation (3.10) as

g —8 0 (15151 Cy —89 0 agCy

s e 0 asy | s ca 0 ase
A=l 90 1 0| “=|g 01 0
0 0 0 1 0 0 0 1
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The T-matrices are thus given by

=4
ciz =512 0 arer+agez
— _ | 812 c2 0 a181+asie
B = A= 0 0 1 0
0 0 0 1

Notice that the first two entries of the last column of TS are the z and y
components of the origin oy in the base frame; that is,

T = ajc +agci

¥y = a181 +az812

are the coordinates of the end effector in the base frame. The rotational part

of T? gives the orientation of the frame oyz3y22; relative to the base frame.
o

Example 3.2 Three-Link Cylindrical Robot

ds

Figure 3.7: Three-link cylindrical manipulator.

Consider now the three-link cylindrical robot represented symbolically by
Figure 3.7. We establish oy as shown at joint 1. Note that the placement
of the origin oy along 2q and the direction of the zo azis are arbitrary. Our
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Table 3.2: DH parameters for 3-link cylindrical manipulator.

Link 17} Qg d‘ 9,'

1 [0[0 |&|&

2 [0|-90|d|0

3 (0] o0 [afo0
* variable

chotce of oy is the most natural, but o could just as well be placed at joint 2.
Next, since zg and z) coincide, the origin o, is chosen at joint 1 as shown.
The 1 axis is parallel to zo when 6; = 0 but, of course its direction will
change since 0y is variable. Since zp and 2, intersect, the origin 0, is placed
at this intersection. The direction of zq is chosen parallel to z; so that 05
is zero. Finally, the third frame is chosen at the end of link 8 as shown.

The DH parameters are shown in Tuble 8.2. The corresponding A and
T matrices are

(e —s1 0 0 1 0 00
_|s o 00 10 0 10
A=y 1dy |’ A2—0—10dg
0 0 0 1 0 0 0 1
[1 00 0
010 0
4= 1001 ds
| 000 1
C1 0 =81 —S]d3
_ _ S1 0 1 cldg
T) = AyAyAs = 0 -1 0 ditd (3.14)
0 0 0 1

Example 3.3 Spherical Wrist

Figure 3.8 shows the spherical wrist, a three-link wrist mechanism for
which the joint azes z3, zs, 25 intersect at 0. The point o is called the
wrist center. The DH parameters are shown in Table 3.3. The Stanford
manipulator is an ezample of a manipulator that possesses a wrist of this
type.
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j 3 Z3rx5 ,’
y + 77165 O
X4
To Gripper
24

Figure 3.8: The spherical wrist frame assignment.

Table 3.3: DH parameters for spherical wrist.

Link @ oy d, 9,'
4 [0[-%0[0]6;
5 01 9 | 0|6
6 0 0 |ds| b

* variable

We show now that the final three joint variables, 04, 05, 85 are the Eu- -
ler angles ¢, 9, and 1, respectively, with respect to the coordinate frame .
0323y323. To see this we need only compute the matrices Ay, As, and As .
using Table 3.3 and Equation (3.10). This gives

cg 0 —s4 0 es 0 55 0
B 538 0 e O |55 0 —c5 O
A4*0—100’A5‘0—100
| 00 0 1 0 0 0 1
[c6 —s5 0 0
_ s¢ cg 0 0
o = 0 0 1 dg
[0 0 0 1
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Multiplying these together yields

Tﬁ3 = A4AsAs

- 3

Rg 0%

0 1

[ cicscs — 5486 —caCsse — sac6 CaS5 cassds

_ | %4csCe+caS6 —S4Cs86 +cacs 8455 S455ds (3.15)
—85¢5 8556 ¢s  csdg

0 0 0 1

Comparing the rotational part R} of T3 with the Euler angle transfor-
mation in Equation (2.26) shows that f4,05,0¢ can indeed be identified as
the Euler angles ¢, 8, and v with respect to the coordinate frame 03z3y323.
o

Example 3.4 Cylindrical Manipulator with Spherical Wrist

A

ds C gy

2 O

e,

Figure 3.9: Cylindrical robot with spherical wrist.

Suppose that we now attach a spherical wrist to the cylindrical manipu-
lator of Example 3.2 as shown in Figure 8.9. Note that the azis of rotation
of joint § is parallel to 2y and thus coincides with the azis z3 of Ezample 3.2.
The implication of this is that we can immediately combine Equations (3.14)
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and (3.15) to derive the forward kinematic equations as
= BT (3.16)

with T3 given by Equation (3.14) and T8 given by Equation (8.15). There-
Jore the forward kinematic equations of this manipulator are given by

™ Tz T3 dg

™ - | ™1 ;a3 d (3.17)
TS T2 Tz d
0 0 o0 1
in which
Tl = C1C4C5C6 — C18486 + 8155Cs
T2l = 81€4C5C6 — 515486 — C155Cs
T3l = ~—54C5C6 — C4Sg
.T12 = —C1C4C556 — C184Cs — S135C6
T2 = —8104C556 — §18456 + €155C5
T32 = S4C5CF — C4C
T13 = C1C485 — 81€5
T3 = 516485+ Cics
T3 = —8455
d: = cicyssds — sicsds — s1d3
dy = sicyssds+cicsds + cids
0, = —sys5dg+dy+dy

Notice how most of the complezity of the forward kinematics for this
manipulator results from the orientation of the end effector while the ex-
pression for the arm position from Equation (8.14) is fairly simple. The
spherical wrist assumption not only simplifies the derivation of the forward
kinematics here, but will also greatly simplify the inverse kinematics problem
in Section 3.3.

o

Example 3.5 Stanford Manipulator

Consider now the Stanford Manipulator shown in Figure 3.10. This
manipulator is an ezample of a spherical (RRP) manipulator with a spherical
wrist. This manipulator has an offset in the shoulder joint that slightly
complicates both the forward and inverse kinematics problems.
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ds

Figure 3.10: DH coordinate frame assignment for the Stanford manipulator. _

We first establish the joint coordinate frames using the DH convention.

The DH parameters are shown in Table 3.4.

1t is straightforward to compute the matrices A; as

g 0 —s1 0] [ea 0 s5 0

_ | = 0 eg 0 _ |8 0 - O
A=l 1 00 =91 o dy (S.18]

0 0 01, 00 0 1

100 0] [cs 0 —sq O

010 0 s 0 g0
“=loo1da| M |0 oo GV

000 1] L0 0 01

s 0 55 0] (g —s5 0 0

o= 85 0 —C5 0 _ | %8 Cg 0 0
=g noe| % |g 1z BN

0 0 01, 0 00 1
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Table 3.4: DH parameters for the Stanford manipulator.

Lok [ & (o] o |6
A
2 (dp| 0490|635
3 [a]o] o |0
4 {o|o|-90|e
5 (0]0/[+9%0]6
6 |ds|o] o |6
* joint variable
TP is then given as
ru T2 3 de
TO = Ay dg = Tal Tay To3 dy (3.21)
T3l T3 T3z d,
0 0 0 1
in which
= cifea(cacses — s456) — s285c6] — da(sacscs + ca86)
ra = sifea(cscses — s456) — sa5506] + c1(sacses + cas6)
ra1 = —sa(cacsce — 5486) — C285¢6
ri2 = ci[—ca(cscsss + s4c6) + 523556] — 51(—84c586 + Cacp)
r2 = —si[~ca(cscsss + sace) + 52856] + €1(—84C556 + Cacs)
ri2 = sa(csCsse + 5406) + C2856
r1i3 = ci(cacass + sacs) — 518485
re3 = s1(cocass + sacs) + €18455
T3z = —82€485 +C2cs
de = c¢182d3 — s1dy + +dg(c1cac485 + C10582 — 515485)
dy = s152d3+ cidy + dg(ci5455 + cacqsiss + 0551.5'2)
d: = cadz+ dg(cacs — c48285)
o]

Example 3.6 SCARA Manipulator
As another example of the general procedure, consider the SCARA ma-
nipulator of Figure 3.11. This manipulator, which is an abstraction of the
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Zj
6,
Y1 =
2 I i
[
Zp Vi 2z
91 C) X3
=
zgg
4 X
.\\ X Y3 [—-q_b 4

/ .
"D,

3, 24

Figure 3.11: DH coordinate frame assignment for the SCARA manipulator.

Table 3.5: DH parameters for-the SCARA manipulator.

Link a; [0 63 d, B,;
1 15} 0 0 I
2 a9 ].80 0 95
3 /o]0 (a0
4 |0 0 |dy|8

* joint variable

AdeptOne robot of Figure 1.14, consists of an RRP arm and a one degree-
of-freedom wrist, whose motion is & roll about the vertical azis. The first
step is to locate and label the joint azes as shown. Since all joint azes are
parallel we have some freedom in the placement of the origins. The origins
are placed as shown for convenience. We establish the =y azis in the plane of
the page as shown. This choice is completely arbitrary, but it does determine
the home position of the manipulator, which is defined relative to the zero
configuration of the manipulator, that is, the position of the manipulator
when the joint variables are equal to zero. The DH parameters are given in
Table 3.5.
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and the A matrices are as follows.

1 —s51 0 aeq ] e s2 0 age
|51 oa 0 a5 | 52 2 0 s
A=l 0 1 0 4=lg g -1 o |62
0 0 0 1 0 0 0 1
100 0] (s —s4 0 0
(0100 |38 ca 00
b=1001 4 A=ly o 1 dy [943)
000 1| [0 0 01
The forward kinematic equations are therefore given by
TP = Ayeedy
C12c4 + 81284 —c1284 +s2cs 0 arer +agcrg
— | S12ca—c1254 —si2sa—ency 0 apsy +azsi
= 0 0 A ity |PH
0 0 0 il

3.3 INVERSE KINEMATICS

In the previous section we showed how to determine the end effector’s posi-
tion and orientation in terms of the joint variables. This section is concerned
with the inverse problem of finding the joint variables in terms of the end
effector’s position and orientation. This is the problem of inverse kine-
matics, and it is, in general, more difficult than the forward kinematics .
problem.

We begin by formulating the general inverse kinematics problem. Fol-
lowing this, we describe the principle of kinematic decoupling and how it
can be used to simplify the inverse kinematics of most modern manipulators.
Using kinematic decoupling, we can consider the position and orientation
problems independently. We describe a geometric approach for solving the
positioning problem, while we exploit the Euler angle parameterization to
solve the orientation problem.

3.3.1 The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given
a 4 x 4 homogeneous transformation

= [g‘ (;JES‘E(B) (3.25)
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find a solution, or possibly multiple solutions, of the equation
T (@reseste) = H (3.26)

where

a1 0) = Aiar) - An(an) (3.27)

Here, H represents the desired position and orientation of the end effector,
and our task is to find the values for the joint variables qi,...,q, so that
Tv?(‘lln‘--:‘lu)zH' g

Equation (3.26) results in twelve nonlinear equations in n unknown vari-
ables, which can be written as

Ti'(q]r---uqn‘)zhijl =123 i=1...,4 (328)

where T, h;; refer to the twelve nontrivial entries of T2 and H, respectively.
Since the bottom row of both 7 and H are (0,0,0,1), four of the sixteen
equations represented by Equation (3.26) are trivial.

Example 3.7
Recall the Stanford manipulator of Ezample 3.5. Suppose that the desired
position and orientation of the final frame are given by

010 0154
001 0763

— B

& 100 0 (.29
000 1

To find the corresponding joint variables 8y, 0y, ds, 84, 05, and 85 we must
solve the following simultaneous set of nonlinear trigonometric equations:

aifea(cacses — s485) — s285¢6] — s1(s4¢506 + c456) = 0
s1lea(escscs — s486) — sassce) + c1(sacscs +cgs6) = 0
—s2(cacses — 843) — 2555 1
c1[—ca(eqcs s + 84c5) + 525596 — s1(—54cs86 + c405) = 1
s1[~ca(cacss6 + 54¢5) + sp8556] + c1(—s40586 + cacg) = 0
s2(cacssg + s4cg) + €a555 = 0
c1(cocass + s905) — 515455 = 0
s1(cacass + sac5) + 15485 = 1
—820385 +cpcs = 0

a1sads — s1dz + dg(cicacass + cressy — s15485) = —D.154

s182d3 + c1da + ds(c15485 + cocas155 + c58152) = 0.763

cod3 + dg(cocs — ca9285) = 0
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If the values of the nonzero DH parameters are dy = 0.154 and dg =
0.263, one solution to this set of equations is given by:

91=7f/2, 92:1;/2, d3=0.5, 34211'/2, 95=0, 06=7T/2.

Even though we have not yet seen how one might derive this solution, it
i not difficult to verify that it satisfies the forward kinematics equations for
the Stanford arm.
o

The equations in the preceding example are, of course, much too diffi-
cult to solve directly in closed form. This is the case for most robot arms.
Therefore, we need to develop efficient and systematic techniques that ex-
ploit the particular kinematic structure of the manipulator. Whereas the
forward kinematics problem always has a unique solution that can be ob-
tained simply by evaluating the forward equations, the inverse kinematics
problem may or may not have a solution. Even if a solution exists, it may
or may not be unique. Furthermore, because these forward kinematic equa-
tions are in general complicated nonlinear functions of the joint variables,
the solutions may be difficult to obtain even when they exist.

In solving the inverse kinematics problem we are most interested in find-
ing a closed-form solution of the equations rather than a numerical solution.
Finding a closed-form solution means finding an explicit relationship

% = filhy,... k),  k=1,...,n (3.30)

Closed-form solutions are preferable for two reasons. First, in certain ap-
plications, such as tracking a welding seam whose location is provided by
a vision system, the inverse kinematic equations must be solved at a rapid
rate, say every 20 milliseconds, and having closed-form expressions rather
than an iterative search is a practical necessity. Second, the kinematic equa-
tions in general have multiple solutions. Having closed-form solutions allows
one to develop rules for choosing a particular solution among several.

The practical question of the existence of solutions to the inverse kine-
matics problem depends on engineering as well as mathematical consider-
ations. For example, the motion of the revolute joints may be restricted
to less than a full 360 degrees of rotation so that not all mathematical so-
lutions of the kinematic equations will correspond to physically realizable
configurations of the manipulator. We will assume that the given position
and orientation is such that at least one solution of Equation (3.26) exists.
Once a solution to the mathematical equations is identified, it must be fur-
ther checked to see whether or not it satisfies all constraints on the ranges
of possible joint motions.
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3.3.2 Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns
out that for manipulators having six joints with the last three joint axes
intersecting at a point (such as the Stanford Manipulator above), it is pos-
sible to decouple the inverse kinematics problem into two simpler problems,
known respectively as inverse position kinematics, and inverse orien-
tation kinematics. To put it another way, for a six-DOF manipulator
with a spherical wrist, the inverse kinematics problem may be separated
into two simpler problems, namely first finding the position of the intersec-
tion of the wrist axes, hereafter called the wrist center, and then finding
the orientation of the wrist.

For concreteness let us suppose that there are éxa.ctly six degrees of
freedom and that the last three joint axes intersect at a point o,. We express
Equation (3.26) as two sets of equations representing the rotational and
positional equations

RY(a,.-0) = R (3.31)
og(an,-14) = o (3.32)

where o and R are the desired position and orientation of the tool frame,
expressed with respect to the world coordinate system. Thus, we are given
o and R, and the inverse kinematics problem is to solve for gy, .. ., gs.

The assumption of a spherical wrist means that the axes 23, z4, and z5
intersect at o, and hence the origins o, and o, assigned by the DH convention
will always be at the wrist center o,. Often oy will also be at o, but this is
not necessary for our subsequent development. The important point of this
assumption for the inverse kinematics is that motion of the final three joints
about these axes will not change the position of 0,, and thus the position of
the wrist center is a function of only the first three joint variables.

The origin of the tool frame (whose desired coordinates are given by
0) is simply obtained by a translation of distance dg along z5 from o, (see
Table 3.3). In our case, 25 and z are the same axis, and the third column
of R expresses the direction of z5 with respect to the base frame. Therefore,
we have

0
o = +dsR | 0 (3.33)
1

Thus, in order to have the end effector of the robot at the point with co-
ordinates given by o and with the orientation of the end effector given by
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R = (ri;), it is necessary and sufficient that the wrist center o, have coordi-
nates given by

0
o) = o-dgR| 0 (3.34)
1

and that the orientation of the frame ogrgyszs with respect to the base be
given by R. If the components of the end effector’s position o are denoted
0z,0y,05 and the components of the wrist center ag are denoted z., 1, 2
then Equation (3.34) gives the relationship

Zo or — dgry3
Ye = Oy = dﬁT‘gg (3.35)
Ze 0; — dgras

Using Equation (3.35) we may find the values of the first three joint
variables. This determines the orientation transformation R} which depends
only on these first three joint variables. We can now determine the orienta-
tion of the end effector relative to the frame 03731323 from the expression

R = RIR (3.36)

R = (B)'R=(R})TR (3.37)

As we shall see in Section 3.3.6, the final three joint angles can then be
found as a set of Euler angles corresponding to Rj. Note that the right-
hand side of Equation (3.37) is completely known since R is given and R}
can be calculated once the first three joint variables are known. The idea of
kinematic decoupling is illustrated in Figure 3.12.

3.3.3 Inverse Position: A Geometric Approach

For the common kinematic arrangements that we consider, we can use a
geometric approach to find the variables g1, 2, g3 corresponding to o given
by Equation (3.34). We restrict our treatment to the geometric approach
for two reasons. First, as we have said, most manipulator designs are kine-
matically simple, usually consisting of one of the five basic configurations of
Chapter 1 with a spherical wrist. Indeed, it is partly due to the difficulty
of the general inverse kinematics problem that manipulator designs have
evolved to their present state. Second, there are few techniques that can
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Yo

Figure 3.12: Kinematic decoupling.

--

Figure 3.13: Elbow manipulator.

-

handle the general inverse kinematics problem for arbitrary configurations.
Since the reader is most likely to encounter robot configurations of the type
considered here, the added difficulty involved in treating the general case
seems unjustified.
In general, the complexity of the inverse kinematics problem increases
with the number of nonzero DH parameters. For most manipulators, many
* of the a;, d; are zero, the a; are 0 or £7/2, etc. In these cases especially,
" a geometric approach is the simplest and most natural. The general idea
~ * of the geometric approach is to solve for joint variable g; by projecting the
manipulator onto the z; ; — y;_, plane and solving a simple trigonometry
problem. For example, to solve for #;, we project the arm onto the zp — g
plane-and use trigonometry to find #;. We will illustrate this method with
two important examples: the articulated and spherical arms.

”‘;Y:’ﬁmﬂe—m

o

!

3.3.4 Articulated Configuration

Consider the elbow manipulator shown in Figure 3.13, with the components
of of denoted by zc, ye, 2.. We project o, onto the zg — yg plane as shown

X
in Figure 3.14. We see from this projection that !

v

61 = Atan2(z.y, 3.38
1 (e, ve) %) Figure 3.14: Projection of the wrist center onto zo — yo plane.

in which Atan2(z, y) denotes the two argument arctangent function defined
in Appendix A.
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1%

Figure 3.15: Singular configuration in which the wrist center lies on the 2g
axis.

Note that a second valid solution for 6; is

61 = 7w+ Atan2(z., y.) (3.39)

Of course this will, in turn, lead to different solutions for , and By, as we
will see below.

These solutions for 6}, are valid unless z, = y. = 0. In this case Equation
(3.38) is undefined and the manipulator is in a singular configuration, shown
in Figure 3.15. In this position the wrist center o, intersects zg; hence any
value of #; leaves o, fixed. There are thus infinitely many solutions for #;
when o, intersects z.

If there is an offset d # 0 as shown in Figure 3.16 then the wrist center
cannot intersect zg. In this case, depending on how the DH parameters have
been assigned, we will have d; = d or d3 = d, and there will, in general, be
only two solutions for 6. These correspond to the so-called left arm and
right arm configurations as shown in Figures 3.17 and 3.18.

Figure 3.17 shows the left arm configuration. From this figure, we see
geometrically that

By = i (3.40)
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.t
o

Figure 3.16: Elbow manipulator with shoulder offset.

in which

Atan2(z., y.) (3.41)
Atan2 (\/rz _ &, d) (3.42)
Atan2 (\/xg +y? - d?, a!)

The second solution, given by the right arm configuration shown in Fig-
ure 3.18 is given by

By = Atan2(zc,yc) + Atan2 (—\/1‘2 —d?,—d) (3.43)

To see this, note that

91 = a+ ,B

a = Ata'n2(3"61 yC)

B = q+n

v = Atan2 (\/rz—d'z,d)
which together imply that

B = Atan2 (—\/r?—dz,—d)

since cos(f + 7) = — cos(f) and sin(f + m) = —sin(6).
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Figure 3.17: Left arm configuration,

Yo

Figure 3.18: Right arm configuration.
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Figure 3.19: Projecting onto the plane formed by links 2 and 3.

To find the angles 5, 85 for the elbow manipulator given 6;, we consider
the plane formed by the second and third links as shown in Figure 3.19. Since
the motion of second and third links is planar, the solution is analogous to
that of the two-link manipulator of Chapter 1. As in our previous derivation
(cf. Equations (1.7) and (1.8)) we can apply the law of cosines to obtain

24+ —a2—a}

1]

cos (3.44)

2a2a3
Tty -t (e —di) -~} -af _

D
20203

2

since r2 =z + y2 —d? and s = 2, — d; Hence, f3 is given by

8y = Atan2 (D,i\/l—m) (3.45)

The two solutions for f3 correspond to the elbow-down position and elbow-
up position, respectively. Similarly 8; is given as

()]

Atan2(r,s) — Atan2(as + ages, a3s;) (3.46)
Atan2 (\/IE +yt—d? 2, — dl) — Atan2{a; + ascs, a3s3)

An example of an elbow manipulator with offsets is the PUMA shown
in Figure 3.20. There are four solutions to the inverse position kinematics
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Left Am Eibow Down Right Arm Elbow Down

Figure 3.20: Four solutions of the inverse position kinematics for the PUMA
manipulator.

as shown. These correspond to the situations left arm-elbow up, left arm-
elbow down, right arm-elbow up and right arm—elbow down. We will see
that there are two solutions for the wrist orientation thus giving a total of
eight solutions of the inverse kinematics for the PUMA manipulator.

3.3.5 Spherical Configuration

Next, we solve the inverse position kinematics for a three degree of freedom
spherical manipulator shown in Figure 3.21. As in the case of the elbow
manipulator the first joint variable is the base rotation and a solution is
given as

01 = Atan2(x.,y.) (3.47)
provided z. and y. are not both zero. If both z. and y, are zero, the
configuration is singular as before and 6 may take on any value. As in the

case of the elbow manipulator, a second solution for ; is given by

th = 7 + Atan2(z., y.). (3.48)
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Ye
Yo
Figure 3.21: Spherical manipulator.
The angle 05 is given from Figure 3.21 as
6, = Atan2(r,s)+ g (3.49)
where 7% = 22 + 42, 5 = 2, — dy.
The linear distance dj is found as
dy=vr2+8 = al+y2+ (s dy)? (3.50)

The negative square root solution for ds is disregarded and thus in this
case we obtain two solutions to the inverse position kinematics as long as
the wrist center does not intersect zg. If there is an offset then there will
be left and right arm configurations as in the case of the elbow manipulator
{Problem 3-21).

3.3.6 Inverse Orientation

In the previous section we used a geometric approach to solve the inverse
position problem. This gives the values of the first three joint variables
corresponding to a given position of the wrist center. The inverse orientation
problem is now one of finding the values of the final three joint variables
corresponding to a given orientation with respect to the frame oyx3y323.
For a spherical wrist, this can be interpreted as the problem of finding a
set of Euler angles corresponding to a given rotation matrix R. Recall that
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Table 3.6: DH parameters for the articulated manipulator of Figure 3.13.

Link a; | o d, 9-_'

1 [0][9|d |8

2 |lap| 0| 0|86

3 azg | 0] 0 9;
* variable

Equation (3.15) shows that the rotation matrix obtained for the spherical
wrist has the same form as the rotation matrix for the Euler transformation
given in Equation (2.26). Therefore, we can use the method developed
in Section 2.5.1 to solve for the three joint angles of the spherical wrist.
In particular, we solve for the three Euler angles, ¢, 0,1, using Equations
(2.28) — (2.33), and then use the mapping

by = ¢
s = 0
b = 1

Example 3.8 Articulated Manipulator with Spherical Wrist

The DH parameters for the frame assignment shown in Figure 3.13 are
summarized in Table 3.6. Multiplying the corresponding A; matrices gives
the matriz R} for the articulated or elbow manipulator as

c1e23 —C1S33 81

0

By = | sic3 —s1s:3 —¢ (3.51)
593 23 0

The matriz RS is the upper left 3x 3 submatriz of the matriz product AgAs Ag
given by

C4C506 — 5486 —C4C586 — 540 €455
Iﬁ = 540566 + €185 —84C555 + CaCg  S4Sy (3.52)
—35Cq S586 Cy

The equation to be solved for the final three variables is therefore

R = (R)TR (3.53)
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and the Euler angle solution can be applied to this equation. For ezample,
the three equations given by the third column in the above matriz equation
are given by

485 = C1C23713 + 8123723 + S2ar'33 (3.54)
8485 = —C1523713 — 81523723 + CaaTs3 (3.55)
¢G5 = 81r13 —C1To3 (356)

Hence, if not both of Equations (3.54) and (3.55) are zero, we obtain 65
from Equations (2.28) and (2.29) as

\

fs = Atan2 (81?‘13 — e1703, £y/1— (81713 — 61?”23)2) (3.57)

If the positive square root is chosen in Equation (8.57), then 84 and 05 are
given by Equations (2.30) and (2.81), respectively, as

01 = Atan2(cicoaria + 123723 + 823733,
—C1523713 — 81823723 + C23733) (3.58)
06 = Atan2(—siry1 + c1ma1, 81712 — €1722) (3.59)

The other solutions are obtained analogously. If s5 = 0, then joint azes
z3 and z5 are collinear. This is a singular configuration and only the sum
01+ 05 can be determined. One solution is to choose 8y arbitrarily and then
determine g using Equation (2.35) or (2.97).

o

Example 3.9 Elbow Manipulator - Complete Solution

To summarize the geometric approach for solving the inverse kinematics
equations, we give here one solution to the inverse kinematics of the six
degree-of-freedom elbow manipulator shown in Figure 8.18 which has no joint
offsets and a spherical wrist.

(Given
g T Ti2 Ti3
o = oy |, R=|ry ro (3.60)
0 31 732 Ta3
then with
Te = Op— dﬁ?‘lg (3.61)
Yo = 0y—dgras (3.62)
2. = 0,—dgTy3 (363)

ey

S L KA PO SR

SR ST
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a set of DH joint variables is given by

b1
0,

f3

ts

b5
b

Atan2(z.,y.)
Atan2 (\/zmg—_d?, Ze— dl)
—Atan2(ay + ases, a383)

Atan? (D, +V1-1?),
ity -+ (ze~ Y — i — df
262&3

Atan2(e1ep3m13 + 51023793 + 523733,
—C1823713 — 51523723 + C23733)
Atan? (317'13 = erg3, £y/1 = (81713 — c1r23)2)

Atan2(—s1r11 + ¢1791, $1712 — c172)

with D =

The other possible solutions are left as an ezercise (Problem 3-20).

©

Example 3.10 SCARA Manipulator

%

Figure 3.22: SCARA manipulator.
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(3.66)

(3.67)
(3.68)
(3.69)

As another example, consider the SCARA manipulator illustrated in Fig-
ure 3.22, with forward kinematics defined by TY from Equation (3.24). The
inverse kinematics solution is then given as the set of solutions of the equa-
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tion

) [ R o

Iy = 101

[ cipca+ 81254 Sea—ciase 0 age; + agen
_ | s12ca—c1284 —cioca—3s1284 0 @151 +agsyo (3.70)
0 0 -1 —dz—d, '

o 0 0 1

We first note that, since the SCARA has only four degrees of freedom,
not every possible H from SE(3) allows a solution of Equation (3.70). In
fact we can easily see that there is no solution of Equation (3.70) unless R
is of the form

Ca 8¢ O
R = S¢ —Cx 0 (3.71)
0 0 -1

and if this is the case, the sum 8y + 03 — 8, is determined by
h+0,—-b6=a= Atan2(ryy,r19) (3.72)

Projecting the manipulator configuration onto the zg — yo plane yields
the geometry shown in Figure 3.22. Using the law of cosines

Bl
@ = q_oﬁ - oga:azl —4 (3.73)
(3.74)
and .
82 = Atan2 ey, +v1—¢y) (3.75)
The value for 6y is then obtained as
61 = Atan2(os,0y) — Atan2(a; + agcy, azsy) (3.76)
We may now determine 6 from Equation (3.72) as
by = h+b-a (3.77)
= 01+ 0y — Atan2(ry1,r12)
Finally dy is given as
d3 = o0,+d4 (3.78)
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3.4 SUMMARY

In this chapter we studied the relationships between joint variables ¢; and
the pogition and orientation of the end effector. We began by introducing the
Denavit-Hartenberg convention for assigning coordinate frames to the links
of a serial manipulator. We may summarize the procedure based on the DH
convention in the following algorithm for deriving the forward kinematics
for any manipulator,

2

Step 1: Locate and label the joint axes zg,..., 2y—1.

Step 2: Establish the base frame. Set the origin anywhere on the zp-axis.
The zy and yy axes are chosen conveniently to form a right-handed
frame.

Fori=1,...,n—1 perform Steps 3 to 5.

Step 3: Locate the origin o; where the common normal to z and 2 in-
tersects z;. If z; intersects z;_; locate o, at this intersection. If z; and
-1 are parallel, locate o; in any convenient position along z;.

Step 4: Establish ; along the common normal between z;_; and z; through
0;, or in the direction normal to the z_; — z; plane if z_; and %
intersect.

Step 5: Establish y; to complete a right-handed frame.

Step 6: Establish the end-effector frame 0,2, 2,. Assuming the n** joint
is revolute, set z, = a parallel to z,_;. Establish the origin o,, conve-
niently along z,, preferably at the center of the gripper or at the tip
of any tool that the manipulator may be carrying. Set y, = s in the
direction of the gripper closure and set x, = n as s x a. If the tool is
not a simple gripper set z,, and y, conveniently to form a right-handed
frame.

Step 7: Create a table of DH parameters a;, d;, o, 8;.

a; = distance along z; from the intersection of the z; and z_; axes to

0;.

d;

Il

distance along ;1 from o;_; to the intersection of the z; and
z;—1 axes. If joint 1 is prismatic, d; is variable.

a; = the angle from z; 1 to 2; measured about z;.
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0; = the angle from z;_; to 2; measured about z;_;. If joint i is
revolute, 8; is variable.

Step 8: Form the homogeneous transformation matrices A; by substituting
the above parameters into Equation (3.10).

Step 9: Form T = A; -+ A,. This then gives the position and orientation
of the tool frame expressed in base coordinates.

This DH convention defines the forward kinematics equations for a ma-
nipulator, i.e., the mapping from joint variables to end effector position and
orientation. To control a manipulator, it is necessary to solve the inverse
problem, i.e., given a position and orientation for the end effector, solve for
the corresponding set of joint variables.

In this chapter we considered the special case of manipulators for which
kinematic decoupling can be used (e.g., a manipulator with a spherical
wrist). For this class of manipulators the determination of the inverse kine-
matics can be summarized by the following algorithm.

Step 1: Find g1, ¢3, g3 such that the wrist center o, has coordinates given
by

0
o = o-dgR| 0 (3.79)
1

Step 2: Using the joint variables determined in Step 1, evaluate RY.

Step 3: Find a set of Euler angles corresponding to the rotation matrix
B; = (B)"'R=(R})'R (3.80)

In this chapter we demonstrated a geometric approach for Step 1. In
particular, to solve for joint variable ¢;, we project the manipulator (includ-
ing the wrist center) onto the z;_; —3_; plane and use trigonometry to find
gi-

PROBLEMS

3-1 Verify the statement after Equation (3.14) that the rotation matrix R
has the form given by Equation (3.13) provided assumptions (DH1)
and (DH2) are satisfied.
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X 3-2 Consider the three-link planar manipulator shown in Figure 3.23. De-
rive the forward kinematic equations using the DH convention.

'd

Figure 3.23: Three-link planar arm of Problem 3-2.

3-3 Counsider the two-link Cartesian manipulator of Figure 3.24. Derive
the forward kinematic equations using the DH convention.

N

Figure 3.24: Two-link Cartesian robot of Problem 3-3.

3-4 Consider the two-link manipulator of Figure 3.25, which has joint 1
revolute and joint 2-prismatic. Derive the forward kinematic equations
using the DH convention.

5

0

Figure 3.25: Two-link planar arm of Problem 3-4.
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3-5 Consider the three-link planar manipulator of Figure 3.26. Derive the
forward kinematic equations using the DH convention.

o /O—

7/

Figure 3.26: Three-link planar arm with prismatic joint of Problem 3-5.

3-6 Consider the three-link articulated robot of Figure 3.27. Derive the
forward kinematic equations using the DH convention.

Figure 3.27: Three-link articulated robot.

3-7 Consider the three-link Cartesian manipulator of Figure 3.28. Derive
the forward kinematic equations using the DH convention.

—-—

NN

Figure 3.28: Three-link Cartesian robot.



114 CHAPTER 3. FORWARD AND INVERSE KINEMATICS

3-8 Attach a spherical wrist to the three-link articulated manipulator of
"~ Problem 3-6 as shown in Figure 3.29. Derive the forward kinematic
equations for this manipulator.

’

4 A
[
1
1

P P :
5 ~ 4P

A

Figure 3.29: Elbow manipulator with spherical wrist,

3-9 Attach a spherical wrist to the three-link Cartesian manipulator of
Problem 3-7 as shown in Figure 3.30. Derive the forward kinematic
equations for this manipulator.

Figure 3.30: Cartesian manipulator with spherical wrist.
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3-10 Consider the PUMA 260 manipulator shown in Figure 3.31. Derive
the complete set of forward kinematic equations by establishing appro-
priate DH coordinate frames, constructing a table of DH parameters,
forming the A matrices, etc.

Figure 3.31: PUMA 260 manipulator.

3-11 Given a desired position of the end effector, how many solutions are
there to the inverse kinematics of the three-link planar arm shown in
Figure 3.327 If the orientation of the end effector is also specified, how
many solutions are there? Use the geometric approach to find them.

/

Figure 3.32: Three-link planar robot with revolute joints.
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3-12 Repeat Problem 3-11 for the three-link planar arm with prismatic joint

of Figure 3.33.
& ’

Figure 3.33: Three-link planar robot with prismatic joint.

3-13 Solve the inverse position kinematics for the cylindrical manipulator
of Figure 3.34.

|
—

I 1 | da
d
B K
1 f
™
B\

Figure 3.34: Cylindrical configuration.

3-14 Solve the inverse position kinematics for the Cartesian manipulator of
Figure 3.35.

d;

Figure 3.35: Cartesian configuration.
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3-15 Add a spherical wrist to the three-link cylindrical arm of Problem 3-13
and write the complete inverse kinematics solution.

3-16 Add a spherical wrist to the Cartesian manipulator of Problem 3-14
and write the complete inverse kinematics solution.

3-17 Write a computer program to compute the inverse kinematic equations
for the elbow manipulator using Equations (3.64)-(3.69). Include pro-
cedures for identifying singular configurations and choosing a particu-
lar solution when the configuration is not singular. Test your routine
for various special cases, including singular configurations.

3-18 The Stanford manipulator of Example 3.5 has a spherical wrist. Given
a desired position o and orientation R of the end effector,

1. Compute the desired coordinates of the wrist center o.

2. Solve the inverse position kinematics, that is, find values of the
first three joint variables that will place the wrist center at o,. Is
the solution unique? How many solutions did you find?

3. Compute the rotation matrix Rg . Solve the inverse orientation
problem for this manipulator by finding a set of Euler angles
corresponding to R3 given by Equation (3.52).

3-19 Repeat Problem 3-18 for the PUMA 260 manipulator of Problem 3-10,
which also has a spherical wrist. How many total solutions did you
find?

3-20 Find all other solutions to the inverse kinematics of the elbow manip-
ulator of Example 3.9.

3-21 Modify the solutions #; and 65 for the spherical manipulator given by
Equations (3.47) and (3.49) for the case of a shoulder offset.

NOTES AND REFERENCES

The Denavit-Hartenberg convention for assigning coordinate frames was in-
troduced in the fifties, and is described in [57] and [27]. Since then, many
articles have been written on the topics of forward and inverse kinematics.
Seminal articles that deal with forward kinematics include [19], [29], [74],
(75], [103], [57], and (138]. Inverse kinematics problems are considered in [6],
[45], [53], [75)], [76], [103], [105], [113], and [134]. In the late seventies and
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early eighties, several robotics books were published that covered topics re-
lated to robot kinematics, such as, [13], [102], [128], [140]. Since then, most
robotics texts have included as standard material descriptions of the DH
convention and the inverse kinematics problem, including [41], [93], [110].
More detailed treatment of the general inverse kinematics problem can be
found in [45], [53], [105], [134].

Chapter 4

VELOCITY KINEMATICS
— THE JACOBIAN

In the previous chapter we derived the forward and inverse position equa-
tions relating joint positions to end-effector positions and orientations. In
this chapter we derive the velocity relationships, relating the linear and an-
gular velocities of the end effector to the joint velocities.

Mathematically, the forward kinematic equations define a function be-
tween the space of Cartesian positions and orientations and the space of joint
positions. The velocity relationships are then determined by the Jacobian
of this function. The Jacobian is a matrix that generalizes the notion of the
ordinary derivative of a scalar function. The Jacobian is one of the most
important quantities in the analysis and control of robot motion. Tt arises in
virtually every aspect of robotic manipulation: in the planning and execu-
tion of smooth trajectories, in the determination of singular configurations,
in the execution of coordinated anthropomorphic motion, in the derivation
of the dynamic equations of motion, and in the transformation of forces and
torques from the end effector to the manipulator joints.

We begin this chapter with an investigation of velocities and how to rep-
resent them. We first consider angular velocity about a fixed axis and then
generalize this to rotation about an arbitrary, possibly moving axis with the
aid of skew symmetric matrices. Equipped with this general representation
of angular velocities, we are able to derive equations for both the angular
velocity and the linear velocity for the origin of a moving frame.

We then proceed to the derivation of the manipulator Jacobian. For an n-
link manipulator we first derive the Jacobian representing the instantaneous
transformation between the n-vector of joint velocities and the 6-vector con-
sisting of the linear and angular velocities of the end effector. This Jacobian
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is then a 6 x n matrix. The same approach is used to determine the trans-
formation between the joint velocities and the linear and angular velocity
of any point on the manipulator. This will be important when we discuss
the derivation of the dynamic equations of motion in Chapter 7. We then
show how the end-effector velocity is related to the velocity of an attached
tool. Following this, we describe the analytic Jacobian, which uses an
alternative parameterization of end-effector velocity. We then discuss the
notion of singular configurations. These are configurations in which the
manipulator loses one or more degrees of freedom of totion. We show how
the singular configurations are determined geometrically and give several
examples. Following this, we briefly discuss the inverse problems of deter-
mining joint velocities and accelerations for specified end-effector velocities
and accelerations. We then discuss how the manipulator Jacobian can be
used to relate forces at the end effector to joint torques. We end the chap-
ter by considering redundant manipulators. This includes discussions of the
inverse velocity problem, singular value decomposition and manipulability.

4.1 ANGULAR VELOCITY: THE FIXED AXIS CASE

When a rigid body moves in a pure rotation about a fixed axis, every point
of the body moves in a circle. The centers of these circles lie on the axis of
rotation. As the body rotates, a perpendicular from any point of the body
to the axis sweeps out an angle 4, and this angle is the same for every point
of the body. If & is a unit vector in the direction of the axis of rotation, then
the angular velocity is given by

w=0k (4.1)

in which @ is the time derivative of 6.
Given the angular velocity of the body, one learns in introductory dy-
namics courses that the linear velocity of any point on the body is given by

the equation
vV=wXrT (4.2)

in which r is a vector from the origin (which in this case is assumed to lie on
the axis of rotation) to the point. In fact, the computation of this velocity
v is normally the goal in introductory dynamics courses, and therefore, the
main role of an angular velocity is to induce linear velocities of points in a
rigid body. In our applications, we are interested in describing the motion
of a moving frame, including the motion of the origin of the frame through
space and also the rotational motion of the frame’s axes. Therefore, for our
purposes, the angular velocity will hold equal status with linear velocity.
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As in previous chapters, in order to specify the orientation of a rigid ob-
ject, we attach a coordinate frame rigidly to the object, and then specify the
orientation of the attached frame. Since every point on the object experi-
ences the same angular velocity (each point sweeps out the same angle § in a
given time interval), and since each point of the body is in a fixed geometric
relationship to the body-attached frame, we see that the angular velocity is
a property of the attached coordinate frame itself. Angular velocity is not
a property of individual points. Individual points may experience a linear
velocity that is induced by an angular velocity, but it makes no sense to
speak of a point itself rotating. Thus, in Equation (4.2) v corresponds to
the linear velocity of a point, while w corresponds to the angular velocity
associated with a rotating coordinate frame.

In this fixed axis case, the problem of specifying angular displacements is
really a planar problem, since each point traces out a circle, and since every
circle lies in a plane. Therefore, it is tempting to use # to represent the
angular velocity. However, as we have already seen in Chapter 2, this choice
does not generalize to the three-dimensional case, either when the axis of
rotation is not fixed, or when the angular velocity is the result of multiple
rotations about distinct axes. For this reason, we will develop a more general
representation for angular velocities. This is analogous to our development of
rotation matrices in Chapter 2 to represent orientation in three dimensions.
The key tool that we will need to develop this representation is the skew
symmetric matrix, which is the topic of the next section.

4.2 SKEW SYMMETRIC MATRICES

In Section 4.3 we will derive properties of rotation matrices that can be used
to compute relative velocity transformations between coordinate frames.
Such transformations involve derivatives of rotation matrices. By introduc-
ing the notion of a skew symmetric matrix it is possible to simplify many of
the computations involved.

An n x n matrix S is said to be skew symmetric if and only if

ST+s =0 (4.3)

We denote the set of all 3 x 3 skew symmetric matrices by so(3).
If § € 50(3) has components s;;, ¢,j = 1,2,3 then Equation (4.3) is
equivalent to the nine equations
Sij + Sji = 0 I,j =1,2,3 (44)

From Equation (4.4) we see that s;; = 0; that is, the diagonal terms of S
are zero and the off diagonal terms s;;, 1 # j satisfy s;; = —sj;. Thus,
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S contains only three independent entries and every 3 x 3 skew symmetric
matrix has the form

0 —83 8 i
§ = 83 0 —81 (4.5)
-3 8 0

If @ = [ag, ay,a,]" is a 3-vector, we define the skew symmetric matrix S(a)

as L]

O —a; ay

S(a) = a; 0 —a,

—ay ay 0

Example 4.1
Denote by i, j, and k the three unit basis coordinate vectors,

1 0 0
t= |0 ]; =10 |s =]
0 0 1

The skew symmetric matrices S(i), S(j), and S(k) are given by

4.2.1 Properties of Skew Symmetric Matrices

Skew symmetric matrices possess several properties that will prove useful
for subsequent derivations.! Among these properties are

1. The operator § is linear, that is,
S(ea+(b) = «S(a)+ BS(b) (4.6)

for any vectors o and b belonging to R? and scalars o and 3.

"These properties are consequences of the fact that s0(3) is a Lie algebra, a vector
space with a suitably defined product operation [12].
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2. For any vectors a and p belonging to R3,
Sa)p = axp (4.7)

where a X p denotes the vector cross product. Equation (4.7) can be
verified by direct calculation.

3. For R € SO(3) and a € R®
RS(a)RT = S(Ra) (4.8)

To show this, we use that fact that if R € SO(3) and a, b are vectors
in R3

Rlaxb) = RaxRb (4.9)

This can be shown by direct calculation. Equation (4.9) is not true
in general unless R is orthogonal. It says that if we first rotate the
vectors a and b using the rotation transformation R and then form
the cross product of the rotated vectors Ra and Rb, the result is the
same as that obtained by first forming the cross product a x b and
then rotating to obtain R(a x b). Equation (4.8) now follows easily
from Equations (4.7) and (4.9) as follows. Let b € R® be an arbitrary
vector. Then

RS(a)RTb

R(a x R"b)
(Ra) x (RR"D)
(Ra) x b

S{Ra)b

and the result follows. The left-hand side of Equation (4.8) repre-
sents a similarity transformation of the matrix S(a). The equation
says therefore that the matrix representation of S(a) in a coordinate
frame rotated by R is the same as the skew symmetric matrix S(Ra)
corresponding to the vector a rotated by R.

4. For an n x n skew symmetric matrix S and any vector X € R"

XT8X =0 (4.10)
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which shows that w is indeed the traditional angular velocity vector.

Equation (4.19) shows the relationship between angular velocity and the
derivative of a rotation matrix. In particular, if the instantaneous orientation
of a frame 01219121 with respect to a frame ogzoyozo is given by R{{, then
the angular velocity of frame 0171312 is directly related to the derivative
of R} by Equation (4.19). When there is a possibility of ambiguity, we
will use the notation w;; to denote the angular velocity that corresponds
to the derivative of the rotation matrix R; Since w is a free vector, we
can express it with respect to any coordinate system of our choosing. As
usual we use a superscript to denote the reference frame. For example,
w) o would give the angular velocity that corresponds to the derivative of
R}, expressed in coordinates relative to frame 0pToYozo. In cases where
the angular velocities specify rotation relative to the base frame, we will
often simplify the subscript, for example, using w; to represent the angular
velocity that corresponds to the derivative of RY.

Example 4.4 .
Suppose that R(t) = R_ o) Then R(t) is computed using the chain rule
as
. dR dRd0 .
ek yrae 8S(:)R(t) = S(w(t))R(t) {4.20)
in which w = i@ is the angular velocity. Note, i = [1,0,07.
o

44 ADDITION OF ANGULAR VELOCITIES

We are often interested in finding the resultant angular velocity due to the
relative rotation of several coordinate frames. We now derive the expressions
for the composition of angular velocities of two moving frames o;2;y;2; and
0aT2y222 relative to the fixed frame ogzoyozg. For now, we assume that the
three frames share a common origin. Let the relative orientations of the
frames 0)z1y121 and o9z9y222 be given by the rotation matrices R)(t) and
Ri(t) (both time varying).

In the derivations that follow, we will use the notation w; ; to denote the
angular velocity vector that corresponds to the time derivative of the rota-
tion matrix R; Since we can express this vector relative to the coordinate
frame of our choosing, we again use a superscript to define the reference
frame. Thus, wf‘lj would denote the angular velocity vector corresponding
to the derivative of R}, expressed relative to frame k.
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As in Chapter 2,

B(t) = RI(OR)() (4.21)

Taking derivatives of both sides of Equation (4.21) with respect to time
yields

R = RR}+RIR} (4.22)

Using Equation (4.19), the term Rg on the left-hand side of Equation (4.22)
can be written

B = Swi,)R (4.23)

In this expression, wg'z denotes the total angular velocity experienced by
frame 0yz2y229. This angular velocity results from the combined rotations
expressed by R? and RZI,.

The first term on the right-hand side of Equation (4.22) is simply

BB} = S(wd,)ROR} = S(wd,) RS (4.24)

Note that in this equation, w&l denotes the angular velocity of frame 01211 2
that results from the changing RY, and this angular velocity vector is ex-
pressed relative to the coordinate system opzoypzp.

Let us examine the second term on the right-hand side of Equation (4.22).
Using Equation (4.8) we have

RiR;

R?S (“%,2)35
= RYS(w} )RS ROR} = S(RQwl )RR} (4.25)
b (R?“’il,z)ﬂg

Il

Note that in this equation, “’%,2 denotes the angular velocity of frame 0szoy229
that corresponds to the changing R}, expressed relative to the coordinate
system o0171y121. Thus, the product R?wig expresses this angular velocity
relative to the coordinate system opzoyozo. In other words, Rw}, gives the
coordinates of the free vector wy 2 with respect to frame 0.

Now, combining the above expressions we have shown that

SRy = {S(wh,) + S(Riwi,)}R (4.26)
Since S(a) + S(b) = S(a + b), we see that

W) = why+RWwl, (4.27)
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In other words, the angular velocities can be added once they are expressed
relative to the same coordinate frame, in this case ogzoyozo.

The above reasoning can be extended to any number of coordinate sys-
tems. In particular, suppose that we are given

Ry = RR}--Ry (4.28)
Extending the above reasoning we obtain

B = SWIR (4.29)

W = why+Riwis+ Rwis + Riwl,+- -+ Ry _ywh i, (4.30)

wop Helptwpg Wyt twd g, (4.31)

4.5 LINEAR VELOCITY OF A POINT ATTACHED TO A
MOVING FRAME

We now consider the linear velocity of a point that is rigidly attached to a
moving frame. Suppose the point p is rigidly attached to the frame 0yz131 21,
and that 01719121 is rotating relative to the frame opzoypzo. Then the
coordinates of p with respect to the frame ogzgypzg are given by

P = Ry (4.32)
The velocity p° is then given by the product rule for differentiation as

P = RYp + RO(t)p!
(W) R(t)p! (4.33)

which is the familiar expression for the velocity in terms of the vector cross
product. Note that Equation (4.33) follows from the fact that p is rigidly
attached to frame 0y219:21, and therefore its coordinates relative to frame
0121121 do not change, giving p = 0.

Now, suppose that the motion of the frame 0;z1y2) relative to agzgi20
is more general. Suppose that the homogeneous transformation relating the
two frames is time-dependent, so that

H(t) = [R?D(t) "91('5)] (4.34)
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For simplicity we omit the argument ¢ and the subscripts and super-
scripts on RY and of, and write

? = Rp'+o {4.35)
Differentiating the above expression using the product rule gives
2 = Rpt+o

S(w)Rp' + 0 ' (4.36)
= WXr+v

where r = Rp' is the vector from o; to p expressed in the orientation of the
frame opzgyozo, and v is the rate at which the origin o) is moving.

If the point p is moving relative to the frame 0121y121, then we must add
to the term v the term R(¢)p!, which is the rate of change of the coordinates
p! expressed in the frame ogzayozg.

4.6 DERIVATION OF THE JACOBIAN

Consider an n-link manipulator with joint variables qi,...,g, . Let

To(q) = [RQO(Q) 09‘1(‘1)] (437)

denote the transformation from the end-effector frame to the base frame,
where ¢ = [q1, . .. ,qn]T is the vector of joint variables. As the robot moves
about, both the joint variables g; and the end-effector position 02 and ori-
entation RQ will be functions of time. The objective of this section is to
relate the linear and angular velocity of the end effector to the vector of
joint velocities (t). Let

Swy) = RARYT (4:38)
define the angular velocity vector w? of the end effector, and let
) = 4 (4.39)

denote the linear velocity of the end effector. We seek expressions of the
form

= i (4.40)
= Ly (4.41)

Sodo
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where Jy and Ji, are 3 x n matrices. We may write Equations (4.40) and
(4.41) together as

§ = Jq (4.42)
in which £ and J are given by
0
| U - Jv
(3] w -[2] ue

The vector £ is sometimes called a body velocity. Note that this velocity
vector is not the derivative of a position variable, since the angular velocity
vector is not the derivative of any particular time varying quantity. The
matrix J is called the manipulator Jacobian or Jacobian for short. Note
that J is a 6 x n matrix where n is the number of links. We next derive a
simple expression for the Jacobian of any manipulator.

4.6.1 Angular Velocity

Recall from Equation (4.30) that angular velocities can be added as free
vectors, provided that they are expressed relative to a common coordinate
frame. Thus, we can determine the angular velocity of the end effector
relative to the base by expressing the angular velocity contributed by each
joint in the orientation of the base frame and then summing these.

If the " joint is revolute, then the i** joint variable g; equals 6; and
the axis of rotation is z;_;. Slightly abusing notation, let w::‘l represent the
angular velocity of link ¢ that is imparted by the rotation of joint i, expressed
relative to frame 0;_1z;_19_12i_1. This angular velocity is expressed in the
frame i ~ 1 by
o= G = gk (4.44)
in which, as above, k is the unit coordinate vector [0, 0, 1].

If the " joint is prismatic, then the motion of frame 7 relative to frame
¢ — 1 is a translation and

W

Wt =0 (4.45)

Thus, if joint ¢ is prismatic, the angular velocity of the end effector does not
depend on g;, which now equals d;.

Therefore, the overall angular velocity of the end effector, w2, in the base
frame is determined by Equation (4.30) as

wWh = mitk+ @RIk + -+ puinRS_ k=Y pidicly  (4.46)
=1
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in which p; is equal to 1 if joint i is revolute and 0 if joint 7 is prismatic,
since

2y = Rk (4.47)

Of course 2 = k = [0,0,1]7.
The lower half of the Jacobian J,, in Equation (4.43) is thus given as

Jo = [mz: pazn-i] (4.48)

Note that in this equation, we have omitted the superscripts for the unit
vectors along the z-axes, since these are all referenced to the world frame.
In the remainder of the chapter we will follow this convention when there is
no ambiguity concerning the reference frame.

4.6.2 Linear Velocity

The linear velocity of the end effector is just 60. By the chain rule for
differentiation

n
3o}
-0 n .
Oy = E ' g (4.49)

(4.50)

Furthermore, this expression is just the linear velocity of the end effector
that would result if ¢; were equal to one and the other g; were zero. In other
words, the i column of the Jacobian can be generated by holding all joints
fixed but the i** and actuating the i at unit velocity. This observation
leads to a simple and intuitive derivation of the linear velocity Jacobian as
we now show. We now consider the two cases of prismatic and revolute
joints separately.

Case 1: Prismatic Joints

Figure 4.1 illustrates the case when all joints are fixed except a single pris-
matic joint. Since joint ¢ is prismatic, it imparts a pure translation to the
end effector. The direction of translation is parallel to the axis z;_; and the
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Iy

Figure 4.1: Motion of the end effector due to primsmatic joint i.

magnitude of the translation is d;, where d; is the DH joint variable. Thus,
in the orientation of the base frame we have

- |
o =dR) | 0| =dizl, (4.51)
1

in which d; is the joint variable for prismatic joint i. Thus, for the case of
prismatic joints, after dropping the superscripts we have

Jo. = %1 (4.52)

Case 2: Revolute Joints

Figure 4.2 illustrates the case when all joints are fixed except a single revolute
joint. Since joint i is revolute, we have g; = 6;. Referring to Figure 4.2 and
assuming that all joints are fixed except joint 7, we see that the linear velocity
of the end effector is simply of the form w x r, where

w=biz_, (4.53)
and

T=0,~0,; (454)
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Tp

Figure 4.2: Motion of the end effector due to revolute joint 1.

Thus, putting these together and expressing the coordinates relative to
the base frame, for a revolute joint we obtain

Ju; = 21 X (on — 0;-1) (4.55)

in which we have omitted the zero superscripts following our convention.

4.6.3 Combining the Linear and Angular Velocity Jacobians

As we have seen in the preceding section, the upper half of the Jacobian Jy
is given as

Jo = [y du,) (4.56)

in which the i* column Ji, is

e e
The lower half of the Jacobian is given as
i = o =il (4.58)
in which the i* column J,, is
e B g
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The above formulas make the determination of the Jacobian of any ma-
nipulator simple since all of the quantities needed are available once the
forward kinematics are worked out. Indeed, the only quantities needed to
compute the Jacobian are the unit vectors 2; and the coordinates of the
origins o1,...,0,. A moment’s reflection shows that the coordinates for z;
with respect to the base frame are given by the first three elements in the
third column of T? while o; is given by the first three elements of the fourth
column of T. Thus, only the third and fourth columns of the T matrices are
needed in order to evaluate the Jacobian according to the above formulas.

The above procedure works not only for computing the velocity of the end
effector but also for computing the velocity of any point on the manipulator.
This will be important in Chapter 7 when we will need to compute the
velocity of the center of mass of the various links in order to derive the
dynamic equations of motion.

Example 4.5 Two-Link Planar Manipulator

Consider the two-link planor manipulator of Ezample $.1. Since both
joints are revolute the Jacobian matriz, which in this case is 6 x 2, 1s of the
form

iy = 30"(2{2)—00) 21X(Z—01) (4.60)

The various quantities above are easily seen to be

0 aicy aicy + agcyg
=0 aa=]| a9 02 = | @151+ ags13 (4.61)
0 ' 0 0
0
=z = |0 (4.62)
1

Performing the required calculations then yields

—a1s1 — a2512 —a2812
a1c1 +agciy  ascia
0 0
J = (4.63)

0
0
1

-0 O
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It is easy to see how the above Jacobian compares with Equation (1.1)
derived in Chapter 1. The first two rows of Equation (4.62) are ezactly the
2 x 2 Jacobian of Chapter 1 and give the linear velocity of the origin og
relative to the base. The third row in Equation (4.63) is the linear velocity
in the direction of z, which is of course always zero in this case. The last
three rows represent the anguler velocity of the final frame, which is simply
o rotation about the vertical azis at the rate 91 +65.
<

Example 4.6 Jacobian for an Arbitrary Point on a Link

Figure 4.3: Finding the velocity of link 2 of a 3-link planar robot,

Consider the three-link planar manipulator of Figure 4.3. Suppose we
wish to compute the linear velocity v and the engular velocity w of the center
of link 2 as shown. In this case we have that

 fzx(oe—0p) zx(0e—01) 0
Ja) = - e (464)
which is merely the usual Jacobian with o, in place of 0,. Note that the
third eolumn of the Jacobian is zero, since the velocity of the second link
is unaffected by motion of the third link.2 Note that in this case the vector
o, must be computed as it is not given directly by the T matrices (Problem
}-16).

0o

Example 4.7 Stanford Manipulator
Consider the Stanford manipulator of Ezample 8.5 with its associated
Denavit-Hartenberg coordinate frames. Note that joint § is prismatic and

*Note that we are treating only kinematic effects here. Reaction forces on link 2 due to
the motion of link 3 will influence the motion of link 2. These dynamic effects are treated
by the methods of Chapter 7.
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that 03 = 04 = 05 as a consequence of the spherical wrist and the frame
assignment. Denoting this common origin by o we see that the columns of
the Jacobian have the form

J" Lz I:zi—lx(oﬁ_oi—l)] 12112
Zi-1

- 2
S

Ji — [zi—lx(oﬁ_o)] Z-=4.,5,6
Zi-1 )

Now, using the A matrices given by Equations (3.18)-(3.20) and the
T matrices formed as products of the A matrices, these quantities are eas-
ily computed as follows. First, o; is given by the first three entries of the
last column of TJ‘O = Ay Aj, with og = [0,0,0]T = 0. The vector z; is
given as z; = Rk where RY is the rotational part of T). Thus, it is only
necessary to compute the matrices TJ0 to caleulate the Jacobian. Carrying
out these calculations one obtains the following expressions for the Stanford
manipulator:

[ c152d3 — s1dp + dg(cicoess + 0582 — 518485)

05 = s182d3 — c1dy + dg(c18485 + cacsy 55 + €58182) (4.65)
cady + dﬁ(CgC5 = 648235)

a1s2ds — s1da

03 = s182d3 4 ¢1dy (4.66)

cods

The z are given as

0 —51
n = [0 n=| a (4.67)
1 0
€182 €152
23 = 8182 23 = | 8182 (4.68)

c2 Co
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I —C1C284 — 81C4

o= —81C284 + C1C4 (4.69)
$284

[ cyeacass — 515485 + cr920s

2 o= 81C2C4S55 + 18485 + $189C5 (4.70)
—82€485 + €2C5

The Jacobian of the Stanford Manipulator is now given by combining
these ezpressions according to the given formulas (Problem 4-22).
o

Example 4.8 SCARA Manipulator

We will now derive the Jucobian of the SCARA manipulator of Ezam-
ple 3.6. This Jacobian is a 6 x 4 matriz since the SCARA has only four
degrees of freedom. As before we need only compute the matrices ’I;U =
Ay ... Aj, where the A-matrices are given by Equations (3.22) and (3.23).

Since joints 1,2, and 4 are revolute and joint 3 is prismatic, and since
04 — 03 15 parallel to z3 (and thus, 23 X (04 — 03) = 0), the Jacobian is of the
form

7 = 2% (04 —o0p) z1x(0ga—01) 22 0 (4.1
o Z 0 z3

The origins of the DH frames are given by

[ a1e1 a1€1 + a1z
0 = asy - 03=| @181 + 02819 (4.72)
0 0
[ aic1 + agerz
04 = | a189+ agsin (4.73)
d3 —dy

Similarly 2 = 21 = k, and 2 = 23 = —k. Therefore the Jacobian of the
SCARA Manipulator is

—a151 —azs;a —agsiz 0 0
ajcy +aze;z acz 0 0
0 0 -1 0
I = 0 0 0 0 (4.74)
0 0 0 0
1 1 0 -1
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4.7 THE TOOL VELOCITY

Many tasks require that a tool be attached to the end effector. In such
cases, it is necessary to relate the velocity of the tool frame to the velocity
of the end-effector frame. Suppose that the tool is rigidly attached to the
end effector, and the fixed spatial relationship between the end effector and
the tool frame is given by the constant homogeneous transformation matrix

Téy = [ff ‘ ] ' (4.79)

We will assume that the end effector velocity is given and expressed in
coordinates relative to the end-effector frame, that is, we are given £§. In
this section we will derive the velocity of the tool expressed in coordinates
relative to the tool frame, that is, we will derive ¢£°l.

Since the two frames are rigidly attached, the angular velocity of the
tool frame is the same as ‘the angular velocity of the end-effector frame. To
see this, simply compute the angular velocities of each frame by taking the
derivatives of the appropriate rotation matrices. Since R is constant and
RgR we have

tool =
R‘é}ml = RﬁoR
= S(""’g}nl)R?oal = S(wg)RER
= S(wt(.]ool) = S(wg)

Thus, wieel = we, and to obtain the tool angular velocity relative to the tool
frame we apply a rotational transformation

wiogl = wg™ = RTw " (4.76)

If the end-effector frame is moving with body velocity £ = [, wZ]7, then
the linear velocity of the origin of the tool frame, which is rigidly attached
to the end-effector frame, is given by

Vtool = Vg + Wg X T (4.17)

where 7 is the vector from the origin of the end-effector frame to the origin
of the tool frame. From Equation (4.75), we see that d gives the coordinates
of the origin of the tool frame with respect to the end-effector frame, and
therefore we can express 7 in coordinates relative to the tool frame as rt°°! =
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RTd. Thus, we write ws X 7 in coordinates with respect to the tool frame as

w&”"l x ool = Rng X (RTd)
= —RTdx RTu§
= —S(RTd)RTwg
= —RTS(d)RRTwE
= —RTS(d)wd (4.78)

To express the free vector v§ in coordinates relative to the tool frame, we
apply the rotational transformation

ol = RTv§ (4.79)

Combining Equations (4.77), (4.78), and (4.79) to obtain the linear ve-
locity of the tool frame and using Equation (4.76) for the angular velocity
of the tool frame, we have

tool _  pT.6 T 6
Ul = R vg— R S5(d)ug
tool _ pT. 6
Wiool = Rw

which can be written as the matrix equation

tool_[RT —RS()]

Etool == 03x3 fﬁ (480)

In many cases, it is useful to solve the inverse problem: compute the
required end effector velocity to produce a desired tool velocity. Since

[ 03Rxa S(;)R ] - [ ofj ; _R;E? @ r (4.81)

(Problem 4-23) we can solve Equation (4.80) for &£, obtaining
R S( 'R
L S, tool
66 - [ 03x3 ] Etool

This gives the general expression for transforming velocities between two
rigidly attached moving frames

7 A Ay pA
eh=| o B | (4.82)
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48 THE ANALYTICAL JACOBIAN

The Jacobian matrix derived above is sometimes called the Geometric Ja-
cobian to distinguish it from the Analytical Jacobian, denoted J,(g), which
is based on a minimal representation for the orientation of the end-effector

frame. Let
X= [ i% } (4.83)

denote the end-effector pose, where d(g) is the usual vector from the origin
of the base frame to the origin of the end-effector frame and o denotes a
minimal representation for the orientation of the end-effector frame relative
to the base frame. For example, let a = [¢,8,]” be a vector of Euler angles
as defined in Chapter 2. Then we seek an expression of the form

o [ - ] = L) (484

to define the analytical Jacobian.
It can be shown (Problem 4-13) that, if R = R, 4R, ¢R, 4 is the Euler
angle transformation then

R=S5(w)R (4.85)

in which w defining the angular velocity is given by

09 = 548
w = 8¢b:gqi) 4+ C.,pg (486)
P+ cop
cysg —sy 0 qb
= | syss ¢y O § | =B(a)a (4.87)

o 0 1[4

The components of w are called nutation, spin, and precession, respec-
tively. Combining the above relationship with the previous definition of the

Jacobian _
[ i ] E { . ] = J(g)d (488)

w w

ai=[ 5 |=[ oo ][0 st ] []=[5 ot ] 400

49. SINGULARITIES 141

Thus, the analytical Jacobian, J;(q), may be computed from the geometric

Jacobian as
5= § 5l |70 (459)

provided det B(a) # 0.

In the next section we discuss the notion of Jacobian singularities, which
are configurations where the Jacobian loses rank. Singularities of the matrix
B(a) are called representational singularities. It can easily be shown
(Problem 4-24) that B(a) is invertible provided sy # 0. This means that
the singularities of the analytical Jacobian include the singularities of the
geometric Jacobian, J, as defined in the next section, together with the
representational singularities.

4.9 SINGULARITIES

The 6 x n Jacobian J(q) defines a mapping

£ = Jgi (4.90)

between the vector ¢ of joint velocities and the vector ¢ = [p”,w”|T of end-
effector velocities. This implies that the all possible end-effector velocities
are linear combinations of the columns of the Jacobian matrix,

E=Ng+ Jogo -+ Jnda

For example, for the two-link planar arm, the Jacobian matrix given in
Equation (4.63) has two columns. It is easy to see that the linear velocity of
the end effector must lie in the zy-plane, since neither column has a nonzero
entry for the third row. Since £ € R®, it is necessary that .J have six linearly
independent columus for the end effector to be able to achieve any arbitrary
velocity (see Appendix B).

The rank of a matrix is the number of linearly independent, columns (or
rows) in the matrix. Thus, when rank.J = 6, the end effector can execute
any arbitrary velocity. For a matrix J € RS*" it is always the case that
rank J < min(6,n). For example, for the twolink planar arm, we always
have rank J < 2, while for an anthropomorphic arm with spherical wrist we
always have rank.J < 6.

The rank of a matrix is not necessarily constant. Indeed, the rank of
the manipulator Jacobian matrix will depend on the configuration q. Con-
figurations for which rank.J(g) is less than its maximum value are called
singularities or singular configurations.
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Identifying manipulator singularities is important for several reasons.

o Singularities represent configurations from which certain directions of
motion may be unattainable.

At singularities, bounded end-effector velocities may correspond to
unbounded joint velocities.

At singularities, bounded joint torques may cosrespond to unbounded
end-effector forces and torques. (We will see this in Chapter 9.)

Singularities often correspond to points on the boundary of the ma-
nipulator workspace, that is, to points of maximum reach of the ma-
nipulator.

Singularities correspond to points in the manipulator workspace that
may be unreachable under small perturbations of the link parameters,
such as length, offset, etc.

There are a number of methods that can be used to determine the sin-
gularities of the Jacobian. In this chapter, we will exploit the fact that a
square matrix is singular when its determinant is equal to zero. In general,
it is difficult to solve the nonlinear equation det J(q) = 0. Therefore, we
now introduce the method of decoupling singularities, which is applicable
whenever, for example, the manipulator is equipped with a spherical wrist.

4.9.1 Decoupling of Singularities

We saw in Chapter 3 that a set of forward kinematic equations can be de-
rived for any manipulator by attaching a coordinate frame rigidly to each
link in any manner that we choose, computing a set of homogeneous trans-
formations relating the coordinate frames, and multiplying them together as
needed. The DH convention is merely a systematic way to do this. Although
the resulting equations are dependent on the coordinate frames chosen, the
manipulator configurations themselves are geometric quantities, indepen-
dent of the frames used to describe them. Recognizing this fact allows us
to decouple the determination of singular configurations, for those manip-
ulators with spherical wrists, into two simpler problems. The first is to
determine so-called arm singularities, that is, singularities resulting from
motion of the arm, which consists of the first three or more links, while the
second is to determine the wrist singularities resulting from motion of the
spherical wrist.
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Consider the case that n = 6, that is, the manipulator consists of a 3-
DOF arm with a 3-DOF spherical wrist. In this case the Jacobianis a 6 x 6
matrix and a configuration g is singular if and only if

detJ(g) = 0 (4.91)
If we now partition the Jacobian J into 3 x 3 blocks as

Jia ]
Jag

Jip

L 4.92
Ton (4.92)

I=lpldol = |

then, since the final three joints are always revolute

7, — | @ (06—03) 24x(05—04) 25x (05— 05) (4.93)
@ 3 24 25 '

Since the wrist axes intersect at a common point o, if we choose the
coordinate frames so that 03 = 04 = 05 = 05 = 0, then Jg becomes

0 0 0
Jo = [ W ] (4.94)
In this case the Jacobian matrix has the block triangular form
Ju 0 ]
J = 4.95
{ Jo Ja (ee)
with determinant
detJ = detJi;det Jog (496)

where Ji; and Jy; are each 3x 3 matrices. Ji; has it* column z;_; x (o—0i_1)
if joint # is revolute, and z;_; if joint i is prismatic, while

Jog = |23 24 23 (4.97)

Therefore the set of singular configurations of the manipulator is the
union of the set of arm configurations satisfying detJi; = 0 and the set
of wrist configurations satisfying det Jys = 0. Note that this form of the
Jacobian does not necessarily give the correct relation between the velocity
of the end effector and the joint velocities. It is intended only to simplify
the determination of singularities.
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4

C =0

Z3 25
05 O

Figure 4.4: Spherical wrist singularity.

4.9.2 'Wrist Singularities

We can now see from Equation (4.97) that a spherical wrist is in a singular
configuration whenever the vectors z3, z4, and z; are linearly dependent.
Referring to Figure 4.4 we see that this happens when the joint axes z3 and
z5 are collinear, that is, when 4 = 0 or 7. These are the only singularities
of the spherical wrist, and the are unavoidable without imposing mechanical
limits on the wrist design to restrict its motion in such a way that 23 and z;
are prevented from lining up. In fact, when any two revolute joint axes are
collinear a singularity results, since an equal and opposite rotation about
the axes results in no net motion of the end effector.

4.9.3 Arm Singularities

To investigate arm singularities we need only to compute det Jy;, which is
done using Equation (4.57) but with the wrist center o in place of o,. In

the remainder of this section, we will determine the singularities for three

common arms, the elbow manipulator, the spherical manipulator and the
SCARA manipulator.

Example 4.9 Elbow Manipulator Singularities
Consider the three-link articulated manipulator with coordinate frames

attached as shown in Figure 4.5. It is left as an ezercise (Problem 4-17) to
show that

—(281C2 —G381C23  —G282C] — G3523C1 —03C1893
Ju=| axcicatazeics  —agsysy - azsisey —aysisey (4.98)
0 apcy + azcay asca3

and that the determinant of Ji; is

detJ;y = agazss(ages + azcos) (4.99)
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Figure 4.5: Elbow manipulator.

We see from Equation (4.99) that the elbow manipulator is in a singular
configuration when

s3 = 0, thatis,03=00rm (4.100)
and whenever

ﬂ.2762+63623 2 ) (4.101)

03 = 180°

N N

Figure 4.6: Elbow singularities of the elbow manipulator.

The situation of Equation (4.100) is shown in Figure 4.6 and arises when
the elbow is fully extended or fully retracted as shown.

The second situation of Equation ({.101) is shoun in Figure 4.7. This
configuration occurs when the wrist center intersects the axis of the base
rotation, zp. As we saw in Chapter 3, there are infinitely many singular
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A% ]
Q o, Example 4.10 Spherical Manipulator

C g,

Figure 4.7: Singularity of the elbow manipulator with no offsets.

Az

N

Figure 4.9: Singularity of spherical manipulator with no offsets.

Consider the spherical arm of Figure 4.9. This manipulator is in a
singular configuration when the wrist center intersects zy as shoun since, as
before, any rotation about the base leaves this point fired.

o

N

Figure 4.8: Elbow manipulator with an offset at the elbow.

Example 4.11 SCARA Manipulator

2 2
A A
configurations and infinitely many solutions to the inverse position kinemai- Q) . '
. i : . 5 1 32 ={ I
ics when the wrist center is along this azis. i
For an elbow manipulator with an offset, as shown in Figure 4.8, the
wrist center cannot intersect zy, which corroborates our earlier statement '
that points reachable at singular configurations may not be reachable under Z
arbitrarily small perturbations of the manipulator parameters, in this case

an offset in either the elbow or the shoulder.
o

N

Figure 4.10: SCARA manipulator singularity.
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We have already derived the complete Jacobian for the the SCARA ma-
nipulator. This Jacobian is simple enough to be used directly rather than
deriving the modified Jacobian as we have done above. Referring to Fig-
ure 4.10 we can see geometrically that the only singularity of the SCARA
arm is when the elbow is fully extended or fully retracted. Indeed, since the
portion of the Jacobian of the SCARA governing arm singularities is given
as

a1 Qs 0 »

Jn = O Oy 0 (4.102)
0 0 -1

where

@1 = —a181 — 9812

ay = C:

2 N a1 + azc1g (4.103)

o3 = —a1812

ay. = @112

we see that the rank of Ji; will be less than three precisely whenever ooy —
agag = 0. It is easy to compute this quantity and show that it is equivalent
to (Problem 4-19)

sp =0, which implies fy=10,7 (4.104)

Note the similarities between this case and the singularities for the elbow
manipulator shown in Figure {.6. In each case, the relevant portion of the
arm is merely a two-link planar manipulator. As can be seen from Equation
(4.68), the Jucobian for the two-link planar menipulator loses rank when
03 =0 orm.

o

4.10 STATIC FORCE/TORQUE RELATIONSHIPS

Interaction of the manipulator with the environment produces forces and
moments at the end effector or tool. These, in turn, produce torques at the
joints of the robot.3 In this section we discuss the role of the manipulator
Jacobian in the quantitative relationship between the end-effector forces and
joint torques. This relationship is important for the development of path
planning methods in Chapter 5, the derivation of the dynamic equations in

*Here, we consider the case of revolute joints. If the joints are prismatic, forces and
moments at the end effector produce forces at the joints.
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Chapter 7 and in the design of force control algorithms in Chapter 9. We
can state the main result concisely as follows.

Let F = [F;,Fy,Fz,nx,ny,nz]T represent the vector of forces and mo-
ments at the end effector. Let 7 denote the corresponding vector of joint
torques. Then F and 7 are related by

= JT(q)F (4.105)

where J7(g) is the transpose of the manipulator Jacobian.

An easy way to derive this relationship is through the so-called principle
of virtual work. We will defer a detailed discussion of the principle of vir-
tual work until Chapter 7, where we will introduce the notions of generalized
coordinates, holonomic constraints, and virtual constraints in more detail.
However, we can give a somewhat informal justification in this section as
follows. Let §X and &g represent infinitesimal displacements in the task
space and joint space, respectively. These displacements are called virtual
displacements if they are consistent with any constraints imposed on the
system. For example, if the end effector is in contact with a rigid wall, then
the virtual displacements in position are tangent to the wall. These virtual
displacements are related through the manipulator Jacobian J(q) according
to

0X = J(g)q (4.106)
The virtual work Jw of the system is
dw = FT6X -1T4q (4.107)
Substituting Equation (4.106) into Equation (4.107) yields
dw = (FTJ-1T)5q (4.108)

The principle of virtual work says, in effect, that the quantity given by
Equation (4.108) is equal to zero if the manipulator is in equilibrium. This
leads to the relationship given by Equation (4.105). In other words, the
end-effector forces are related to the joint torques by the transpose of the
manipulator Jacobian.

Example 4.12
Consider the two-link planar manipulator of Figure 4.11, with a force F
applied ot the end of link two as shown. The Jacobian of this manipulator is
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Figure 4.11: Two-link planar robot.

given by Equation (4.63). The resulting joint torques T = (11, ™) are then
given as

E;
Fy
T | _ | —a181 —as12 G361 +aci2 0001 F,
[Tg ] - { —Q9819 asciy DB 6.7 Ty (A0
Ty
Mz
<
4.11 INVERSE VELOCITY AND ACCELERATION
The Jacobian relationship
L=t (4.110)

specifies the end-effector velocity that will result when the joints move with
velocity §. The inverse velocity problem is the problem of finding the joint
velocities ¢ that produce the desired end-effector velocity. It is perhaps a
bit surprising that the inverse velocity relationship is conceptually simpler
than the inverse position relationship. When the Jacobian is square and
nonsingular, this problem can be solved by simply inverting the Jacobian
matrix to give

g=J7¢ (4.111)
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For manipulators that do not have exactly six joints, the Jacobian cannot
be inverted. In this case there will be a solution to Equation (4.110) if and
only if £ lies in the range space of the Jacobian. This can be determined by
the following simple rank test. A vector £ belongs to the range of J if and
only if

rank J(g) = rank[J(g)|¢] (4.112)

In other words, Equation (4.110) may be solved for § € R™ provided that
the rank of the augmented matrix [J(q) | £] is the same as the rank of the
Jacobian J(g). This is a standard result from linear algebra, and several
algorithms exist, such as Gaussian elimination, for solving such systems of
linear equations.

For the case when n > 6 we can solve for § using the right pseudoinverse
of J. To construct this psuedoinverse, we use the fact that when J € R™*",
ifm < n and rank J = m, then (JJT)~! exists. In this case (JJT) € R™™,
and has rank m. Using this result, we can regroup terms to obtain

I = (JJNJH)?
J [ (27711

= JJt

Il

Here, J* = JT(JJ%)™ is called a right pseudoinverse of J, since JJ* = I.
Note that J*J € R™™ and that in general J*J # I (recall that matrix
multiplication is not commutative).
It is now easy to demonstrate (Problem 4-25) that a solution to Equation
(4.110) is given by _
g=JY+(I-JtD)b (4.113)

in which b € R" is an arbitrary vector.

In general, for m < n, (I — J'J) # 0, and all vectors of the form
(I—J*J)b lie in the null space of J. This means that, if ¢’ is a joint velocity
vector such that ¢ = (f — J*J)b, then when the joints move with velocity
¢, the end effector will remain fixed since J§' = 0. Thus, if ¢ is a solution
to Equation (4.110), then so is ¢+ ¢’ with § = (I — J*J)b, for any value of
b. If the goal is to minimize the resulting joint velocities, we choose b = 0
(Problem 4-25).

We can construct the right pseudoinverse of J using its singular value
decomposition (see Appendix B). In particular, we can write J as the matrix
product

J=Uyzv?
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in which U € R™™ and V' € R™" are orthogonal (rotation) matrices and
X € R™™" is given by

Im

in which the o; are the singular values of the J;;,cobia.n. This matrix
product is known as the singular value decomposition of the Jacobian.

It is now a simple matter to construct the right pseudomverse of J using
its singular value decomposition.

Jt=vEty? (4.114)

in which
-3 T

We can apply a similar approach when the analytical Jacobian is vsed
in place of the manipulator Jacobian. Recall from Equation (4.84) that the
Joint velocities and the end-effector velocities are related by the analytical
Jacobian as

X = J(ed (4.115)
Thus, the inverse velocity problem becomes one of solving the linear system
given by Equation (4.115), which can be accomplished as above for the

manipulator Jacobian. ‘
Differentiating Equation (4.115) yields an expression for the acceleration

£ = a5 )i (4.116)

Thus, given a vector X of end-effector accelerations, the instantaneous
joint acceleration vector § is given as a solution of

L= (0.0)4
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For 6-DOF manipulators the inverse velocity and acceleration equations
can therefore be written as

i = J(g)7'X (4.117)

and

§ = g [;-(_ (%Ja(q)) q] (2.118)
provided det J;(g) # 0.

412 MANIPULABILITY

For a specific value of ¢, the Jacobian relationship defines the linear system
given by £ = J¢. We can think of J as scaling the input ¢ to produce
the output £. It is often useful to characterize quantitatively the effects of
this scaling. Often, in systems with a single input and a single output, this
kind of characterization is given in terms of the so called impulse response
of a system, which essentially characterizes how the system responds to
a unit input. In this multidimensional case, the analogous concept is to
characterize the output in terms of an input that has unit norm. Consider
the set of all robot joint velocities ¢ such that

lalP =& +@+...¢2<1 (4.119)
If we use the minimum norm solution § = J*¢, we obtain
lal* = "
(e e
er(JIT) e (4.120)

The derivation of this is left as an exercise (Problem 4-27). Equation (4.120)
gives us a quantitative characterization of the scaling effected by the Jaco-
bian. In particular, if the manipulator Jacobian is full rank, that is, if
rank J = m, then Equation (4.120) defines an m-dimensional ellipsoid that
is known as the manipulability ellipsoid. If the input (joint velocity) vec-
tor has unit norm, then the output (end-effector velocity) will lie within the
ellipsoid given by Equation (4.120). We can more easily see that Equation
(4.120) defines an ellipsoid by replacing the Jacobian by its SVD J = ULV T
(see Appendix B) to obtain

N = PSS (4.121)
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in which

and 03 > 03+ > 0 2 0. The derivation of Equation (4.121) is left as
an exercise (Problem 4-28). If we make the substitution w = UT¢, then
Equation (4.121) can be written as ’

2
= w;
w Ew=") ja—? <1 (4.122)

and it is clear that this is the equation for an axis-aligned ellipse in a new
coordinate system that is obtained by rotation according to the orthogonal
matrix U7. In the original coordinate system, the axes of the ellipsoid are
given by the vectors o;u;. The volume of the ellipsoid is given by

volume = Kay05- -+ 0y

in which K is a constant that depends only on the dimension m of the
ellipsoid. The manipulability measure is given by

L= 0105 Op (4.123)

Note that the constant K is not included in the definition of manipulability,
since it is fixed once the task has been defined, that is, once the dimension
of the task space has been fixed.

Now, consider the special case when the robot is not redundant, that
is, J € R™™. Recall that the determinant of a product is equal to the
product of the determinants, and that a matrix and its transpose have the
same determinant. Thus, we have

det JJT = XAZ... 53 (4.124)

in which A; > Ay --- < A, are the eigenvalues of J (see Appendix B). This
leads to
p=Vdet JJT = |A\Ag-- | = |det J| (4.125)

The manipulability p has the following properties.

* In general, u = 0 holds if and only if rank(J) < m, that is, when J is
not full rank.
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» Suppose that there is some error in the measured velocity A¢. We can
bound the corresponding error in the computed joint velocity Ag by

(o)1 < l1Agl < (o)} (4.126)

Example 4.13 Two-link Planar Arm

y
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Figure 4.12: Manipulability ellipsoids are shown for several configurations
of the two-link arm.

Consider the two-link planar arm and the task of positioning in the plane.
The Jacobian is given by

- — 3812 —G28
F = a;sy 42812 a8y2 (4127)
aic1 +agc1y  azcn2

and the manipulability is given by

o= |det J| = ajaqlsy|
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Manipulability ellipsoids for several configurations of the two-link arm are
shoum in Figure J.12.

We can use manipulability to determine the optimal configurations in
which to perform certain tasks. In some cases it is desirable to perform a
task in the configuration for which the end effector has the mazimum ma-
nipulability. For the two-link arm the mazimum manipulability is obtained
for 0y =7 /2.

Manipulability can also be used to aid in the design of manipulators. For
example, suppose that we wish to design a two-link plinar arm whose total
link length a1 +-aq is fived. What values should be chosen for a; and as ? If we
design the robot to mazimize the mazimum manipulability, then we need to
mazimize ji = ayaz|sz|. We have already seen that the mazimum is obtained
when 0y = £ /2, so we need only find a; and ag to mazimize the product
ayaz. This is achieved when ay = ag. Thus, to mazimize manipulability, the
link lengths should be chosen to be equal.

o

4.13 SUMMARY

A moving coordinate frame has both a linear and an angular velocity. Linear
velocity is associated to a moving point, while angular velocity is associated
to a rotating frame. Thus, the linear velocity of a moving frame is merely the
velocity of its origin. The angular velocity for a moving frame is related to
the time derivative of the rotation matrix that describes the instantaneous
orientation of the frame. In particular, if R(t) € SO(3), then

R(t) = S(w(t)R() (4.128)
and the vector w(f) is the instantaneous angular velocity of the frame. The
operator S gives a skew symmetrix matrix

0 —w, Wy
Sw=| w, 0 -w (4.129)
—wy wy 0
The manipulator Jacobian relates the vector of joint velocities to the
body velocity £ = [vT,wT|T of the end effector
E=Jg {4.130)
This relationship can be written as two equations, one for linear velocity
and one for angular velocity,
v o= Jyg (4.131)
W = Jgg (4.132)
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The i column of the Jacobian matrix corresponds to the it joint of the
robot manipulator, and takes one of two forms depending on whether the
i™" joint is prismatic or revolute

[ %1 X (0n — 05-1)
Z-1
Jp= (4133)

J if joint 1 is revolute

[ ""’a‘ ] if joint i is prismatic
It is often the case that a tool is attached to the end effector. When two
frames are rigidly attached, their velocities are related by

¢h = [ R S(déjﬂ’ﬁ }53
033 Rg

and this relationship allows us to compute the required end effector velocity
to achieve a desired tool velocity.

For a given parameterization of orientation, for example, Euler angles,
the analytical Jacobian relates joint velocities to the time derivative of the
pose parameters

Xz[g((g))] ﬁ[j]:m)q

in which d(g) is the usual vector from the origin of the base frame to the
origin of the end-effector frame and o denotes a parameterization of the
rotation matrix that specifies the orientation of the end-effector frame rela-
tive to the base frame. For the Euler angle parameterization, the analytical
Jacobian is given by

I 0
1@={ g gy |70 (1134
in which
cysg —sy 0
Bla)=| syssg ¢4 0
Cy 0 1

A configuration at which the Jacobian loses rank, that is, a configura-
tion ¢ such that rankJ < max, rank J(g), is called a singularity. For a
manipulator with a spherical wrist, the set of singular configurations in-
cludes singularites of the wrist (which are merely the singularities in the
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Euler angle parameterization) and singularites in the arm. The latter can
be found by solving
det J_u =0

with Ji; the upper left 3 x 3 block of the manipulator Jacobian.
The Jacobian matrix can also be used to relate forces F' applied at the
end-effector frame to the induced joint torques 7

r=JT(gF

4

For nonsingular configurations, the Jacobian relationship can be used to
find the joint velocities § necessary to achieve a desired end-effector velocity
§. The minimum norm solution is given by

¢=J%

in which J+ = JT(JJT)~1 is the right pseudoinverse of .J.

Manipulability is defined by g = 6163 - - 0y, in which o; are the singular
values for the manipulator Jacobian. The manipulatibility can be used to
characterize the range of possible end-effector velocities for a given configu-
ration ¢.

PROBLEMS
4-1 Verify Equation (4.6) by direct calculation.
4-2 Verify Equation (4.7) by direct calculation.

4-3 Prove the assertion given in Equation (4.9) that R(a x b) = Ra % Rb,
for R € 50(3). ¢

4-4 Verify Equation (4.10).
4-5 Verify Equation (4.17) by direct calculation.

4-6 Suppose that a = [1,-1,2]T and that R = R;90. Show by direct
calculation that RS(a)RT = S(Ra).

4-7 Given R = Ry yR, 4, compute ‘g—‘g Evaluate %‘g atd=73,¢= %
4-8 Use Equation (2.43) to show that

Rig = I+S(k)sin(6) + S%(k) vers(6)
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49 Show that S3(k) = —S(k). Use this and Problem 4-8 to verify Equa-
tion (4.18).
4-10 Given any square matrix A, the exponential of A is a matrix defined
as

1 1
A4 _ 142 2
e = I+A+2A +3—!A+

Given S € so(3) show that ¥ € SO(3).
Use the acts that ete? = eA*® provided that A and B commute, that
is, AB = BA, and the fact that det(e?) = eT4),

411 Show that Ry, , = eS8 for k a unit vector.

Hint: Use the series expansion for the matrix exponential together with
Problems 4-8 and 4-9. Alternatively use the fact that Ry, , satisfies the
differential equation

dR

5 = SR

4-12 Use Problem 4-11 to show the converse of Problem 4-10, that is, if
R € S0(3) then there exists S € s0(3) such that R = e¥.
X 4-13 Given the Euler angle transformation
R = R.yRyoR.4
show that 4 R = S(w)R where
w = {cysed — syf)i+ {sysed + cyf}i + (U + codlk

The components of 7, j, k, respectively, are called the nutation, spin,
and precession.

X 4-14 Repeat Problem 4-13 for the Roll-Pitch-Yaw transformation. In other
words, find an explicit expression for w such that R = S(w)R, where
R is given by Equation (2.38).

4-15 Two frames ogZgypzo and o1z1y121 are related by the homogeneous
transformation

= I T R e}
oo o =
O - O

|
=
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A particle has velocity vy(t) = [3,1,0]" relative to frame o;z1y121.
What is the velocity of the particle in frame ogzgypzo?

/ 416 For the three-link planar manipulator of Example 4.6, compute the
vector o, and derive the manipulator Jacobian matrix.

4-17 Compute the Jacobian Ji; for the 3-link elbow manipulator of Example
4.9 and show that it agrees with Equation (4.98). Show that the
determinant of this matrix agrees with Equation (4.99).

4-18 Compute the Jacobian Jj; for the three-link spherical manipulator of
Example 4.10.

4-19 Use Equation (4.102) to show that the singularities of the SCARA
manipulator are given by Equation (4.104).

4-20 Find the 6 x 3 Jacobian for the three links of the cylindrical manipu-
lator of Figure 3.7. Find the singular configurations for this arm.

4-21 Repeat Problem 4-20 for the Cartesian manipulator of Figure 3.28.

4-22 Complete the derivation of the Jacobian for the Stanford manipulator
from Example 4.7.

4-23 Verify Equation (4.81) by direct computation.
~ 4-24 Show that B(a) given by Equation (4.87) is invertible provided s # 0.
X 4-25 Suppose that ¢ is a solution to Equation (4.110) for m < n.

1. Show that g+ (I—J*J)b is also a solution to Equation (4.110)
for any b€ R™.

2. Show that b = 0 gives the solution that minimizes the resulting
Jjoint velocities.

4-26 Verify Equation (4.114).
4-27 Verify Equation (4.120).

4-28 Verify Equation (4.121).
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NOTES AND REFERENCES

Angular velocity is fundamentally related to the derivative of a rotation
matrix, and therefore to the Lie algebra so(3). This relationship, and more
generally the geometry of so(n), is explored in differential geometry texts,
as well as in more advanced robotics texts such as [93).

The concept of a Jacobian matrix as a linear mapping from the tangent
space of one manifold to the tangent space of a second manifold is also dealt
with in differential geometry texts, and even in advanced calculus texts when
one or both of the manifolds is a Euclidean space. The use of the geometric
Jacobian matrix of Equation (4.42) to map joint velocities (which lie in the
tangent space to the configuration space) to a velocity £ = [vT,wT|T is not
commonly found in mathematics texts (note that € is not itself the derivative
of any quantity). However, most robotics texts include some description of
the geometric Jacobian, including [102], [110], and [93].

Since the relationship between the end effector velocity and the joint
velocities is defined by a linear map, the inverse velocity problem is a special
case of the more general problem of solving linear systems, a problem that
is the subject of linear algebra. Algorithms for solving this problem can be
found in a variety of texts, including [106] and [47).

The manipulability measure discussed in Section 4.12 is due to Yoshikawa
[142].



Chapter 5

PATH AND TRAJECTORY
PLANNING

In previous chapters we studied the geometry of robot arms, developing so-
lutions for both the forward and inverse kinematics problems. The solutions
to these problems depend only on the intrinsic geometry of the robot, and
they do not reflect any constraints imposed by the workspace in which the
robot operates. In particular, they do not take into account the possiblity
of collision between the robot and objects in the workspace. In this chapter
we address the problem of planning collision free paths for the robot. We
will assume that the initial and final configurations of the robot are spec-
ified and that the problem is to find a collision free path connecting these
configurations. _

The description of this problem is deceptively simple, yet the path plan-
ning problem is among the most difficult problems in computer science. The
computational complexity of the best known complete! path planning algo-
rithm grows exponentially with the number of internal degrees of freedom of
the robot. For this reason, for robot systems with more than a few degrees
of freedom, complete algorithms are not used in practice.

In this chapter we treat the problem of planning paths for a high degree-
of-freedom robot as a search problem. The algorithms we describe are not
guaranteed to find solutions to all problems, but they are quite effective in
a wide range of practical applications. Furthermore, these algorithms are
fairly easy to implement, and require only moderate computation time for
most problems.

'An algorithm is said to be complete if it finds a solution whenever one exists, and
signals failure in finite time when a solution does not exist.
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Path planning provides a geometric description of robot motion, but it
does not specify any dynamic aspects of the motion. For example, what
should be the joint velocities and accelerations while traversing the path?
These questions are addressed by a trajectory planner. The trajectory plan-
ner computes a function g(t) that completely specifies the desired motion of
the robot as it traverses the path.

We begin in Section 5.1 by discussing, in more detail, the notion of
configuration space that was first introduced in Chapter 1. We give a
brief description of the geometry of the configuration® space and describe
how obstacles in the workspace can be mapped into the configuration space.
We then introduce path planning methods that use so-called artificial po-
tential fields in Section 5.2. The corresponding algorithms use gradient
descent search to find a collision-free path to the goal and, as with all gradi-
ent descent methods, these algorithms can become trapped in local minima
in the potential field. Therefore, in Section 5.3 we describe how random
motions can be used to escape local minima. In Section 5.4 we describe an-
other randomized method known as the Probabilistic Roadmap (PRM)
method. Finally, since each of these methods generates a sequence of con-
figurations, we describe how polynomial splines can be used to generate
smooth trajectories from a sequence of configurations in Section 5.5.

5.1 THE CONFIGURATION SPACE

In Chapter 3 we learned that the forward kinematic map can be used to
determine the position and orientation of the end effector frame given the
vector of joint variables. Furthermore, the 4 matrices can be used to infer
the position and orientation of any link of the robot. Since each link of the
robot is assumed to be a rigid body, the A matrices can be used to infer the
position of any point on the robot, given the values of the joint variables.
In the path planning literature a complete specification of the location of
every point on the robot is referred to as a configuration, and the set of all
possible configurations is referred to as the configuration space. For our
purposes, the vector of joint variables g provides a convenient representation
of a configuration. We will denote the configuration space by Q.

For a one link revolute arm the configuration space is merely the set
of orientations of the link, and thus Q = St where S! represents the unit
circle. We could also say @ = SO(2). In fact, the choice of §! or S0(2) is
not particularly important, since these two are equivalent representations.
In either case we can parameterize Q by a single parameter, the joint angle
6. For the two-link planar arm we have Q = §! x §! = T2, in which T2

5.1. THE CONFIGURATION SPACE 165

represents the torus, and we can represent a configuration by q = (61,67).
For a Cartesian arm, we have Q = R® and we can represent a configuration
by ¢ = (d1,dy, d).

Although we have chosen to represent a configuration by a vector of joint
variables, the notion of a configuration is more general than this. For ex-
ample, as we saw in Chapter 2, for any rigid two-dimensional ob ject we can
specify the location of every point on the object by rigidly attaching a coor-
dinate frame to the object and then specifying the position and orientation
of this frame. Thus, for a rigid object moving in the plane we can repre-
sent a configuration by the triple g = (z,y,6), and the configuration space
can be represented by Q = R? x §0O(2). Again, this is merely one possible
representation of the configuration space, but it is a convenient one given
the representations of position and orientation that we learned in previous
chapters.

A collision occurs when the robot contacts an obstacle in the workspace.
To describe collisions we introduce some additional notation. We denote
the workspace, that is, the Cartesian space in which the robot moves, by
W and we denote the obstacles in the workspace by ;. We will denote the
robot by .A and the subset of the workspace that is occupied by the robot at
configuration ¢ by A(g). To plan a collision free path we must ensure that
the robot never reaches a configuration ¢ that causes it to make contact
with an obstacle. The set of configurations for which the robot collides with
an obstacle is referred to as the configuration space obstacle and it is
defined by

QU={geQ|AlgNO #0}

in which O = UQ;. The set of collision-free configurations, referred to as
the free configuration space, is then simply the set difference

Q&ee= Q\QO

Example 5.1 A Rigid Body that Translates in the Plane

Consider a gantry robot with two prismatic Jjoints and forward kinematics
gwen by = di,y = dy. For this case, the robot’s configuration space is
Q = R?, so0 it is particularly easy to visualize both the configuration space
and the configuration space obstacle region. If there is only one obstacle in
the workspace and both the end effector and the obstacle are conves polygons,
it is a simple matter to compute the configuration space obstacle region Q0.
We assume here that the arm itself is positioned above the workspace, so that
the only possible collisions are between the end effector and the obstacle.
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Figure 5.1: (a) The robot end effector is a triangle-shaped rigid object in
a workspace that contains a single rectangular obstacle. (b) The boundary
of the configuration space obstacle QO (shown as a dashed line) can be
obtained by computing the convex hull of the configurations at which the
end effector makes vertex-to-vertex contact with the single convex obstacle.

Let V;A denote. the vector that is normal to the ith edge of the end effector
and VP denote the vector that is normal to the i* edge of the obstacle.
Define a; to be the vector from the origin of the robot’s coordinate frame to
the i*" vertex of the end effector and b; to be the vector from the origin of
the world coordinate frame to the j*™ vertex of the obstacle. An ezample is
shown in Figure 5.1(a). The vertices of QO can be determined as follows.

o For each pair ‘l@o and V}gl, if Vi’" points between —Vj"J and —Vﬁl ]
then add to QO the vertices bj — a; and b; — aiy.

* For each pair VA and V2, if V2 points between ~VA and —VA,,
then add to QO the vertices b; — a; and bt =,

This is ddiustrated in Figure 5.1(b). Note that this algorithm essentially
places the end effector at all positions where vertez-to-verter contact between
robot and obstacle are possible. The origin of the robot’s local coordinate
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frame at each such configuration defines a vertex of Q0. The polygon defined
by these vertices is Q0.

If there are multiple conver obstacles ©;, then the configuration space
obstacle region is merely the union of the obstacle regions QO; for the indi-
vidual obstacles. For a nonconvez obstacle, the configuration space obstacle
region can be computed by first decomposing the nonconvex obstacle into
convez pieces O; computing the configuration space obstacle region Q0; for
each piece, and finally, computing the union of the QO;.

This ezample also illustrates how the configuration space can be con-
structed for a robot with polygonal shape that translates in the plane, such
as a mobile robot moving on a factory floor.

o

Example 5.2 A Two Link Planar Arm

n n
=] I+] |
o J
0 o,
(a) (b)

Figure 5.2: (a) The robot is a two-link planar arm and the workspace con-
tains a single, small polygonal obstacle. (b) The corresponding configuration
space obstacle region contains all configurations ¢ = (61,02) such that the
arm at configuration q intersects the obstacle.

The computation of QO is more difficult for robots with revolute joints.
Consider a two-link planar arm in a workspace containing a single obstacle
as shoun in Figure 5.2(a). The configuration space obstacle region 18 illus-
trated in Figure 5.2(b). For values of 8, very near n/2, the first link of the
arm collides with the obstacle. When the first link is near the obstacle (61
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near 7/2), for some values of 02 the second link of the arm collides with
the obstacle. The region QO shown in Figure 5.2(b) was computed using o
discrete grid on the configuration space. For each cell in the grid, a colli-
ston test was performed, and the cell was shaded when a collision occured.
This is only an approzimate representation of QO; however, for robots with
revolute joints, ezact representations are very ezpensive to compute, and
therefore such approzimate representations are often used for robots with a
few degrees of freedom.

o

Computing QO for the two-dimensional case of Q@ = R? and polygonal
obstacles is straightforward, but, as can be seen from the two-link planar
arm example, computing QO becomes difficult for even moderately complex
configuration spaces. In the general case (for example, articulated arms or
rigid bodies that can both translate and rotate), the problem of computing
a representation of the configuration space obstacle region is intractable.
One of the reasons for this complexity is that the size of the representation
of the configuration space tends to grow exponentially with the number of
degrees of freedom. This is easy to understand intuitively by considering
the number of n-dimensional unit cubes needed to fill a space of size k. For
the one-dimensional case k unit intervals will cover the space. For the two-
dimensional case k? squares are required. For the three-dimensional case k?
cubes are required, and so on. Therefore, in this chapter we will develop
methods that avoid the construction of an explicit representation of @ or
of eree-

The path planning problem is to find a path from an initial configuration
g5 to a final configuration g;, such that the robot does not collide with any
obstacle as it traverses the path. More formally, a collision-free path from
gs to g is a continuous map, 7 : [0,1] — Qjree, with 4(0) = g, and ¥(1) = ¢;.
We will develop path planning methods that compute a sequence of discrete
configurations (set points) in the configuration space. In Section 5.5 we will
show how smooth trajectories can be generated from such a sequence of set
points.

5.2 PATH PLANNING USING POTENTIAL FIELDS

As mentioned above, it is typically not feasible to build an explicit repre-
sentation of QO or of Q.. An alternative is to develop a search algorithm
that incrementally explores Qg While searching for a path. One of the most
popular strategies for exploring Qfee uses an artificial potential field to
guide the search.
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The basic idea behind the potential field approach is to treat the robot as
a point particle in the configuration space under the influence of an artificial
potential field U. The field U is constructed so that the robot is attracted to
the final configuration ¢; while being repelled from the boundaries of Qo.
If possible, U is constructed so that there is a single global minimum of U/
at g; and there are no local minima. Unfortunately it is typically difficult
or even impossible to construet such a field.

In general, the field U is an additive field consisting of one component
that attracts the robot to g; and a second component that repels the robot
from the boundary of QO

Ulg) = Usaee(g) + Urep(q)

Given this formulation path planning can be treated as an optimization
problem, that is, the problem of finding the global minimum in U starting
from initial configuration g,. One of the simplest algorithms to solve this
problem is gradient descent. In this case, the negative gradient of I/ can be
considered as a generalized force acting on the robot in configuration space

T(Q) = _VU(Q) == _VUatt(Q) = VUrep(Q)

in which 7 is a vector of joint torques (for a revolute arm). Allowing this
force to act on the robot will cause it to move toward its goal configuration
along the path of steepest descent of the potential function.

In general, it is difficult to construct a potential field directly on the
configuration space, and even more difficult to compute the gradient of the

" field on the configuration space. The reasons for this include the difficulty

of computing shortest distances to configuration space obstacles (a compu-
tation that is required when computing the value of the repulsive field, as
we will see below) and the complex geometry of the configuration space. For
this reason, we will define our potential fields directly on the workspace of
the robot. In particular, for an n-link arm, we will define a potential field for
each of the origins of the n DH frames (excluding the fixed, frame 0). These
workspace potential fields will attract the origing of the DH frames to
their goal locations while repelling them from obstacles. We will use these
fields to define motions in the configuration space using the manipulator
Jacobian matrix.

In the remainder of this section we will describe typical choices for the
attractive and repulsive potential fields, how the manipulator Jacobian can
be used to map these fields to configuration space motions, and a gradient
descent algorithm that can be used to plan paths in this field,
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5.2.1 The Attractive Field

To attract the robot to its goal configuration, we will define an attractive
potential field Uyys ; for o;, the origin of the ith DH frame. When all origins
reach their goal positions, the arm will have reached its goal configuration.

There are several criteria that the potential field Uy ; should satisfy.
First, Uats s should be monotonically increasing with the distance to o; from
its goal position. The simplest choice for such a field is a field that grows
linearly with this distance, a so-called conic well potential. If we denote
the position of the origin of the i** DH frame by 0;(g), then the conic well
potential is given by

Uair,i(9) = lloi(q) — oi(ag)l] -

The gradient of such a field has unit magnitude everywhere but at the goal
position where it is zero. This can lead to stability problems since there is
a discontinuity in the attractive force at the goal position. We prefer a field
that is continuously differentiable such that the attractive force decreases as
0; approaches its goal position. The simplest such field is a field that grows
quadratically with distance

Ui a) = 3610a) ~ o(ar)| P 61

in which ¢; is a parameter used to scale the effects of the attractive potential.
This field is sometimes referred to as a parabolic well potential. The
workspace attractive force for o; is equal to the negative gradient of Usatt iy
which is given by (Problem 5-7) ’ ‘

Fatt,i(‘]) = "VUatt,i(q) = ~((oi(q) — 0i(qy)) (5.2)

For the parabolic well the attractve force for the origin of the i*®* DH frame
is a vector directed toward o;(q;) with magnitude linearly related to the
distance to 0;(g) from o;(g;).

Note that while this force converges linearly to zero as q approaches gy,
which is a desirable property, it grows without bound as g moves away from
gi- If g is very far from g;, this may produce an initial attractive force that
is very large. For this reason we may choose to combine the quadratic and
conic potentials so that the conic potential attracts o; when it is very distant
from its goal position, and the quadratic potential attracts o; when it is near
its goal position. Of course it is necessary that the gradient be defined at
the boundary between the conic and quadratic fields. Such a field can be
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defined by
3Gilloi(g) — oi(gr)|? i loi(g) — oslg)|] < d
Uate i(q) = (5.3)

(@)~ ailall~ 56 5 llos) ~ o)l > d

in which d is the distance that defines the transition from conic to parabolic

~well. In this case the workspace force for o; is given by

—Gi(oi(g) —oilge)) = |loi(a) — oi(gg)l| < d

(oilg) —ailar)) . | | (5.4)
Tos@ —argy | 1@ —olanlll >

The gradient is well defined at the boundary of the two fields since at the
boundary d = [0i(q) — 0;(g¢)|| and the gradient of the quadratic potential is
equal to the gradient of the conic potential Fay ;(g) = —Ci(0:(q) — 0i(g;))-

Fatt,i(‘?) =
—dG

Example 5.3 Two-link Planar Arm

E #lo,(4,)
0,4, de

e o]

o]
0(q)  ofq,)

Figure 5.3: The initial configuration for the two-link arm is given by f; =
f = 0 and the final configuration is given by 6; = 6, = 7/2. The origins
for DH frames 1 and 2 are shown at both ¢, and g;.

Consider the two-link planar arm shoun in Figure 5.3 with aj = ay=1
and with initial and final configurations given by
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Using the forward kinematic equations for this arm (see Ezample 8.1) we
obtain

aw=[4] aw=[2] ew=[2] =[]

Using these coordinates for the origins of the two DH frames at their initial
and goal configurations, assuming that d is sufficiently large, we obtain the
attractive forces

*

Fanaa) = ~Gloia)-orla) = 7 |

Faolgs) = —Caloalgy) — 02(gp)) = Cz{ _f }

5.2.2 The Repulsive Field

In order to prevent collisions between the robot and obstacles we will define
a workspace repulsive potential field for the origin of each DH frame
(excluding frame 0). There are several criteria that these repulsive fields
should satisfy. They should repel the robot from obstacles, never allowing
the robot to collide with an obstacle, and, when the robot is far away from an
obstacle, that obstacle should exert little or no influence on the motion of the
robot. One way to achieve this is to define a potential function whose value
approaches infinity as the configuration approaches an obstacle boundary,
and whose value decreases to zero at a specified distance from the obstacle
boundary. Note that by defining repulsive potentials only for the origins of
the DH frames we cannot ensure that collisions never occur (for example,
the middle portion of a long link might collide with an obstacle), but it is
fairly easy to modify the method to prevent such collsions as we will see
below. For now, we will deal only with the origins of the DH frames.

We define gy to be the distance of influence of an obstacle. This means
that an obstacle will not repel o; if the distance from o; to the obstacle is
greater than pg. One potential function that meets the criteria described
above is given by

: ( 1 1)2 (oi(a)) <
sl o==-—] i plola))<
Upgla)={ 2 \Po@) o) P PETIER

0 i ploig) > po
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in which p(oi(g)) is the shortest distance between o; and any workspace
obstacle. The workspace repulsive force is equal to the negative gradient of
Urep ;- For p(o;(q)) < po, this force is given by (Problem 5-11)

1 1

1
ploi(g) 5) Fota) Peid) (5.6)

Frepi(g) = m; (

in which the notation Vp(0;(g)) indicates the gradient Vp(z) evaluated at
2 = 0;(g). If the obstacle region is convex and b is the point on the obstacle
boundary that is closest to o;, then p(0;(q)) = ||o;(g) — ]|, and its gradient

18
r v 0; (Q) ~b
s P o

that is, the unit vector directed from b toward oy(q).

Example 5.4 Two-link Planar Arm

Figure 5.4: The obstacle shown repels o, but is outside the distance of
influence for ;. Therefore, it exerts no repulsive force on o;.

Consider the previous Example 5.8, with a single conver obstacle in the
workspace as shown in Figure 5.4. Let pg = 1. This prevents the obstacle
from repelling o1, which is reasonable since link 1 can never contact the
obstacle. The nearest obstacle point to oy is the vertez b of the polygonal
obstacle. Suppose that b has the coordinates (2,0.5). Then the distance from
02(4s) to b is p(oa(g,)) = 0.5 and Vp(oa(g,)) = [0, ~1|7. The repulsive force
at the initial configuration for og is then given by

F’e"’z(qS):nz(%_l)ﬁ[L”=ﬂ2[_g]

This force has no effect on joint 1, but causes joint 2 to rotate slightly in the
clockwise direction, moving link 2 away from the obstacle.
<
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Figure 5.5: In this case the gradient of the repulsive potential given by
Equation (5.6) is not continuous. In particular, the gradient changes dis-
continuously when o; crosses the line midway between the two obstacles.

If the obstacle is not convex, then the distance function p will not neces-
sarily be differentiable everywhere, which implies discontinuity in the force
vector. Figure 5.5 illustrates such a case. Here the cbstacle region is defined
by two rectangular obstacles. For all configurations to the left of the dashed
line the force vector points to the right, while for all configurations to the
right of the dashed line the force vector points to the left. Thus, when o;
crosses the dashed line, a discontinuity in force occurs. There are various
ways to deal with this problem. The simplest of these is merely to ensure
that the regions of influence of distinet obstacles do not overlap.

As mentioned above, defining repulsive fields only for the origins of the
DH frames does not guarantee that the robot cannot collide with an obstacle.
Figure 5.6 shows an example where this is the case. In this figure 07 and op
are very far from the obstacle and therefore the repulsive influence may not
be great enough to prevent link 2 from colliding with the obstacle. To cope
with this problem we can use a set of floating repulsive control points
Ofloat,i typically one per link. The floating control points are defined as
points on the boundary of a link that are closest to any workspace obstacle.
Obviously the choice of the 0104 depends on the configuration g. For the
case shown in Figure 5.6, 0/j,q,2 would be located near the center of link
2, thus repelling the robot from the obstacle. The repulsive force acting
O Ojflgqt; i8 defined in the same way as for the other control points using
Equation (5.6).
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Figure 5.6: The repulsive forces exerted on the origins of the DH frames o;
and o3 may not be sufficient to prevent a collision between link 2 and the
obstacle.

5.2.3 Mapping Workspace Forces to Joint Torques

We have shown how to construct potential fields in the robot’s workspace
that induce artificial forces on the origins o; of the DH frames for the robot
arm. In this section we describe how these forces can be mapped to joint
torques.

As we derived in Chapter 4 using the principle of virtual work, if 7
denotes the vector of joint torques induced by the workspace force F exerted
at the end effector, then

JIF =+ (5.8)

where J,, inlcudes the top three rows of the manipulator Jacobian. We
do not use the lower three rows, since we have considered only attractive
and repulsive workspace forces, and not attractive and repulsive workspace
torques. Note that for each o; an appropriate Jacobian must be constructed,
but this is straightforward given the techniques described in Chapter 4 and
the A matrices for the arm. We denote the Jacobian for o; by J,,.

Example 5.5 Two-link Planar Arm
Consider again the two-link arm of Ezample 5.3 with repulsive workspace
forces as given in Example 5.{. The Jacobians that map joint velocities to

linear ﬂﬂ[ﬂciﬁes Sﬂt’l‘:Sfy
0; = J,
| i 05 (Q) [ Q2 ]

For the two-link arm the Jacobian matriz for oy is memly the Jacobian that
we derived in Chapter 4, namely

_ | —s1—s12 —si2 '
Jor(@,q2) = [ ikt 612} (5.9)

LB
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The Jacobian matriz for oy is similar, but takes into account that motion of
Jjoint 2 does not affect the velocity of 0;. Thus

-5 0
Jor(q1,92) = [ cll 0]

At g, = (0,0) we have
T =51 a|_[01
JDI(QS)‘[ 0 0]—[0 0]

=8 =3 + 0 2
Jf;{qs)=[ e Cn]=['o 1]

and

=812 €12

Using these Jucobians, we can easily map the workspace attractive and
repulsive forces to joint torques. If we let (1 = (3 = ny = 1 we obtain

= (8 ][ 4]-[3]
s[4 ][ 4)-[1]

Trep,?(Qs)={8 f”j]:[j]

Example 5.6 A Polygonal Robot in the Plane

Artificial potential fields can also be used to plan the motions of a mobile
robot moving in the plane. In this case the mobile robot is typically modeled
as a polygon that can translate and rotate in the plane.

Consider the polygonal robot shown in Figure 5.7. The verfer a has
coordinates (az,ay) in the robot’s local coordinate frame. Therefore, if the
robot’s configuration is given by q = (z,y,8), the forward kinematic map for
vertez a (that is, the mapping from q = (z,y,0) to the global coordinates of
the vertez a) is given by

(5.10)

ol gl = [ z + azcosf — aysind ]

Y+ azsing+aycosf

The corresponding Jacobian matriz is given by

Tulz9,0) = [ 10 —azsme—aycosﬁ']

0 1 azcosf—aysinf
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Figure 5.7: In this example, the robot is a polygon whose configuration can
be represented as g = (z,y, 0), in which 6 is the angle from the world z-axis
to the z-axis of the robot’s local frame. A force F' is exerted on vertex a
with local coordinates (g, ay).

Using the transpose of the Jacobian to map the workspace forces to general-
ized forces for the configuration space, we obtain

Fy
T (@ 3,9) [ ? J = F,
4 ~Fg(azsin8 — ay cos0) + Fy(a, cosf — ay sin0)

The bottom entry in this vector corresponds to the torque ezerted about the
origin of the robot frame.
0

The total artificial joint torque acting on the arm is the sum of the
artificial joint torques that result from all attractive and repulsive potentials

(q) = Z JT(q) Fai(g) + Z JZ (@) Frep.(a) (5.11)

It is essential that we add the joint torques and not the workspace forces. In
other words, we must use the Jacobians to transform forces to joint torques
before we combine the effects of the potential fields. For example, Figure
5.8 shows a case in which two workspace forces F} and F, act on opposite
corners of a rectangle. It is easy to see that F) + F, = 0, but that the
combination of these forces produces a pure torque about the center of the
rectangle.
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2

Figure 5.8: This example illustrates why forces must be mapped to the
configuration space before they are combined. The two forces illustrated
in the figure are vectors of equal magnitude in opposite directions. Vector
addition of these two forces produces zero net force, but there is a net torque
induced by these forces.

Example 5.7 Two-link planar arm

Consider again the two-link planar arm of Ezample 5.8, with joint torques
as determined in Ezample 5.5. In this case the total joint torque induced by
the attractive and repuslive workspace potential fields is given by

T(gs) = Tart,1(9s) + Tan2(ds) + Trep,2(qs)
o]+ [3]+[ 2] (5]

These joint torques have the effect of causing each joint to rotate in o cljock-
wise direction, away from the goal, due to the close prozimity of oy to the
obstacle. By choosing a smaller value for 1, this effect can be overcome.

o]

5.2.4 Gradient Descent Planning

Gradient descent is a well known approach for solving optimization prob-
lems. The idea is simple. Starting at the initial configuration, take a small
step in the direction of the negative gradient (which is the direction that de-
creases the potential as quickly as possible). This gives a new configuration,
and the process is repeated until the final configuration is reached. More
formally, we can define a gradient descent algorithm as follows.
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Gradient Descent Algorithm

L eg,i—0
2. TF|l¢" gl >e i
7(d)

¢t g +of
lI(@)ll
fe—it1l

ELSE return < ¢°,¢,...,¢* >
3. GOTO2

In this algorithm the notation ¢' is used to denote the value of q at the
i'™ iteration (not the i** componenent of the vector g) and the final path
consists of the sequence of iterates < ¢°, ¢!, ..., ¢* >. The value of the scalar
o determines the step size at the i** iteration; it is multiplied by the unit
vector in the direction of the resultant force. It is important that o be small
enough that the robot is not allowed to “jump into” obstacles while being
large enough that the algorithm does not require excessive computation
time. In motion planning problems the choice for o is often made on an ad
hoc or empirical basis, perhaps based on the distance to the nearest obstacle
or to the goal. A number of systematic methods for choosing o’ can be found
in the optimization literature.

It is unlikely that we will ever exactly satisfy the condition ¢ = g; and
for this reason the algorithm terminates in line 2 when ¢ is sufficiently near
the goal configuration g;. We choose € to be a sufficiently small constant,
based on the task requirements.

There are a number of design choices that must be made when using this
algorithm.

(i in Equation (5.4) controls the relative influence of the attractive potential
for control point ;. It is not necessary that all of the ¢; be set to the
same value. Typically we assign a larger weight to one of the o; than to
the others, producing a “follow the leader” type of motion, in which
the leader o; is quickly attracted to its final position and the robot
then reorients itself so that the other o; reach their final positions.

7; in Equation (5.6) controls the relative influence of the repulsive potential
for 0;. As with the ; it is not necessary that all of the 7; be set to the
same value. In particular, we typically set the value of 7; to be much
smaller for obstacles that are near the goal position of the robot (to
avoid having these obstacles repel the robot from the goal).
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0,(q)
0,(4,,)

%(4)) 0,(4,)

Figure 5.9: The configuration gumi, is a local minimum in the potential field.
At quin the attractive force exactly cancels the repulsive force and the plan-
ner fails to make further progress.

po in Equation (5.6) defines the distance of influence for obstacles. As with
the n; we can define a distinct value of py for each obstacle. In par-
ticular, we do not want any obstacle’s region of influence to include
the goal position of any repulsive control point. We may also wish to
assign distinct values of pp to the obstacles to avoid the possibility of

. overlapping regions of influence for distinct obstacles.

The problem that plagues all gradient, descent algorithms is the possible
existence of local minima in the potential field. For appropriate choice of
o', it can be shown that the gradient descent algorithm is guaranteed to
converge to a minimum in the field, but there is no guarantee that this
minimum will be the global minimum. In our case this implies that there
i3 no guarantee that this method will find a path to g;. An example of this
situation is shown-in Figure 5.9. We will discuss ways to deal with this
below in Section 5.3.

5.3 ESCAPING LOCAL MINIMA

As noted above, one problem that plagues artificial potential field methods
for path planning is the existence of local minima in the potential field. In
the case of articulated manipulators the resultant field U is the sum of many
attractive and repulsive fields, and this combination is likely to yield many
local minima. This problem has long been known in the optimization com-
munity, where probabilistic methods such as simulated annealing have been
developed to cope with it. Similarly, the robot path planning community
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has developed what are known as randomized methods to deal with this
and other problems.

The first method we discuss for escaping local minima combines gradient
descent with randomization. This approach uses gradient descent until the
planner finds itself stuck in a local minimum, and then uses a random walk
to escape the local minimum. The algorithm is a slight modification of the
gradient descent algorithm of Section 5.2.4:

L ¢ eg,ie0
2 IF |l —gll>e ,
i+1 7(g")

(@)l
ie—i+1

ELSE return < ¢° ¢!,...,¢" >
3. IF stuck in a local minimum
execute a random walk, ending at ¢
qi+I 2= qn’
4 GOTO2

¢! — g 4o

The two new problems that must be solved are determining when the
planner is stuck in a local minimum and defining the random walk. Typ-
ically, a heuristic is used to recognize a local minimum. For example, if
several successive ¢* lie within a small region of the configuration space, it is
likely that there is a nearby local minimum (for example, if for some small
positive em we have [|¢* — ¢ < em, [l¢ — "% < em, and [l¢ — ¢**3|| < €
then assume ¢* is near a local minimum). ’

Defining the random walk requires a bit more care. One approach is to
simulate Brownian motion. The random walk consists of ¢ random steps. A
random step from g = (qy,...,¢x) is obtained by randomly adding a small
fixed constant to each g;,

Qrandom—step = (@tv,...,¢ot Un)

with v; a fixed small constant and the probability of adding +v; or —v; equal
to 1/2 (that is, a uniform distribution). Without loss of generality, assume
that ¢ = 0. We can use probability theory to characterize the behavior of
the random walk consisting of ¢ random steps. In particular, the probability
density function for ¢' = (gy,...,qs) is given by

1 @
i(gi,t) = - 5.12
Pi(gi,t) " Tmexp( 2U._2:) (5.12)




et e | oo

AT

182 CHAPTER 5. PATH AND TRAJECTORY PLANNING

which is a zero mean Gaussian density function? with variance v?t. This is
a result of the central limit theorem, which states that the probability den-
sity function for the sum of k independent, identically distributed random
variables tends to a Gaussian density function as k — co. The variance v2#
essentially determines the range of the random walk. If certain character-
istics of local minima (for example, the size of the basin of attraction) are
known in advance, these can be used to select the parameters v; and . Oth-
erwise, they can be determined empirically or based on weak assumptions
about the potential field. 3

5.4 PROBABILISTIC ROADMAP METHODS

The potential field approaches deseribed above incrementally explore Qe
searching for a path from g, to g;. At termination, these planners return a
single path. Thus, if multiple path planning problems must be solved, such
a planner must be applied once for each problem. An alternative approach
is to construct a representation of Q. that can be used to quickly generate
paths when new path planning problems arise. This is useful, for example,
when a robot operates for a prolonged period in a single workspace.

One such representation is a known as configuration space roadmap.
A roadmap is a one-dimensional network of curves that effectively represents
Qree- Using roadmap methods, planning comprises three stages: (1) find a
path from g, to a configuration g, in the roadmap, (2) find a path from g; to
a configuration gy in the roadmap, (3) find a path in the roadmap from g,
to gp. Steps (1) and (2) are typically much easier than finding a path from
gs to qp.

In this section, we will describe probabilistic roadmaps (PRMs). A
PRM is a network of simple curve segments, or arcs, that meet at nodes.
Each node corresponds to a configuration. Each arc between two nodes cor-
responds to a collision free path between two configurations. Constructing
a PRM is a conceptually straightforward process. First, a set of random
configurations is generated to serve as the nodes in the roadmap. Then,
a simple, local path planner is used to generate paths that connect pairs
of configurations. Finally, if the initial roadmap consists of multiple con-
nected components,? it is augmented by an enhancement phase, in which

%A Gaussian density function is the classical bell shaped curve. The mean indicates
the center of the curve (the peak of the bell) and the variance indicates the width of the
bell. The probability density function (pdf) tells how likely it is that the variable ¢; will
lie in a certain interval. The higher the pdf values, the more likely that ¢; will lie in the
corresponding interval.

*A connected component is a maximal subnetwork of the network such that a path
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new nodes and arcs are added in an attempt to connect disjoint components
of the roadmap. To solve a path planning problem, the simple, local planner
is used to connect ¢ and ¢; to the roadmap, and the resulting roadmap is
searched for a path from ¢, to g;. These four steps are illustrated in Figure
5.10. We now discuss these steps in more detail.

5.4.1 Sampling the Configuration Space

The simplest way to generate sample configurations is with uniform random
sampling of the configuration space. Sample configurations that lie in QO
are discarded. A simple collision checking algorithm can determine when this
is the case. The disadvantage of this approach is that the number of samples
it places in any particular region of Qg is proportional to the volume of
the region. Therefore, uniform sampling is unlikely to place samples in
narrow passages of Ogee. In the PRM literature, this is refered to as the
narrow passage problem. It can be dealt with either by using more
intelligent sampling schemes, or by using an enhancement phase during the
construction of the PRM. In this section, we discuss the latter option.

5.4.2 Connecting Pairs of Configurations

Given a set of nodes that correspond to configurations, the next step in
building the PRM is to determine which pairs of nodes should be connected
by a simple path. The typical approach is to attempt to connect each node
to its k nearest neighbors, with k a parameter chosen by the user. Of course,
to define the nearest neighbors, a distance function is required. Table 5.1
lists four distance functions that have been popular in the PRM literature.
In this table, ¢ and ¢’ are the two configurations corresponding to different
nodes in the roadmap, g; refers to the value of the it joint variable, 4
is a set of reference points on the robot, and p(q) refers to the workspace
reference point p at configuration q. Of these, the simplest, and perhaps
most commonly used, is the 2-norm in configuration space.

Once pairs of neighboring nodes have been identified, a simple local
planner is used to connect these nodes. Often, a straight line in configuration
space is used as the candidate plan, and thus, planning the path between
two nodes is reduced to collision checking along a straight line path in the
configuration space. If a collision occurs on this path, it can be discarded, or
a more sophisticated planner (for example, the planner described in Section
5.3) can be used to attempt to connect the nodes.

exists in the subnetwork between any two nodes.



BTG L

184 CHAPTER 5. PATH AND TRAJECTORY PLANNING

(c) (d)

Figure 5.10: This figures illustrates the steps in the construction of a proba-
bilistic roadmap for a two-dimensional configuration space containing polyg-
onal obstacles. (a) First, a set of random samples is generated in the config-
uration space. Only collision-free samples are retained. (b) Each sample is
connected to its nearest neighbors using a simple, straight-line path. If such
a path causes a collision, the corresponding samples are not connected in the
roadmap. (c) Since the initial roadmap contains multiple connected compo-
nents, additional samples are generated and connected to the roadmap in
an enhancement phase. (d) A path from g; to g; is found by connecting g
and ¢; to the roadmap and then searching this augmented roadmap for a
path from g, to g¢;.

5.4. PROBABILISTIC ROADMAP METHODS 185
1
2
2-norm in Q: g —qll = [ S A Qi)z]
oo-norm in Q: max, |g; — g

2-norm in workspace: [ZPE.AHP(QJ) = p(q)uz]

co-norm in workspace: maxye 4||p(¢') - p(g)|

Table 5.1: Four commonly used distance functions.

The simplest approach to collision detection along the straight line path
is to sample the path at a sufficiently fine discretization, and to check each
sample for collision. This method works, provided the discretization is fine
enough, but it is very inefficient. This is because many of the computations
required to check for collision at one sample are repeated for the next sample
(assuming that the robot has moved only a small amount between the two
configurations). For this reason, incremental collision detection approaches
have been developed. While these approaches are beyond the scope of this
text, a number of collision detection software packages are available in the
public domain. Most developers of robot motion planners use one of these
packages, rather than implementing their own collision detection routines.

5.4.3 Enhancement

After the initial PRM has been constructed, it is likely that it will consist
of multiple connected components. Often these individual components lie
in large regions of Qg that are connected by narrow passages in Qpee.
The goal of the enhancement process is to connect as many of these disjoint
components as possible.

One approach to enhancement is merely to attempt to connect pairs of
nodes in two disjoint components, perhaps by using a more sophisticated
planner such as described in Section 5.3. A common approach is to identify
the largest connected component, and to attempt to connect the smaller
components to it. The node in the smaller component that is closest to
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the larger component is typically chosen as the candidate for connection. A
second approach is to choose a node randomly as a candidate for connection,
and to bias the random choice based on the number of neighbors of the
node; a node with fewer neighbors in the roadmap is more likely to be near
a narrow passage, and should be a more likely candidate for connection.
Another approach to enhancement is to add more random nodes to the
roadmap, in the hope of finding nodes that lie in or near the narrow passages.
One approach is to identify nodes that have few neighbors, and to generate
sample configurations in regions around these nodes. The local planner is
then used to attempt to connect these new configurations to the roadmap.

5.4.4 Path Smoothing

After the PRM has been generated, path planning amounts to connecting
g; and g; to the roadmap using the local planner, and then performing
path smoothing, since the resulting path will be composed of straight line
segments in the configuration space. The simplest path smoothing algorithm
is to select two random points on the path and try to connect them with the
local planner. This process is repeated until until no significant progress is
made.

5.5 TRAJECTORY PLANNING

Recall that a path from g, to g; in configuration space is defined as a contin-
uous map, v : [0,1] — @, with v(0) = ¢, and (1) = ¢;. A trajectory is a
function of time g(¢) such that g(to) = g, and g¢(t) = ¢;. In this case, t;—tp
represents the amount of time taken to execute the trajectory. Since the
trajectory is parameterized by time, we can compute velocities and acceler-
ations along the trajectories by differentiation. If we think of the argument
to v a8 a time variable, then a path is a special case of a trajectory, one
that will be executed in one unit of time. In other words, in this case 5
gives a complete specification of the robot’s trajectory, including the time
derivatives (since one need only differentiate -y to obtain these).

As seen above, a path planning algorithm will not typically give the map
7; it will give only a sequence of points (called via points) along the path.
This is also the case for other ways in which a path could be specified. In
some cases, paths are specified by giving a sequence of end-effector poses,
T3(kAt). In this case, the inverse kinematic solution must be used to convert
this to a sequence of joint configurations. A common way to specify paths for
industrial robots is to physically lead the robot through the desired motion
with a teach pendant, the so-called teach and playback mode. In some

9.5. TRAJECTORY PLANNING | 187

Fast ] Free Space

Guarded Slow Slow Guarded

Figure 5.11: Often the end effector trajectory can be decomposed into initial
and final guarded motions that are executed at low speeds, and a free motion
that is executed at high speed.

cases, this may be more efficient than deploying a path planning system, for
example, in static environments when the same path will be executed many

- times. In this case, there is no need for calculation of the inverse kinematics;

the desired motion is simply recorded as a set of Joint angles (actually as a

set of encoder values).

It is often the case that a manipulator motion can be decomposed into
segments consisting of free and guarded motions, such as shown in Fig-
ure 5.11. During the free motion the manipulator can move very fast, since

- 1o obstacles are near by, but at the start and end of the motion, care must
. be taken to avoid obstacles.

Below, we first consider point to point motion. In this case the task
is to plan a trajectory from an initial configuration ¢(to) to a final config-
uration g(ts). In some cases, there may be constraints on the trajectory
(for example, if the robot must start and end with zero velocity). Never-
theless, it is easy to realize that there are infinitely many trajectories that
will satisfy a finite number of constraints on the endpoints. Tt is common
practice therefore to choose trajectories from a finitely parameterizable fam-
ily, for example, polynomials of degree n, where n depends on the number
of constraints to be satisfied. This is the approach that we will take in
this text. Once we have seen how to construct trajectories between two
configurations, it is straightforward to generalize the method to the case of
trajectories specified by multiple via points.

T
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5.5.1 Trajectories for Point to Point Motion

As described above, the problem is to find a trajectory that connects the
initial and final configurations while satisfying other specified constraints at
the endpoints, such as velocity and/or acceleration constraints. Without loss
of generality, we will consider planning the trajectory for a single joint, since
the trajectories for the remaining joints will be created independently and
in exactly the same way. Thus, we will concern ourselves with the problem
of determining q(t), where ¢(t) is a scalar joint variable.
We suppose that at time #; the joint variable satisfies

qato) = (5.13)
() = w ' (5.14)

and we wish to attain the values at ¢4

qlty) = g (5.15)
q(ty) = vy (5.16)

Figure 5.12 shows a suitable trajectory for this motion. In addition, we may
wish to specify the constraints on initial and final accelerations. In this case
we have two additional equations

() = a (5.17)
jlty) = of (5.18)

Below we will investigate several specific ways to compute trajectories
using low order polynomials. We begin with cubic polynomials, which allow
specification of initial and final positions and velocities. We then describe
quintic polynomial trajectories, which also allow the specification of the
initial and final accelerations. After describing these two general polynomial
trajectories, we describe trajectories that are pieced together from segments
of constant acceleration.

Cubic Polynomial Trajectories

Consider first the case where we wish to generate a polynomial joint
trajectory between two configurations, and that we wish to specify the start
and end velocities for the trajectory. This gives four constraints that the tra-
jectory must satisfy. Therefore, at a minimum we require a polynomial with
four independent coefficients that can be chosen to satisfy these constraints.
Thus, we consider a cubic trajectory of the form

g(t) = ag+art+ agt? +ast’ (5.19)
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Figure 5.12: A typical joint space trajectory.

Then the desired velocity is given as
i(t) = a1+ 2ast + 3ast® (5.20)

Combining Equations (5.19) and (5.20) with the four constraints yields four
equations in four unknowns

G = ag+aytp+ aztg + agtg
v = 61+ 2astg+ Sagtg‘
g ap + aity +agt}+a3t§
vy ay -+ 2apty + 30,3@

Il

These four equations can be combined into a single matrix equation

1 % ttzJ tgg gy do

0 1 2 3t a1 )

1 4 & 8 = (5.21)
I Y B 2 9

0 1 2ty 3t | | a3 vy

It can be shown (Problem 5-17) that the determinant of the coefficient ma-
trix in Equation (5.21) is equal to (t; — ty)* and, hence, Equation (5.21)
always has a unique solution provided a nonzero time interval is allowed for
the execution of the trajectory.



s

s

=

T

i

190 CHAPTER 5. PATH AND TRAJECTORY PLANNING

Example 5.8 Cubic Polynomial Trajectory
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Figure 5.13: (a) Cubic polynomial trajectory. (b) Velocity profile for cubic
polynemial trajectory. {c) Acceleration profile for cubic polynomial trajec-
tory.

As an illustrative ezample, we may consider the special case that the
initial and final velocities are zero. Suppose we take to =0 and ty =1 sec,
with

w=0 ;=0

Thus, we want to move from the initial position qo to the final position gj
in 1 second, starting and ending with zero velocity. From Equation (5.21)
we obtain

1000 g qo
0100 a1 B 0
131 L1 as N qs
012 3 as 0

This is then equivalent to the four equations

@ = qo

g = 0
ax+a3 = q5—qo

2a9+3a3 = 0

These latter two equations can be solved to yield

az = 3(g5—q)
ag = —2(gr — q)
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The required cubic polynomial function is therefore
ot) = qo0+3(gr — q0)t* ~ 2g5 — )t

The corresponding velocity and acceleration curves are given as

§(t) = 6(ar — qo)t - 6(gr — qo)t”

§(t) = 6(g5 — q0) — 12(gs — qo)t
Figure 5.13 shows these trajectories with go = 10°, g5 = —20°.
0
Quintic Polynomial Trajectories

As can be seen in in Figure 5.13, a cubic trajectory gives continuous

positions and velocities at the start and finish points times but discontinu-
ities in the acceleration. The derivative of acceleration is called the jerk.
A discontinuity in acceleration leads to an impulsive jerk, which may excite
vibrational modes in the manipulator and reduce tracking accuracy. For this
reason, one may wish to specify constraints on the acceleration as well as
on the position and velocity. In this case, we have six constraints (one each
for initial and final configurations, initial and final velocities, and initial and
final accelerations). Therefore we require a fifth order polynomial

q(t) = ap + art + aot” + agt® + agt* + a5t (5.22)

Using Equations (5.13) — (5.18) and taking the appropriate number of deriva-
tives we obtain the following equations,

@ = ag+atg+ agtg + agtg + u4t3 + astg
v = aj+ 2a2tg:+ 3{13:‘% + 4a4t8 + 5a5t3
o = 2ay+ 6asty + 12a4t3 + 20583

g = apt+ayts+ agt} + a;ﬁ? + a4t4f + a5t§-
v = a;+2aesty + 30.315? e 4a4t?f + 5a5t‘}
ap = 2ay+6agty + 1204t} + a5t}

which can be written as

1t t§ &8 t5 & |[ao %
0 1 2t 3t3 4t 5t a1 o
00 2 6tp 1262 208 | | oy @
2 43 4 5 = (5.23)
1 tf tf tf tf tf as '
0 1 2 3t3— 4t?- 51# ay vy
[0 0 2 6ty 12t} 20t} | [ as af
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Example 5.9 Quintic Polynomial Trajectory
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Figure 5.14: (a) Quintic polynomial trajectory, (b) its velocity profile, and
(c) its acceleration profile.

Figure 5.14 shows a quintic polynomial trajectory with q(0) = 0, ¢(2) =
40 with zero initial and final velocities and accelerations.
o

Linear Segments with Parabolic Blends (LSPB)

Another way to generate suitable joint space trajectories is by using so-
called Linear Segments with Parabolic Blends (LSPB). This type of
trajectory has a Trapezoidal Velocity Profile and is appropriate when a
constant velocity is desired along a portion of the path. The LSPB trajectory
is such that the velocity is initially “ramped up” to its desired value and
then “ramped down” when it approaches the goal position. To achieve this
we specify the desired trajectory in three parts. The first part from time
to to time t; is a quadratic polynomial. This results in a linear “ramp”
velocity. At time t;, called the blend time, the trajectory switches to a
linear function. This corresponds to a constant velocity. Finally, at ¢ =t
the trajectory switches once again, this time to a quadratic polynomial so
that the velocity is linear.

We choose the blend time t; so that the position curve is symmetric as
shown in Figure 5.15. For convenience suppose that ¢ = 0 and §(t;) = 0=
4(0). Then between times 0 and t; we have

q(t) = ag+ art + ast?
so that the velocity is

q(t) = a1+ 2at
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Blend Times for LSPB Trajectory
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Figure 5.15: Blend times for LSPB trajectory.

The constraints gy = 0 and ¢(0) = 0 imply that
ap = o
aiy = i

At time t; we want the velocity to equal a given constant, say V. Thus, we
have

g(ts) =2ast, =V
which implies that
&,
2ty
Therefore the required trajectory between 0 and t; is given as

ay =

V 2 &9
i = —1" = —t
q(t) go + tht g+ 7

V
it) = —t=at
23

V

L
23

where @ denotes the acceleration.
Now, between time ¢, and t; —t, the trajectory is a linear segment with
velocity V

q(t) = qts) +V(t—1ty)



194 CHAPTER 5. PATH AND TRAJECTORY PLANNING

Since, by symmetry,

we have
=+ t
P2 = g)+V(L-n)
2 2
which implies that 4
90 +4gs i
= BT gk g
q(ts) 3 (5 -4)
Since the two segments must “blend” at time t; we require
v +g7-Vi
o+t = LA qu Ly,

which, upon solving for the blend time t;, gives
—qr+ Vit
By = o~ TV (5.24)
v
Note that we have the constraint 0 < ¢, < % This leads to the inequality
95— 295 — q)
R s e AT 5
v SWS Ty
To put it another way we have the inequality
9~ % 2(gs — )
ty t f
Thus, the specified velocity must be between these limits or the motion is
not possible. g
The portion of the trajectory between ¢; —ty and ¢5 is now found by

symmetry considerations (Problem 5-21). The complete LSPB trajectory is
given by

<V<

¢

w+ 3 0<t<t
Vi
a) = ¢ LMy aci<y-u  (529)

t2
qf—a—2i+atft—gt2 tp—ty <t <ty
\
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Figure 5.16: (a) LSPB trajectory. (b) Velocity profile for LSPB trajectory.
(c) Acceleration profile for LSPB trajectory.

Figure 5.16(a) shows such an LSPB trajectory, where the maximum velocity
V =60. In this case t; = % The velocity and acceleration curves are given
in Figures 5.16(b) and 5.16(c), respectively.

Minimum Time Trajectories

An important variation of the LSPB trajectory is obtained by leaving
the final time 7 unspecified and seeking the “fastest” trajectory between gq
and gy with a given constant acceleration a that is, the trajectory with the
final time t; a minimum. This is sometimes called a bang-bang trajectory
since the optimal solution is achieved with the acceleration at its maximum
value +a until an appropriate switching time £, at which time it abruptly
switches to its minimum value —a (maximum deceleration) from ¢, to ¢ B

Returning to our simple example in which we assume that the trajectory
begins and ends at rest, that is, with zero initial and final velocities, symime-
try considerations would suggest that the switching time t, is just % This
is indeed the case. For nonzero initial and/or final velocities, the situation
is more complicated and we will not discuss it here. If we let V; denote the
velocity at time t, then we have V; = at, and using Equation (5.24) with
tp = t; we obtain

q — g5 + Vity

' —
’ Vs

The symmetry condition ¢, = % implies that
v, = ¥-%

ty
Combining these two we have the conditions

qr — qo

= ot
t s
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Figure 5.17: (a) Minimum-time trajectory. (b) Velocity profile for minimum-
time trajectory. (c) Acceleration profile for minimum-time trajectory.

iy = a5 —
V o

Figure 5.17 shows the position, velocity, and acceleration for such a minimum
time trajectory.

which implies that

5.5.2 Trajectories for Paths Specified by Via Points

Now that we have examined the problem of planning a trajectory between
two configurations, we generalize our approach to the case of planning a tra-
Jectory that passes through a sequence of configurations, called via points.
Consider the simple example of a path specified by three points, go, q1,
and g, such that the via points are reached at times tg,t1, and £3, respec-
tively. If in addition to these three constraints we impose constraints on the
initial and final velocities and accelerations, we obtain the following set of
constraints,

a(to) = @
q(to) =
i(to) = oo
glt1) = @
g{t2) = @
i(ts) = u
4(t2) = o
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which could be satisfied by generating a trajectory using the sixth order
polynomial

q(t) = ap + a1t + agt® + ast® + agtt + ast® + agt® (5.26)

One advantage to this approach is that, since g(t) is continuously dif-
ferentiable, we need not worry about discontinuities in either velocity or
acceleration at the via point, ¢;. However, to determine the coefficients for
this polynomial, we must solve a linear system of dimension seven. The clear
disadvantage to this approach is that as the number of via points increases,
the dimension of the corresponding linear system also increases, making the
method intractable when many via points are used.

An alternative to using a single high order polynomial for the entire
trajectory is to use low order polynomials for trajectory segments between
adjacent via points. These polynomials are sometimes referred to as inter-
polating polynomials or blending polynomials. With this approach, we must
take care that velocity and acceleration constraints are satisfied at the via
points, where we switch from one polynomial to another.

For the first segment of the trajectory, suppose that the initial and final
times are ¢y and ¢y, respectively, and the constraints on initial and final
velocities are given by

glb)=q ; altf)=q

i(to) =vo ; qt;)=m (5.27)

the required cubic polynomial for this segment of the trajectory can be
computed from

glte) = ag+ax(t —to) +aa(t — tp)? + a(t — to)° (5.28)

where
ay = (o
a = Vg
b = Sl =) — (20 +v)(t —to)
’ (tr—t0)?
e = Hao—@)+(wtn)E - to)
. (t5 —to)3

A sequence of moves can be planned using the above formula by using the

end conditions gy, vy of the i** move as initial conditions for the subsequent
move.
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Example 5.10 Three-segment Cubic Spline Trajectory
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Figure 5.18: (a) Cubic spline trajectory made from three cubic polynomials.
(b) Velocity profile for multiple cubic polynomial trajectory. (c¢) Acceleration
profile for multiple cubic polynomial trajectory.
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Figure 5.18 shows a 6-second move, computed in three parts using Equa-
tion (5.28), where the trajectory begins at 10° and is reguired to reach 40°
at 2 seconds, 30° at 4 seconds, and 90° at 6 seconds, with zero velocity at 0,
2, 4, and 6 seconds.

<

Example 5.11 Cubic Spline Trajectory with Blending Constraints
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Figure 5.19: (a) Trajectory with multiple quintic segments. (b) Velocity
profile for multiple quintic segments. (c) Acceleration profile for multiple
quintic segments.

Figure 5.19 shows the same 6-second trajectory as in Example 5.10 with
the added constraints that the accelerations should be zero at the blend times.
o
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56 SUMMARY

In this chapter we studied methods for generating collision-free trajectories
for robot manipulators. We divided the problem into two parts, first com-
puting a collinion-free path (represented by a sequence of set points), then
by using interpolating polynomials to convert these paths into continuous
trajectories.

We described two approaches to path planning, incremental search guided
by artificial potential fields and probabilistic roadmap methods. In the first,
artificial potential fields are constructed in the robot’s workspace. These
fields attract the origins of the DH frames to their goal positions, while re-
pelling the arm from obstacles in the workspace. The negative gradients -
of these potentials define artificial forces, and these can be converted from
workspace forces to joint torques using the relationship 7 = JTF. Gradient
descent methods can then be used to incrementally explore the configura-
tion space in search of a collision-free path. Since gradient descent methods
are prone to become trapped by local minima, we introduced randomized
motion as a method for escaping local minima.

The second method of path planning constructs a roadmap in the con-
figuration space using a random sampling scheme. A set of random samples
are generated, and each of these is connected to a set of its nearest neighbors
using a simple local motion planner (often a simple straight-line planner in
the configuration space). Such a roadmap is called a probabilistic roadmap
(PRM). Once the roadmap has been constructed, planning amounts to con-
necting the initial and goal configurations to the roadmap (again, using the
simple, local planner), then searching the roadmap for a connecting path.

Given a sequence of set points, a trajectory can be constructed using a
low-order polynomial defined in terms of initial and final conditions for joint
variables and their derivatives. We described cubic and quintic trajectories,
along with trajectories that are pieced together from segments of constant
acceleration (including minimum time, or bang-bang trajectories).

PROBLEMS

5-1 Describe the configuration space for a mobile robot that can translate
and rotate in the plane.

5-2 Describe the configuration space for the three-link manipulator shown
in Figure 3.23.

5-3 Describe the configuration space for the two-link manipulator shown
in Figure 3.24.
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5-4 Describe the configuration space for the two-link manipulator shown
in Figure 3.25.

5-5 Describe the configuration space for the three-link manipulator shown
in Figure 3.26.

5-6 Describe the configuration space for a six-link anthropomorphic arm
equipped with a spherical wrist.

5-7 Verify Equation (5.2).

5-8 Derive the equations needed to compute the shortest distance from a
point p to the line segment in the plane with vertices a; and as.

5-9 Derive the equations needed to compute the shortest distance from a
point p to the polygon in the plane with vertices a;, i =1,...,n.

5-10 Derive the equations needed to compute the shortest distance from
a point p to the polygon in three dimensions with vertices a;, i =
3 N N

5-11 Verity Equation (5.6).

5-12 Consider a simple polygonal robot with four vertices, such that at
g = (0,0,0) the vertices are located at a1(0) = (0,0), az(0) = (1,0),
a3(0) = (1,1), and aq(0) = (0, 1). If two point obstacles are located at
01 = (3,3) and 0g = (—3, —3), determine the artificial workspace and
configuration space forces that act on the robot.

5-13 Write a computer program to implement the path planner described
in Section 5.2 for a three-link planar arm moving among polygonal
obstacles.

5-14 Write a simple computer program to perform collision checking for
the case of a polygonal robot moving in the plane among polygonal
obstacles. Your program should accept a configuration g as input,
and should return a value that indicates whether ¢ is a collision-free
configuration.

5-15 Give a procedure for generating random samples of orientations in
§0(n) given that you have access to a random number generator that
can generate samples from the uniform distribution on the unit inter-
val. Your samples need not be uniformly distributed on SO(n).
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5-16 Write a computer program to implement the PRM planner described
in Section 5.4 for a three-link planar arm moving among polygonal
obstacles.

5-17 Show by direct calculation that the determinant of the coefficient ma-
trix in Equation (5.21) is (t; — to)*.

5-18 Suppose we wish a manipulator to start from an initial configuration
at time #o and track a conveyor. Discuss the steps needed in planning
a suitable trajectory for this problem.

5-19 Suppose we desire a joint space trajectory 4d(t) for the itk joint (as-
sumed to be revolute) that begins at rest at position go at time ty and
reaches position ¢; in 2 seconds with a final velocity of 1 radian/sec.
Compute a cubic polynomial satisfying these constraints. Sketch the
trajectory as a function of time.

5-20 Compute a LSPB trajectory to satisfy the same requirements as in
Problem 5-19. Sketch the resulting position, velocity, and acceleration
profiles.

5-21 Fill in the details of the computation of the LSPB trajectory. In other
words compute the portion of the trajectory between times ¢ ¢ —ty and
t and hence verify Equations (5.25).

5-22 Write a Matlab m-file, Ispb.m, to generate an LSPB trajectory, given
appropriate initial data.

5-23 Rewrite the Matlab m-files, cubic.m, quintic.m, and Ispb.m to turn
them into Matlab functions. Document them appropriately,

NOTES AND REFERENCES

The earliest work on robot planning was done in the late sixties and early
seventies in a few university-based Artificial Intelligence (Al) labs (32], [36],
and [98]. This research dealt with high level planning using symbaolic rea-
soning that was much in vogue at the time in the AT community. Geometry
was not often explicitly considered in early robot planners, in part because
it was not clear how to represent geometric constraints in a computationally
feasible manner. The configuration space and its application to path plan-
ning were introduced in [79]. This was the first rigorous, formal treatment
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of the geometric path planning problem, and it initiated a surge in path
planning research.

The earliest work in geometric path planning developed methods to con-
struct volumetric representations of the free configuration space. These
included exact methods [112], and approximate methods [15],60], and [79).
In the former case, the best known algorithms have exponential complex-
ity and require exact descriptions of both the robot and its environment,
while in the latter case, the size of the representation of configuration space
grows exponentially in the dimension of the configuration space. The best
known algorithm for the path planning problem, giving an upper bound on
the amount of computation time required to solve the problem, appeared in
[16]. That real robots rarely have an exact description of the environment,
and a drive for faster planning systems led to the development of potential
fields approaches [64], and [66].

By the early nineties, a great deal of research had been done on the
geometric path planning problem, and this work is nicely summarized in
the textbook [73]. This textbook helped to generate a renewed interest in
the path planning problem, and it provided a common framework in which
to analyze and express path planning algorithms.

In the early nineties, randomization was introduced in the robot planning
community [9], originally to circumvent the problems with local minima
in potential fields. Early randomized motion planners proved effective for
a large range of problems, but sometimes required extensive computation
time for some robots in certain environments [62]. This limitation, together
with the idea that a robot will operate in the same environment for a long
period of time led to the development of the probabilistic roadmap planners
[61, 100, 62]. -

A comprehensive review of motion planning research, including sensor-
based approaches, can be found in [18].

Much work has been done in the area of collision detection in recent
years [78], [91], [135], and [136]. This work is primarily focused on finding
efficient, incremental methods for detecting collisions between objects when
one or both are moving. A number of public domain collision detection
software packages are currently available on the internet.

The artificial potential field method for motion planning has much in
common with nonlinear optimization (for example, choosing step size a). A
thorough discussion of nonlinear optimization can be found in [11].

Chapter 6

INDEPENDENT JOINT
CONTROL

The control problem for robot manipulators is the problem of determining
the time history of joint inputs required to cause the end effector to execute
a commanded motion. The joint inputs may be joint forces and torques,
or they may be inputs to the actuators, for example voltage inputs to the
motors, depending on the model used for controller design. The commanded
motion is typically specified either as a sequence of end-effector positions and
orientations, or as a continuous path.

There are many control techniques and methodologies that can be ap-
plied to the control of manipulators. The particular control method used
can have a significant impact on the performance of the manipulator and
consequently on the range of its possible applications. For example, con-
tinuous path tracking requires a different control architecture than does
point-to-point motion.

In addition, the mechanical design of the manipulator itself will influ-
ence the type of control scheme needed. For example, the control prob-
lems encountered with a cartesian manipulator are fundamentally different
from those encountered with an elbow manipulator. This creates a so-called
hardware/software trade-off between the mechanical structure of the
system and the architecture/programming of the controller.

Technological improvements are continually being made in the mechani-
cal design of robots, which in turn improves their performance potential and
broadens their range of applications. Realizing this increased performance,
however, requires more sophisticated approaches to control. One can draw
an analogy to the aerospace industry. Early aircraft were relatively easy
to fly but possessed limited performance capabilities. As performance in-
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creased with technological advances, so did the problems of control to the
extent that the latest vehicles, such as the space shuttle or forward swept
wing fighter aircraft, cannot be flown without sophisticated computer con-
trol.

As an illustration of the effect of the mechanical design on the control
problem, we may compare a robot actuated by permanent magnet DC mo-
tors with gear reduction to a direct-drive robot using high-torque motors
with no gear reduction. In the first case, the motor dynamics are linear and
well understood and the effect of the gear reduction s largely to decouple
the system by reducing the inertia coupling among the joints. However,
the presence of the gears introduces friction, drive train compliance, and
backlash. :

In the case of a direct-drive robot, the problems of backlash, friction, and
compliance due to the gears are eliminated. However, the coupling among
the links is now significant, and the dynamics of the motors themselves may
be much more complex. The result is that in order to achieve high per-
formance from this type of manipulator, a different set of control problems
must be addressed. '

In this chapter we consider the simplest type of control strategy, namely,

independent joint control. In this type of control each axis of the manipu- -

lator is controlled as a single-input/single-output (SISO) system. Any cou-
pling effects due to the motion of the other links are treated as disturbances.

The basic structure of a single-input/single-output feedback control sys-
tem is shown in Figure 6.1.

Disturbance
Reference
Trajector P ,L+ o .1 Output
kit +C D Compensator — Am(;v{ief{er +w Plant[
o
Sensor h

Figure 6.1: Basic structure of a feedback control system. The compensator
measures the “error” between a “reference” and a measured “output” and
produces signals to the plant that are designed to drive the error to zero
despite the presence of disturbances.

The design objective is to choose the compensator in such a way that
the plant output “tracks” or follows a desired output, given by the reference
signal. The control signal, however, is not the only input acting on the
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system. Disturbances, which are really inputs that we do not control, also
influence the behavior of the output. Therefore, the controller must be
designed, in addition, so that the effects of the disturbances on the plant-
output are reduced. If this is accomplished, the plant is said to "reject” the
disturbances. The twin objectives of tracking and disturbance rejection
are central to any control methodology.

6.1 ACTUATOR DYNAMICS

We will analyze in some detail the dynamics of permanent magnet DC-
motors, as these are the simplest actuators to analyze and are commonly
used in robot manipulators. Other types of motors, in particular AC-
motors and so-called brushless DC-motors are also used as actuators
for robots but we will not discuss them here.

A DC-motor works on the principle that a current-carrying conductor
in a magnetic field experiences a force F = i x @, where ¢ is the magnetic
flux and 4 is the current in the conductor. The motor itself consists of a
fixed stator and a movable rotor that rotates inside the stator as shown in
Figure 6.2.

Figure 6.2: Principle of operation of a permanent magnet DC motor. The
magnitude of the force (or torque) on the armature is proportional to the
product of the current and magnetic flux. A commutator is required to
periodically switch the direction of the current through the armature to keep
it rotating in the same direction.

If the stator produces a radial magnetic flux ¢ and the current in the
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rotor (also called the armature) is 7, then there will be a torque on the
rotor causing it to rotate. The magnitude of this torque is

™m = Kidig (6'1)

where 7y, is the motor torque (N-m), ¢ is the magnetic flux (webers), 4, is
the armature current (amperes), and K is a physical constant.

In addition, whenever a conductor moves in a magnetic field, a voltage
Vp is generated across its terminals that is proportiopal to the velocity of
the conductor in the field. This voltage, called the back emf, will tend to
oppose the current flow in the conductor. Thus, in addition to the torque
Tm in Equation (6.1), we have the back emf relation

Vb = K?ﬁb‘-um (62)

where V; denotes the back emf (volts), wy, is the angular velocity of the
rotor (rad/sec), and Kj is a proportionality constant.

DC-motors can be classified according to the way in which the magnetic
field is produced and the armature is designed. Here we discuss only the
so-called permanent magnet motors whose stator consists of a permanent
magnet. In this case we can take the flux ¢ to be a constant. The torque
on the rotor is then controlled by controlling the armature current i,.

Consider the schematic diagram of Figure 6.3, where

V = armature voltage
L = armature inductance
R = armature resistance
V, = back emf

i, = armature current
8 = rotor position

Tm = generated torque

7 = load torque

¢ = magnetic flux due to stator
The differential equation for the armature current is then
dig | .
LE +Ri, = V-V (6.3)

Since the flux ¢ is constant, the torque developed by the motor is

Tm = Kiig = Kpnia {64)
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vin @

Figure 6.3: Circuit diagram for an armature controlled DC motor. The
rotor windings have an effective inductance L and resistance R. The applied
voltage V' is the control input.

where Ky, is the torque constant in N-m/amp. Also, from Equation (6.2)
we have

a0y,
W = Kopwm = Kpwn, = Kbg (6.5)

where Kj is the back emf constant. Tt can be shown that the numerical
values of K, and K are the same provided MKS units! are used.

The torque constant can be determined from a set of torque-speed curves
as shown in Figure 6.4 for various values of the applied voltage V.

Torque

Tm
Vi<h<...

To

0 Speed wy, [rad/se]

Figure 6.4: Typical torque-speed curves of a DC motor. Each line represents
the torque versus speed for a given value of the applied voltage.

When the motor is stalled, the blocked-rotor torque at the rated voltage
V; is denoted 7y. Using Equations (6.3) and (6.4) with V; = 0 and di, Jdt =10
we have

. RTD
V;_ =g = — !
Rio = (6.6)

'MKS units are based on the meter, kilogram, and second.
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Therefore the torque constant is

Rry

K, =
S 72

(6.7)

6.2 INDEPENDENT JOINT MODEL

In this section we use the DC motor model from the previous section to
derive differential equation and transfer function models treating each link of
a manipulator as an independent single-input/single-output (SISO) system.
Dynamic coupling among the joints is modeled as a disturbance to the SISO
system. The SISO model is adequate for applications not involving very fast
motion, especially in robots with large gear reduction between the actuators
and the links. A large gear reduction reduces the nonlinear coupling among
the links. In the following chapters we will derive more detailed models of
the dynamics of n-link robots and treat the nonlinear control problem.

The remainder of this section refers to Figure 6.5 consisting of the DC-
motor in series with a gear train with gear ratio 7 : 1 and connected to a
link of the manipulator. The gear ratio r typically has values in the range
20 to 200 or more. Referring to Figure 6.5, we set J;, = J, + J,, the sum of
" the actuator and gear inertias.

Figure 6.5: Lumped model of a single link with actuator/gear train. J,, Jgs
and Jy are, respectively, the actuator, gear, and load inertias. B,, is the
coefficient of motor friction and includes friction in the brushes and gears.

In terms of the motor angle 6, the equation of motion of this system is
then

&0, + 5, U

s dt

= Ty —Tpfr (6.8)

Kmia = Tg/f‘

the latter equality coming from Equation (6.4). In the Laplace domain the
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three Equations (6.3), (6.5), and (6.8) may be combined and written as

(Ls+R)lo(s) = V(s)— KpsOpm(s) (6.9)
(JmS® + Brs)Om(s) = Knmlu(s) - Te(s)/r (6.10)

The block diagram of the above system is shown in Figure 6.6.

4 LstR Kom Jms+Bm

I~

n/r
V(S) +5 1 Ia(s) +}\_ 1 m Hm(s)
N )

Ky

Figure 6.6: Block diagram for a DC motor system. The block diagram
represents a third order system from input voltage V(s) to output position

bn(s).

The transfer function from V(s) to ©,,(s) is given, with 7 = 0, by
(Problem 6-1)
B (s) Km

V(s) ~ 5[(Ls+R) (S + B) + KoK (6.11)

The transfer function from the load torque 7y(s) to ©,,(s) is given, with
V' =0, by (Problem 6-1)
Om(s) —(Ls+R)/r

7s)  5[(Ls+ B)(Jms + Bu) + KKl (6.12)

Notice that the magnitude of this latter transfer function, and hence the
effect of the load torque on the motor angle, is reduced by the gear reduction
r.

Frequently it is assumed that the “electrical time constant” L/R is much
smaller than the “mechanical time constant” Jm/Bm. This is a reasonable
assumption for many electro-mechanical systems and leads to a reduced
order model of the actuator dynamics. If we divide numerator and de-
nominator of Equations (6.11) and (6.12) by R and neglect the electrical
time constant by setting L/R equal to zero, the transfer functions in Equa-
tions (6.11) and (6.12) become, respectively, (Problem 6-2)

Omls) KR
V(s)  $(Jms+ Bm+ KyKm/R)

(6.13)
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and

Om(s) ~1/r
Tg(s) B s(Jm(s) + B+ Kme/R)

In the time domain Equations {6.13) and (6.14) represent, by superposition,
the second order differential equation

Jrnbis(t) + (B + Koo/ R)Br(t) = (Kn/R)V (t) — 7e(t)/r (6.15)
Henceforth, we will drop the subscripts and write Eqﬁation (6.15) as
JO(t)+ BO(t) = u(t)-d(t) (6.16)

(6.14)

where B = Br + Ky K/ R represents the effective damping, u = (K, /R)V
is the control input, and d = 74(t)/r represents a disturbance input. The
block diagram corresponding to the reduced order system (6.16) is shown in
Figure 6.7.

D

U +J4- 1 1 Lo
— T B s

Figure 6.7: Block diagram of the simplified, open-loop system. The dis-
turbance D represents all of the nonlinearities and coupling from the other
links.

6.3 SET-POINT TRACKING

In this section we discuss the problem of set-point tracking. The set-point
tracking problem is the problem of tracking a constant or step reference
command #? and arises in point-to-point motion. We first consider the
simplest types of compensators, so-called PD and PID compensators.

6.3.1 PD Compensator

Using a PD compensator, the control input U(s) is given in the Laplace
domain as

U(s) = (Kp+Kps)(©%s)—6(s)) (6.17)

where Kp, Kp are the proportional and derivative gains, respectively. The
resulting closed-loop block diagram is shown in Figure 6.8.

A e s e s
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D
e 4 Kot Kos +,L- 1 =)
- & - hos Js* + Bs

Figure 6.8: The system with PD control. Kp and K D are the proportional
and derivative gains and 69 is the desired joint angle to be tracked.

The resulting closed-loop system is given by

b = %Gd(s)—ﬁ‘i’(s) (6.18)

where {)(s) is the closed-loop characteristic polynomial
Qs) = Js?+(B+Kp)s+Kp (6.19)

The closed-loop system will be stable for all positive values of K p and Kp
and bounded disturbances, and the tracking error is given by

E(s) = Gdgs) —0(s) (6.0)
_ Js*+Bspd 1 :
= 0 S) e (5‘)+ WS)D(S}
For a step reference input
Qd
84s) = . (6.21)
and a constant disturbance
D

it follows directly from the final value theorem that the steady state error
€gs satisfies
ess = lim sE(s) = g 6.23
55 — 33’[1]3 8)= K—P ( : )
Since the magnitude D of the disturbance is proportional to the gear re-
duction 1/r, we see that the steady state error is smaller for larger gear
reduction and can be made arbitrarily small by making the position gain
Kp large, which is to be expected since the system is type 1.



ERRE Gl o e S e e S

212 CHAPTER 6. INDEPENDENT JOINT CONTROL

For the PD compensator given by Equation (6.17) the closed-loop system
is second order and hence the step response is determined by the closed-loop
natural frequency w and damping ratio . Given a desired value for these
quantities, the gains Kp and Kp can be found from the expression

&+ EJ-FJK—D)s + # = 8+ 2ws +u? (6.24)
as
Kp=w"J, Kp=2w]-B (6.25)

It is customary in robotics applications to take the damping ratio ¢ =1
so that the response is critically damped. This produces the fastest non-
oscillatory response. In this context w determines the speed of response.

Example 6.1

d
0 +
\J

D
+,L+ 1 e
Brt Bps 0 s(s+1)

=

Figure 6.9: Second order system of Example 6.1 with PD Compensator.

Consider the second order system of Figure 6.9 with a PD Compensator.
The closed-loop characteristic polynomial is easily computed as

p(s) = s*+(1+Kp)s+Kp (6.26)

Suppose 0% = 10 and there is no disturbance (d = 0). With ¢ = 1, the
required PD gains for various values of w are shown in Table 6.1. The

corresponding step responses are shown in Figure 6.10.
o

Example 6.2

Now, suppose that there is a constant disturbance d = 40 acting on the
system. The response of the system with the PD gains of Table 6.1 are shoun
in Figure 6.11. We see that the steady state error due to the disturbance is
smaller for large gains as expected.
¢
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Table 6.1: Proportional and derivative gains for the system of Figure 6.9 for
various values of natural frequency w and damping ratio (=1.

Natural Proportional | Derivative
Frequency (w) | Gain Kp Gain Kp
4 16 7
8 64 15
12 144 23
12
n=12
é i w=8§
i
; w=4
9 4
2
0 ; " ;
] 0.5 1 15 2
Time (sec)

Figure 6.10: Critically damped second order step responses. The rise time
decreases for increasing values of w.

6.3.2 PID Compensator -

In order to reject a constant disturbance using PD control, we have seen
from Equation (6.23) that large gains may be required. By using integral
control we can achieve zero steady state error while keeping the gains small.
Thus, let us add an integral term K/s to the above PD compensator. This
leads to the so-called PID control law, as shown in Figure 6.12. The system
is now type 2 and the PID control achieves exact steady tracking of step
inputs while rejecting step disturbances, provided of course that the closed-
loop system is stable.
With the PID compensator

K
C(s) = Kp+Kps+ “f (6.27)
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12

Step Response

0 0.5 1 15 2
Time (sec)

Figure 6.11: Second order system response with PD control and disturbance
added. The steady state error decreases for increasing w.

d
0 +m
T

d
1
Kp+Kps+ K L 3dy

1
Js?4+Bs

Figure 6.12: Closed-loop systemn with PID control. The integrator added to
the compensator increases the system order from two to three and increases
the system type number from 1 to 2.

the closed-loop system is now the third order system

(Kps? + Kps + Ky) i T8 6.98
O(s) () 6%(s) Qz(S)D(s) (6.28)

where
U = J+(B+Kp)s?+ Kps+K; (6.29)

Applying the Routh-Hurwitz criterion to this polynomial, it follows that the
closed-loop system is stable if the gains are positive, and in addition,

(B+Kp)Kp

5 (6.30)

K
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Example 6.3
12
®w=8
10 / With Integral Control
! \
w=§

Without Integral Control

Step Response
o

=

0 0.5 1 L5 2 15 3
Time (sec)

Figure 6.13: Response with integral control action showing that the steady
state error to a constant disturbance has been removed.

To the previous system we have added a disturbance and an integral con-
trol term in the compensator. The step responses are shown in Figure 6.13.
We see that the steady state error due to the disturbance is removed.

0

PID control is, by far, the most commeon type of control used in industry
due to its simplicity. The main problem in implementing PID control is
in the “tuning,” that is, in the choice of the proportional, derivative, and
integral gains. As we see from the inequality (6.30) the magnitude of the
integral gain K is limited by the stability constraint. Therefore one common
design rule-of-thumb is to first set K 1 =0 and design the proportional and
derivative gains, Kp and Kp, to achieve the desired transient behavior (rise
time, settling time, and so forth) and then to choose K within the limits
imposed by (6.30) to remove the steady state error.

6.3.3 The Effect of Saturation and Flexibility

In theory, an arbitrarily fast response and arbitrarily small steady state error
to a constant disturbance could be achieved by simply increasing the gains
in the PD or PID compensator. In practice, however, there is a maximum
speed of response achievable from the system. T'wo major factors, heretofore
neglected, limit the achievable performance of the system. The first factor,
saturation, is due to limits on the maximum torque (or current) input.
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Many manipulators, in fact, incorporate current limiters in the servo-system
to prevent damage that might result from overdrawing current. The second
effect is flexibility in the motor shaft and/or drive train.

Example 6.4
d
d mu.z_t — +’L+ i 1 f
7 +() Kp+ Kps+ %“ -l- i T s(s+1)
T min

Figure 6.14: Second order system with input saturation limiting the mag-
nitude of the input signal. Increasing the magnitude of the compensator
output signal beyond the saturation limit will not increase the input to the
plant.

Consider the block diagram of Figure 6.14, where the saturation function
represents the mazimum allowable input. With PD control and saturation
the response is shown in Figure 6.15.

12

10

¥

g

& " KP=64

g6 KD=15

B = Ki=35

,% 4 Disturbance = 40
Max =50
Min = -50

=

0 0..5 1 15 2 25 3
Time (sec)

Figure 6.15: Response of the second order system with saturation, distur-
bance, and PID control. The effect of the saturation is seen in the much
slower rise time.

¢
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The second effect to consider is the joint flexibility. Let k. be the effec-
tive stiffness at the joint. The joint resonant frequency is then w, = /k,/J.
It is common engineering practice to limit w in Equation (6.25) to no more
than half of w, to avoid excitation of the joint resonance. We will discuss
the effects of the joint flexibility in more detail in Section 6.5. These ex-
amples clearly show the limitations of PD control when additional effects
such as input saturation, disturbances, and unmodeled dynamics must be
considered.

6.4 FEEDFORWARD CONTROL

The analysis in the previous section was carried out under the assumption
that the reference signal and disturbance are constant and is not valid for
tracking more general time varying trajectories such as a cubic polynomial
trajectory of the type generated in Chapter 5. In this section we introduce
the notion of feedforward control as a method to track time varying
trajectories.

Suppose that #%(t) is an arbitrary joint space reference trajectory and
consider the block diagram of Figure 6.16, where G (s) represents the forward
transfer function of a given system and H (s) is the compensator transfer
function.

et | +

el

o H(s) [ 6(s) |2

Figure 6.16: Feedforward control scheme. F(s) is the feedforward transfer
function which has the reference signal ©¢ as input. The output of the
feedforward block is superimposed on the output of the compensator H(s).

A feedforward control scheme consists of adding a feedforward path with
transfer function F(s) as shown. Let each of the three transfer functions be
represented as ratios of polynomials

G(s) = %,H(s) = %,F(s) - 26) (6.31)

We assume that G(s) is strictly proper and H (s) is proper. Simple block
diagram manipulation shows that the closed-loop transfer function T(s) =

vt e
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% is given by (Problem 6-8)

a(s)(e(5)s) + a(5)d(s) -
(o) p(5)d() + 4(s)e(s)

The closed-loop characteristic polynomial is b(s)(p(s)d(s) + q(s)c(s)).
Therefore, for stability of the closed-loop system, we require that the com-
pensator H(s) and the feedforward transfer function F{(s) be chosen so that
the polynomials p(s)d(s) + q(s)c(s) and b(s) are Hurwitz. This says that,
in addition to stability of the closed-loop system, the feedforward transfer
function F(s) must itself be stable.

If we choose the feedforward transfer function F(s) equal to 1/G(s), the
inverse of the forward plant, that is, a(s) = p(s) and b(s) = g(s), then the
closed-loop system becomes

q(s)(p(s)d(s) + g(s)c(s))Y (s) = a(s)(p(s)d(s) + a(s)c(s))R(s) ~ (6.33)
or, in terms of the tracking error E(s) = R(s) — Y (s),

9(s)(p(s)d(s) + q(s)c(s))E(s) = 0 (6.34)

T(s) =

Thus, assuming stability, the output 8(t) will track any reference trajec-
tory 6%(t). Note that we can only choose F (s) in this manner provided that
the numerator polynomial g(s) of the forward plant is Hurwitz, that is, as
long as all zeros of the forward plant are in the left half plane. Such systems
are called minimum phase. . .

If there is a disturbance D(s) entering the system as shown in Fig-
ure 6.17, then it is easily shown (Problem 6-9) that the tracking error E(s)
is given by

B q(s)d(s) 35
B = o) + a2 I

Fs) }— DG
O L tgy T H) +5Lf ¢(s) 7

Figure 6.17: Feedforward control with disturbance D(s).
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We have thus shown that, in the absence of disturbances, the closed-loop
system will track any desired trajectory 69(t) provided that the closed-loop
system is stable. The steady state error is thus due only to the disturbance.

Let us apply this idea to the robot model of Section 6.3. Suppose that
#%(t) is an arbitrary trajectory that we wish the system to track. In this
case we have G(s) = 1/(Js® + Bs) together with a PD compensator H(s) =
Kp + Kps.

We see that the plant transfer function G(s) has no finite zeros and hence
is minimum phase. Thus, we can choose the feedforward transfer F(s) as
F(s) = Js* + Bs. The resulting system is shown in Figure 6.18.

d

Figure 6.18: Feedforward compensator for the second order system of Sec-
tion 6.3.

Note that 1/G(s) is not a proper rational function, However, since the
derivatives of the reference trajectory 69(t) are known and precomputed,
the implementation of the above scheme does not require differentiation of
an actual signal. It is easy to see from Equation (6.35) that the steady
state error to a step disturbance is now given by the same expression as in
Equation (6.23) independent of the reference trajectory. As before, a PID
compensator would result in zero steady state error to a step disturbance.
In the time domain the control law of Figure 6.18 can be written as

V(t) = J8%+ B+ Kp(6¢ - 6) + Kp(p? - 6) (6.36)
= f(t)+ Kpé(t) + Kpe(t) '
where f(t) is the feedforward signal
ft) = Jé*+ Bé¢ (6.37)

and e(t) is the tracking error §4(t) - B(t). Since the forward plant equation
is

JO+B = V(t)-rd(t)
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the closed-loop error e(t) = 8(t) — 6%(t) satisfies the second order differential
equation

Jé+(B+Kp)e+ Kpe(t) = —rd(t) (6.38)

We note from Equation (6.38) that the characteristic polynomial of the
closed-loop system is identical to Equation (6.19). However, the system
(6.38) is now written in terms of the tracking error e(t). Therefore, assum-
ing that the closed-loop system is stable, the tracking error will approach
zero asymptotically for any desired joint space trajectory in the absence of
disturbances, that is, if d = 0.

6.5 DRIVE TRAIN DYNAMICS

In this section we discuss in more detail the problem of joint flexibility.
For many manipulators, particularly those using harmonic drives for torque
transmission, the joint flexibility is significant. In addition to torsional flex-
ibility in the gears, joint flexibility is caused by effects such as shaft windup,
bearing deformation, and compressibility of the hydraulic fluid in hydraulic
robots.

The Harmonic Drive

Harmonic drives are a type of gear mechanism that are very popular for use
in robots due to their low backlash, high torque transmission, and compact
size.

Figure 6.19: The harmonic drive. The rotation of the elliptical wave gen-
erator meshes the teeth of the flexspline and circular spline resulting in
low backlash and high torque transmission. (Courtesy of of HD Systems,
www.hdsi.net.)
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A typical harmonic drive is shown in Figure 6.19 and consists of a rigid
circular spline, a flexible flexspline, and an elliptical wave generator.
The wave generator is attached to the actuator and hence is turned at high
speed by the motor. The circular spline is attached to the load. As the wave
generator rotates it deforms the flexspline causing a number of teeth of the
flexspline to mesh with the teeth of the circular spline. The effective gear
ratio is determined by the difference in the number of teeth of the flexspline
and circular spline.

The low backlash and high torque throughput of the harmonic drive
results from the relative large number of teeth that are meshed at any given
time. However, the principle of the harmonic drive relies on the flexibility
of the flexspline. This flexibility is the limiting factor to the achievable
performance in many cases.

Figure 6.20: Idealized model to represent joint flexibility. The stiffness
constant k represents the effective torsional stiffness of the harmonic drive.

Consider the idealized situation of Figure 6.20 consisting of an actuator
connected to a load through a torsional spring representing the joint flexi-
bility. For simplicity we take the motor torque u, rather than the armature
voltage, as input. The equations of motion are

Jebe + Bibe + k(0 0z) = 0 (6.39)
JiBm + B — k(O —6n) = u (6.40)

where Jy, J;,, are the load and motor inertias, By and B,, are the load and
motor damping constants, and 4 is the input torque applied to the motor
shaft. The joint stiffness constant k represents the torsional stiffness of the
harmonic drive gears. In the Laplace domain we can write the above system
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as
pg(s)eg(s) = kem(s) (6.41)
Pm(8)Om(s) = kBq(s)+Ul(s) (6.42)
where
pe(s) = Jes+Bis+k (6.43)
Pm(s) = Jns*+Bns+k -+ (6.44)
kI
1 o _k_ -
¢ e g ] @ d
m

Figure 6.21: Block diagram for the system (6.41) and (6.42).

This system is fepresented by the block diagram of Figure 6.21. The
output to be controlled is, of course, the load angle §;. The open-loop
transfer function between U and 6y is given by

eg(s) k

= (6.45)
U(s) Pe(8)pm(s) — k2
The open-loop characteristic polynomial pgp,, — k2 is
JeIms*+(JeBrm+Jm Br)s* +((J+Jm)+ BeBrm)s?+k(By+Bm)s (6.46)

We can obtain some insight into the behavior of the system by first neglecting
the damping coefficients By and B,,. In this case the open-loop characteristic
polynomial would be

JeIms® + k(Jy + Jm)s® (6.47)

which has a double pole at the origin and a pair of complex conjugate poles
on the jw-axis at 5§ = +jw where w? = k (Ji! + ﬁ) Note that the frequency
of the imaginary poles increases with increasing joint stiffness k.

In practice the stiffness of the harmonic drive is large and the damping
is small, which results in a difficult system to control. Assuming that the
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open-loop damping constants B, and B,, are small, the open-loop poles of
the system (6.41) and (6.42) will be in the left half plane near the poles of
the undamped system.

Suppose we implement a PD compensator C(s) = Kp + Kps. At this
point the analysis depends on whether the position/velocity sensors are
placed on the motor shaft or on the load shaft, that is, whether the PD
compensator is a function of the motor variables or the load variables. If
the motor variables are measured then the closed-loop system is given by
the block diagram of Figure 6.22.

k e
+
)
1 m_k ‘
r i K,+ Kps Pm,(S) e > 9[

Figure 6.22: PD control with motor angle feedback.

In order to perform a root locus we set Kp + Kps = K p(s + a) with
a = Kp/Kp. The root locus for the closed-loop system in terms of K is
shown in Figure 6.23.

: -

) |
_3L
g

=5

-

=)
x

Figure 6.23: Root locus for the system of Figure 6.22.

We see that the system is stable for all values of the gain K'p but that the
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presence of the open-loop zeros near the jw axis may result in undesirable
oscillations. Also the poor relative stability means that disturbances and
other unmodeled dynamics could render the system unstable.

If we measure the load angle f; instead, the system with PD control is
represented by the block diagram of Figure 6.24. The corresponding root
locus is shown in Figure 6.25.

ke .
+
9
1 m k. .0
Poe(D—w Kyt Kos () 26 ‘

Figure 6.24: PD control with load angle feedback.

% 4 2 0 2
Figure 6.25: Root locus for the system of Figure 6.24.

In this case the system is unstable for large Kp. The ecritical value of
Kp, that is, the value of K for which the system becomes unstable, can be
found from the Routh-Hurwitz criterion. The best that one can do in this
case is to limit the gain Kp so that the closed-loop poles remain within the
left half plane with a reasonable stability margin.

Figure 6.26 (respectively, Figure 6.27) shows the response of the system
with motor (respectively, load) feedback using the PD controller K p(s+a).
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Figure 6.26: Step response — PD control with motor angle feedback. The
motor shaft angle, collocated with the motor torque, shows the desired re-
sponse without overshoot. The motion of the motor shaft excites an oscil-
lation in the load angle, which is effectively outside the feedback loop.

6.6 STATE SPACE DESIGN

In this section we consider the application of state space methods for the
control of the flexible joint system above.? The previous analysis has shown
that PD control is inadequate for robot control unless the joint flexibility
is negligible or unless one is content with relatively slow response of the
manipulator. Not only does the joint flexibility limit the magnitude of the
gain for stability reasons, it also introduces lightly damped poles into the
closed-loop system that may result in oscillation of the transient TESpONSeE.
We can write the system given by Equations (6.39) and (6.40) in state space
by choosing state variables

I = eg Ig= Glg
; A8
Ty = 9m 4= Hm (6 )

This section assumes more knowledge of control theory than previous sections.
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Figure 6.27: Step response — PD control with load angle feedback. The
load angle is shown for two different sets of gain parameters. As we know
that the system is unstable for large gain, we must effectively ”detune” the
system for stability, which results in a slower than desired response.

In terms of these state variables the system given by Equations (6.39) and
(6.40) becomes

£ = T3
£ £ T Bfa: + b T
Ty = ——I;— — -
2 % 1 7, 2 7 3 -
i‘3 = I4 ’ a
.k By B i o 1
Ty = mel o Jm-'ffi X 3 Jmu
which, in matrix form, can be written as
& = Az+bu (6.50)
where
0 1 0 0] 5
k By k 0 o
_ o o h =
A= 0 0 0 e b= (1) (6.51)
k k  Bn .
i E 0 — E I | Jm
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If we choose an output y(t), say the measured load angle By(t), then we have
an output equation

y = m=cz (6.52)
where
' = [1,0,0,0] (6.53)

The relationship between the state space form given by Equations (6.50)—
(6.53) and the transfer function (6.45) is found by taking Laplace transforms
of Equations (6.50)~(6.52) with initial conditions set to zero. This yields

Buls) _Y(s) -1
G = it M, -A)7b .54
O = Fg =9 =614 (654
where [ is the n x n identity matrix. The poles of G(s) are eigenvalues of
the matrix A. For the system (6.50)(6.53), the converse holds as well, that
is, all of the eigenvalues of A are poles of G(s). This is always true if the
state space system is defined using a minimal number of state variables.

6.6.1 State Feedback Control

Given a linear system in state space form, such as Equation {6.50), a linear
state feedback control law is an input u of the form

4
ut)=—kTz+r=~ Z kizi +r (6.55)

1=1

where k; are constant gains to be determined and r i§ a reference input. In
other words, the control is determined as a linear combination of the system
states which, in this case, are the motor and load positions and velocities.
Compare this to the previous PD/PID control, which was a function either
of the motor position and velocity or of the load position and velocity, but
not both. If we substitute the control law given by Equation (6.55) into
Equation (6.50) we obtain

& = (A-bkDz+br (6.56)

Thus, we see that the linear feedback control has the effect of changing the
poles of the system from those determined by A to those determined by
A—bkT,

In the previous PD design the closed-loop pole locations were restricted
to lie on the root locus shown in Figure 6.23 or 6.25. Since there are more
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free parameters in Equation (6.55) than in the PD controller, it may be
possible to achieve a much larger range of closed-loop poles. This turns out
to be the case if the system given by Equation (6.50) satisfies a property
known as controllability.

Definition 6.1 A linear system is said to be completely controllable,
or controllable for short, if for each initial state z(t;) and each final state
(ty) there is a control input t — u(t) that transfers the system from z(to)
at time ty to z(ts) at time ty. '

The above definition says, in essence, that if a system is controllable we
can achieve any state whatsoever in finite time starting from an arbitrary
initial state. To check whether a system is controllable we have the following

simple test.

Lemma 6.1 A linear system of the form (6.50) is controllable if and only
if

det[b, Ab, A%,..., A" # 0 (6.57)

The n x n matrix [b, Ab, ..., A"~1b] is called the controllability matrix for
the linear system defined by the pair (A,b). The fundamental importance
of controllability of a linear system is shown by the following

Theorem 1 Let afz) = " + ans™ 1+ + @25 +ay be an arbitrary poly-
nomial of degree n with real coefficients. Then there exists a state feedback
control law of the form Equation (6.55) such that

det(sT — A+bkT) = a(s) (6.58)
if and only if the system (6.50) is controllable.

This fundamental result says that, for a controllable linear system, we
may achieve arbitrary® closed-loop poles using state feedback. Returning
to the specific fourth-order system given by Equation (6.51), we see that the
system is indeed controllable since

¥

7R (6.59)

det[b, Ab, A%, A% =

*Since the coefficients of the polynomial a(s) are real, the only restriction on the pole
locations is that they occur in complex conjugate pairs,
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which is never zero since k > 0. Thus, we can achieve any desired set of
closed-loop poles that we wish, which is much more than was possible using
the previous PD compensator.

. There are many algorithms that can be used to determine the feedback
gains in Equation (6.55) to achieve a desired set of closed-loop poles. This is
known as the pole assignment problem. In this case most of the difficulty
lies in choosing an appropriate set of closed-loop poles based on the desired
performance, the limits on the available torque, etc. We would like to achieve
a fast response from the system without requiring too much torque from the
motor. One way to design the feedback gains is through an optimization
procedure. This takes us into the realm of optimal control theory. For

example, we may choose as our goal the minimization of the performance
criterion

J = /0 m{mT(t)Q:c(t)+Ru2(t)}dt (6.60)

where @ is a given symmetric, positive definite matrix and R > 0.

Choosing a control law to minimize Equation (6.60) frees us from having
to decide beforehand what the closed-loop poles should be as they are auto-
matically dictated by the weighting matrices Q and R in Equation (6.60). It
is shown in optimal control texts that the optimum linear control law that
minimizes Equation (6.60) is given as

v = —klz (6.61)

where

1
kt = = bTP
= (6.62)

and P is the (unique) symmetric, positive definite n x n matrix satisfying
the so-called matrix algebraic Riccati equation

1
ATP+PA- EPbb’FP +Q=0 (6.63)

The control law (6.61) is referred to as a linear quadratic (LQ) optimal

control, since the performance index is quadratic and the control system is
linear. ‘
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6.6.2 Observers

The above result that any set of closed-loop poles may be achieved for a
controllable linear system is remarkable. In effect, this result says that we
may achieve any closed-loop response that we desire. However, to achieve it
we have had to pay a price, namely, that the control law must be a function
of all of the states. In order to build a compensator that requires only
the measured output, in this case fy, we need to introduce the concept of
an observer. An observer is a state estimator. It is'a dynamical system
(constructed in software) that attempts to estimate the full state 2(t) using
only the system model, Equations (6.50)-6.53), and the measured output
y(t). A complete discussion of observers is beyond the scope of the present
text. We give here only a brief introduction to the main idea of observers
for linear systems.

Assuming that we know the parameters of the system (6.50) we could
simulate the response of the system in software and recover the value of the
state z(¢) at time ¢ from the simulation and we could use this simulated or
estimated state, call it Z(t), in place of the true state in Equation (6.61).
However, since the true initial condition z(¢o) for Equation (6.50) will gen-
erally be unknown, this idea is not feasible. However the idea of using the
model] of the system given by Equation (6.50) is a good starting point to con-
struct a state estimator in software. Let us, therefore, consider an estimate
#(t) satisfying the system

i = Ab+butl{y—cTE) (6.64)

Equation (6.64) is called an observer for Equation (6.50) and represents
a model of the system (6.50) with an additional term £(y — ¢T%). This
additional term is a measure of the error between the output y(t) = ¢’ z(t)
of the plant and the estimate of the output, cT#(t). Since we know the
coefficient matrices in Equation (6.64) and can measure y directly, we can
solve the above system for £(t) starting from any initial condition, and use
this & in place of the true state z in the feedback law (6.61). The additional
term £ in Equation (6.64) is to be designed so that £ — z as £ — oo,
that is, so that the estimated state converges to the true (unknown) state,
independent of the initial condition z(tg). Let us see how this is done.

Define e(t) = z—7 as the estimation error. Combining Equations (6.50)
and (6.64), since y = ¢’ 7, we see that the estimation error satisfies the sys-
tem

¢ = (A—tcDe (6.65)

Ao
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From Equation (6.65) we see that the dynamics of the estimation error are
determined by the eigenvalues of A—£cT. Since £is a design quantity we can
attempt to choose it so that e(t) — 0 as t — oo, in which case the estimate
& converges to the true state z. In order to do this we obviously want to
choose £ so that the eigenvalues of A — 4T are in the left half plane. This is
similar to the pole assignment problem considered previously. In fact it is
dual, in a mathematical sense, to the pole assignment problem. It turns out
that the eigenvalues of A — £cT can be assigned arbitrarily if and only if the
pair (A, ) satisfies the property known as observability. Observability is
defined by the following:

Definition 6.2 A linear system is completely observable, or observ- -

able for short, if every initial state z(to) can be ezactly determined from
measurements of the output y(t) and the input u(t) in a finite time interval
to <t <tj.

To check whether a system is observable we have the following
Theorem 2 The pair (A,c) is observable if and only if

det c,ATc,...,ATn_lc} #+ 0 (6.66)

The n x n matrix [, TAT, ... T ATﬂ_I] is called the observability
matrix for the pair (4,cT). In the system given by Equations (6.50)-(6.53)
above we have that

2
det [c, ATe, ATzc, A% % (6.67)
Jt
and hence the system is observable.

If we use the estimated state % in place of the true state, we have the
system (with r = 0)

8
I
>
=]
+
g

= kT3

It is easy to show from the above that the state z and estimation error e
jointly satisfy the equation

- )
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and therefore the set of closed-loop poles of the system will consist of the
union of the eigenvalues of A — £c” and the eigenvalues of 4 — bkT.

This result is known as the separation principle. As the name sug-
gests, the separation principle allows us to separate the design of the state
feedback control law (6.61) from the design of the state estimator (6.64).
A typical procedure is to place the observer poles to the left of the desired
pole locations of A — bk”. This results in rapid convergence of the estimated
state to the true state, after which the response of the system is nearly the
same as if the true state were being used in Equation (6.61).

The result that the closed-loop poles of the system may be placed arbi-
trarily, under the assumption of controllability and observability, is a power-
ful theoretical result. There are always practical considerations to be taken
into account, however. The most serious factor to be considered in observer
design is noise in the measurement of the output. To place the poles of
the observer very far to the left of the imaginary axis in the complex plane
requires that the observer gains be large. Large gains can amplify noise
in the output measurement and result in poor overall performance. Large
gains in the state feedback control law (6.61) can result in saturation of the
input, again resulting in poor performance. Also uncertainties in the sys-
tem parameters, or nonlinearities such as a nonlinear spring characteristic
and backlash, will reduce the achievable performance from the above design.
Therefore, the above ideas are intended only to illustrate what may be pos-
sible by using more advanced concepts from control theory. In Chapter 8 we
will develop more advanced, nonlinear control methods to control systems
with uncertainties in the parameters.

6.7 SUMMARY

This chapter is a basic introduction to robot control treating each joint of the
manipulator as an independent single-input/single-output (SISO) system.
In this approach one is primarily concerned with the actuator and drive-train
dynamics. We first derived a reduced-order linear model for the dynamics of
a permanent-magnet DC-motor and showed that the transfer function from
the motor voltage V() to the motor shaft angle ©,,(s) can be expressed as

Om(s) Km/R

V(s)  5(Jms+ B+ KoKm/R)
while the transfer function from a load disturbance D(s) to ©.,(s) is

O (s) . 4

D(s) 5(Jm(s) + By + KK/ R)
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We then considered the set-point tracking problem using PD and PID
compensators. A PD compensator is of the form

C(S) = (Kp 4 KDS)
which results in a closed-loop system

o(s) = “‘f}’;%led(s) - a0

where
Ns) = Js*+(B+Kp)s+Kp
is the closed-loop characteristic polynomial whose roots determine the closed-

loop poles and, hence, the performance of the system.
A PID compensator is of the form

Cls) = Kp+Kps+ %

The closed-loop system is now the third order system

(Kps®+ Kps+ Ki) 4 TS
B(s) = 0%s) — D
where
Q = Js*+(B+Kp)s*+ Kps+K; (6.69)

We discussed methods to design the PD and PID gains for a desired transient
and steady state response. We then discussed the effects of saturation and
flexibility on the performance of the system. Both of these effects limit the
achievable performance of the closed-loop system.

We next discussed the use of feedforward control as a method to track
time varying reference trajectories such as the cubic polynomial trajectories
that we derived in Chapter 5. A feedforward control scheme consists of
adding a feedforward path from the reference signal to the control signal
with transfer function F(s). We showed that choosing F(s) as the inverse of
the forward plant allows tracking of arbitrary reference trajectories provided
the forward plant is minimum phase.

Next, we considered the effect of drive train dynamics in more detail. We
derived a simple model & single link system that included the Jjoint elasticity
and showed the limitations of PD control for this case. We then introduced
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state space control methods, which are much more powerful than the simple
PD and PID control methods.

We introduced the fundamental notions of controllability and observ-
ability and showed that, if the state space model is both controllable and
observable, we could design a linear control law to achieve any set of desired
closed-loop poles. Specifically, given the linear system

T = Az+hu

Yy = 'z
then the state feedback control law u = —kT# where # is the estimate of the
state z computed from a linear observer

& = Ai+butlly—cTi)

results in the closed-loop system (in terms of the state z and estimation

error e =7 — )
] [A-bT BT [z
HE il

The set of closed-loop poles of the system will therefore consist of the union
of the eigenvalues of A — £cT and the eigenvalues of A — bkT, a result known
as the separation principle.

We also introduced the notion of linear quadratic optimal control and
showed that the control

t = —kfz

where

1
ke = —bP
R

and P is the (unique) symmetric, positive definite n x n matrix satisfying
the so-called matrix algebraic Riccati equation

ATP+PA- inbTP+ Q=0
= g

not only stabilizes the system but minimizes the quadratic performance
measure

J= f w{a:T(t)Q:n(t) + Rul(t) }dt
0
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PROBLEMS

6-1 Using block diagram reduction techniques derive the transfer functions
given by Equations (6.11) and (6.12).

6-2 Derive the transfer functions for the reduced order model given by
Equations (6.13) and (6.14).

6-3 Derive Equations (6.18) and (6.19).

6-4 Verify the expression given by Equation (6.20) for the tracking error for
the system in Figure 6.8. State the Final Value Theorem and use it to
show that the steady state error e, is indeed given by Equation (6.23).

6-5 Derive Equations (6.28) and (6.29).
6-6 Derive the inequality (6.30) using the Routh-Hurwitz criterion.

6-7 For the system of Figure 6.14 investigate the effect of saturation with
various values of the PID gains and disturbance magnitude.

6-8 Verify Equation (6.32)
6-9 Verify Equation (6.35)
6-10 Derive Equations (6.45), (6.46), and (6.47).

6-11 Given the state space model defined by Equation (6.50) show that the
transfer function

is identical to Equation (6.45).

6-12 Search the control literature (for example, [58]) and find two or more
algorithms for the pole assignment problem for linear systems.

6-13 Derive Equations (6.59) and (6.67).

6-14 Search the control literature to find out what is meant by integrator
windup. Find out what is meant by anti-windup (or anti-reset
windup). Simulate a PID control with anti-reset windup for the system
of Figure 6.14. Compare the response with and without anti-reset
windup.
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6-15 Include the dynamics of a permanent magnet DC-motor for the system
given by Equations (6.39) and (6.40). What can you say now about
controllability and observability of the system?

6-16 Choose appropriate state variables and write the system Equations (6.9)
and (6.10) in state space form. What is the dimension of the state
space?

6-17 Suppose in the flexible joint system represented,by Equations (6.39)
and (6.40) the following parameters are given

Je=10 B;=1 k=100
J =2 Brpy=105

(a) Sketch the open-loop poles of the transfer functions given by Equa-
tion (6.45).

(b) Apply a PD compensator to the system (6.45). Sketch the root
locus for the system. Choose a reasonable location for the com-
pensator zero. Using the Routh criterion find the value of the
compensator gain when the root locus crosses the imaginary axis.

6-18 One of the problems encountered in space applications of robots is the
fact that the base of the robot cannot be anchored, that is, cannot be
fixed in an inertial coordinate frame. Consider the idealized situation
shown in Figure 6.28, consisting of an inertia J; connected to the rotor
of a motor whose stator is connected to an inertia Jo.

g TR

Figure 6.28: Coupled Inertias in Free Space.

For example, J; could represent the space shuttle robot arm and Js
the inertia of the shuttle itself. The simplified equations of motion are
thus

hip = 7
D = T

Write this system in state space form and show that it is uncontrol-
lable. Discuss the implications of this and suggest possible solutions.
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6-19 Given the linear second order system

2] = B 3]E][=]

find a linear state feedback control u = k11 + kazy so that the closed-
loop system has poles at s = —2,2.

6-20 Repeat the above if possible for the system

2'1 - -1 0 I1 3 0 s
$'2 - 0 2 I 1
Can the closed-loop poles be placed at —27
Can this system be stabilized? Explain.

The above system is said to be stabilizable, which is a weaker notion.
than controllability.

6-21 Repeat the above for the system

] _|+1 0 I 0
HEEHIRERE
6-22 Consider the block diagram of Figure 6.16. Suppose that G(s) =
1/(2s* + s) and suppose that it is desired to track a reference signal
0%(t) = sin(t) + cos(2t). If we further specify that the closed-loop
system should have a natural frequency less than 10 radians with a

damping ratio greater than 0.707, compute an appropriate compen-
sator C(s) and feedforward transfer function F(s).

NOTES AND REFERENCES

Although we treated only the dynamics of permanent-magnet DC motors,
the use of AC motors is increasing in robotics and other types of motion
control applications. AC motors do not require commutators and brushes
and so are inherently more maintenance free and reliable. However, they are
more difficult to control and require more sophisticated power electronics.
With recent advances in power electronics together with their decreasing
cost, AC motors may soon replace DC motors as the dominant actuation
method for robot manipulators, A reference that treats different types of
motors is [48].
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A good background text on linear control systems is [70]. For a text that
treats PID control in depth, consult [7].

The pole assignment theorem is due to Wonham [141]. The notion of
controllability and observability, introduced by Kalman in [59], arises in
several fundamental ways in addition to those discussed here. The interested
reader should consult various references on the Kalman filter, which is a
linear state estimator for systems whose output measurements are corrupted
by (stochastic, white) noise. The linear observer that we discuss here was
introduced by Luenberger [81] and is often referred to as the deterministic
Kalman filter. Luenberger’s main contribution in [81] was in the so-called
reduced-order observer, which allows one to reduce the dimension of the
observer. :

Linear quadratic optimal control, in its present form, was introduced by
Kalman in [59], where the importance of the Riccati equation was empha-
sized. The field of linear control theory is broad and there are many other
techniques available to design state-feedback and output-feedback control
laws in addition to the basic optimal control approach considered here. More
recent control system design methods include the H, approach [28] as well
as approaches based on fuzzy logic [101] and neural networks [77] and [44].

The problem of drive-train dynamics in robotics was first pointed out
by Good and Sweet, who studied the dynamics of the General Electric P-
50 robot (see [130]). For this and other early robots the limiting factors
to performance were current limiters that limited how much current could
be drawn by the motors and elasticity in the joints due to gear flexibility.
Both effects limit the maximum attainable safe speed at which the robot
can operate. This work stimulated considerable research into the control
of robots with input constraints (see [126]) and the control of robots with
flexible joints (see [122]).

Finally, virtually all robot control systems today are implemented digi-
tally. A treatment of digital control requires consideration of issues of sam-
pling, quantization, resolution, as well as computer architecture, real-time
programming and other issues that are not considered in this chapter. The
interested reader should consult, for example, [39] for these latter subjects.

Chapter 7

DYNAMICS

This chapter deals with the dynamics of robot manipulators. Whereas the
kinematic equations describe the motion of the robot without consideration
of the forces and torques producing the motion, the dynamic equations ex-
plicitly describe the relationship between force and motion. The equations
of motion are important to consider in the design of robots, in simulation
and animation of robot motion, and in the design of control algorithms.
We introduce the so-called Euler-Lagrange equations, which describe
the evolution of a mechanical system subject to holonomic constraints
(this term is defined later on). To motivate the Euler-Lagrange approach
we begin with a simple derivation of these equations from Newton’s second
law for a one-degree-of-freedom system. We then derive the Euler-Lagrange
equations from the principle of virtual work in the general case.

In order to determine the Euler-Lagrange equations in a specific situ-
ation, one has to form the Lagrangian of the system, which is the dif-
ference between the kinetic energy and the potential energy; we show
how to do this in several commonly encountered situations. We then derive
the dynamic equations of several example robotic manipulators, including a
two-link cartesian robot, a two-link planar robot, and a two-link robot with
remotely driven joints.

We also discuss several important properties of the Euler-Lagrange equa-
tions that can be exploited to design and analyze feedback control algo-
rithms. Among these are explicit bounds on the inertia matrix, linearity in
the inertia parameters, and the skew symmetry and passivity properties.

This chapter is concluded with a derivation of an alternate formulation
of the dynamical equations of a robot, known as the Newton-Euler for-
mulation, which is a recursive formulation of the dynamic equations that
is often used for numerical calculation.
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7.1 THE EULER-LAGRANGE EQUATIONS

In this section we derive a general set of differential equations that describe
the time evolution of mechanical systems subjected to holonomic constraints
when the constraint forces satisfy the principle of virtual work. These are
called the Euler-Lagrange equations of motion. Note that there are at
least two distinct ways of deriving these equations. The method presented
here is based on the method of virtual work, but it is also possible to derive
the same equations using Hamilton’s principle of least action.

7.1.1 Motivation

To motivate the subsequent derivation, we show first how the Euler-Lagrange
equations can be derived from Newton's second law for the one-degree-of-
freedom system shown in Figure 7.1.

y
1 f

x

Figure 7.1: A particle of mass m constrained to move vertically constitutes -
a one-degree-of-freedom system. The gravitational force mg acts downward -

and an external force f acts upward.
By Newton’s second law, the equation of motion of the particle is
mj = f-mg (7.1)

Notice that the left-hand side of Equation (7.1) can be written as

(7.2)

o d, da(1 _2) d oK
mij = — =

&™) = aag 3" ) = wag

where K = %myz is the kinetic energy. We use the partial derivative
notation in the above expression to be consistent with systems considered
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later when the kinetic energy will be a function of several variables. Likewise
we can express the gravitational force in Equation (7.1) as

mg = gi(mgy) =~ % (7.3)

where P = mgy is the potential energy due to gravity. If we define

L = K-P = %mg?‘ —mgy (7.4)
and note that
L K aL P

W W W By
then we can write Equation (7.1) as

doL oL
ddy oy
The function £, which is the difference of the kinetic and potential energy,
is called the Lagrangian of the system, and Equation (7.5) is called the
Euler-Lagrange Equation.
The general procedure that we discuss below is, of course, the reverse
of the above; namely, one first writes the kinetic and potential energies of a
system in terms of a set of so-called generalized coordinates (g, .. ., n),
where n is the number of degrees of freedom of the system and then computes
the equations of motion of the n-DOF system according to

= (75)

e | = Tk;k:l,...,n . (76)

where 73 is the (generalized) force associated with gx. In the above single
DOF example, the variable y serves as the generalized coordinate. Applica-
tion of the Euler-Lagrange equations leads to a set of coupled second-order
ordinary differential equations and provides a formulation of the dynamic
equations of motion equivalent to those derived using Newton's second law.
However, as we shall see, the Lagrangian approach is advantageous for com-
plex systems such as multi-link robots.

Example 7.1 Single-Link Manipulator
Consider the single-link robot arm shown in Figure 7.2, consisting of a
rigid link coupled through a gear train to a DC motor. Let 8; and 6., denote
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Mgl

Figure 7.2: Single-link robot. The motor shaft is coupled to the axis, of
rotation of the link through a gear train which amplifies the motor torque
and reduces the motor speed. :

the angles of the link and motor shaft, respectively. Then 6, = 78, where
7t 1 1s the gear ratio. The algebraic relation between the link and motor
shaft angles means that the system has only one degree of freedom and we
can therefore use as generalized coordinate either 0,, or b,.
In terms of 8, the kinetic energy of the system is given by
« K = %Jma,i + %Jeﬁf

1 7
- ﬁ(erm + Jp)62 (1.7)

where Ju, Jy are the rotational inertias of the motor and link, respectively.
The potential energy is given as

P = Mgl(l-cos#t;) (7.8)

where M is the total mass of the link and € is the distance from the joint
azis to the link center of mass. Defining J = r2J,, + Ji, the Lagrangian L
is given by

§ %Jéf-Mgm—ceseg) (7.9)

Substituting this expression into the Equation (7.6) withn = 1 and general-
wzed coordinate 6 yields the equation of motion

JO + Mgising, = 7 {7.10)

The generalized force 14 represents those external forces and torques that
are not derivable from a potential function. For this ezample, Ty consists of
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the input motor torque u = 7y, reflected to the link, and ( nonconservative)
damping torques By, and By, 6;. Reflecting the motor damping to the
link yields

¢ = ‘u-—Bég

where B =By, + By. Thercfore, the complete expression for the dynamics
of this system is

J0p + By + Mglsing, = u (7.11)

7.1.2 Holonomic Constraints and Virtual Work

Now, consider a system of k particles with corresponding position vectors
71,-..,Tk as shown in Figure 7.3.

Figure 7.3: An unconstrained system of k particles has 3k degrees of free-
dom. If the particles are constrained, the number of degrees of freedom is
reduced.

If these particles are free to move about without any restrictions, then
it is quite an easy matter to describe their motion, by noting that the mass
times acceleration of each particle equals the external force applied to it.
However, if the motion of the particles is constrained in some fashion, then
one must take into account not only the externally applied forces, but also
the so-called constraint forces, that is, the forces needed to make the
constraints hold. As a simple illustration of this, suppose the system consists
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of two particles joined by a massless rigid wire of length £. Then the two
coordinates r; and ry must satisfy the constraint

Iry=roll =€ or (ri—ro)T(ry —rg) = £2 (7.12)

If one applies some external forces to each particle, then the particles ex-
perience not only these external forces but also the force exerted by the
wire, which is along the direction r3 — ry and of appropriate magnitude.
Therefore, in order to analyze the motion of the two particles, we could
follow one of two options. We could compute, under each set of external
forces, what the corresponding constraint force must be in order that the
equation above continues to hold. Alternatively, we can search for a method
of analysis that does not require us to know the constraint force. Clearly,
the second alternative is preferable, since it is generally quite an involved
task to compute the constraint forces. This section is aimed at achieving
this latter objective.

First, it is necessary to introduce some terminology. A constraint on the
k coordinates ry,...,r is called holonomic if it is an equality constraint
of the form

gi(r1,...,m) =0, = Foa (7.13)

The constraint given in Equation (7.12) imposed by connecting two parti-
cles by a massless rigid wire is an example of a holonomic constraint. By
differentiating Equation (7.13) we have an expression of the form

L
Y 53% cdrj =0 (7.14)
=17
A constraint of the form
k
Y wjdrj=0 (7.15)
4=1

is called nonholonomic if it cannot be integrated to an equality constraint
of the form (7.13). It is interesting to note that, while the method of deriving
the equations of motion using the principle of virtual work remains valid
for nonholonomic systems, methods based on variational principles, such
as Hamilton’s principle, can no longer be applied to derive the equations
of motion. We will discuss systems subject to nonholonomic constraints in
Chapter 10.
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If a system is subjected to £ holonomic constraints, then one can think in
terms of the constrained system having £ fewer degrees of freedom than the
unconstrained system. In this case, it may be possible to express the coordi-
nates of the k particles in terms of n generalized coordinates R T
In other words, we assume that the coordinates of the various particles, sub-
Jected to the set of constraints given by Equation (7.13), can be expressed
in the form

ri=rilg e gn),  i=1,....k (7.16)

where q1,...,q, are all independent. In fact, the idea of generalized co-
ordinates can be used even when there are infinitely many particles. For
example, a physical rigid object such as a bar contains an infinity of parti-
cles; but since the distance between each pair of particles is fixed throughout
the motion of the bar, six coordinates are sufficient to specify completely
the coordinates of any particle in the bar. In particular, one could use three
position coordinates to specify the location of the center of mass of the bar,
and three Euler angles to specify the orientation of the body. Typically,
generalized coordinates are positions, angles, etc. In fact, in Chapter 3 we
chose to denote the joint variables by the symbols qQ,- -, 0n precisely be-
cause these joint variables form a set of generalized coordinates for an n-link
robot manipulator.

One can now speak of virtual displacements, which are any set of
infinitesimal displacements, éry,...,drg, that are consistent with the con-
straints. For example, consider once again the constraint (7.12) and suppose
r1, T2 are perturbed to ry + dry, 3 + drg, respectively. Then, in order that
the perturbed coordinates continue to satisfy the constraint, we must have

(TI +57"1 =T9— 5TQ)T(T1 + 67"1 —=F - 67‘2) = E:Z (717)

Now, let us expand the above product and take advantage of the fact that the
original coordinates 1, 3 satisfy the constraint given by Equation (7.12). If
we neglect quadratic terms in éry, dry we obtain after some algebra (Prob-
lem 7-1)

(ri—ro)T(6ry—6ra) = 0 (7.18)

Thus, any infinitesimal perturbations in the positions of the two particles
must satisfy the above equation in order that the perturbed positions con-
tinue to satisfy the constraint Equation (7.12). Any pair of infinitesimal
vectors dry,dry that satisfy Equation (7.18) constitutes a set of virtual dis-
placements for this problem. Figure 7.4 shows some representative virtual
displacements for a rigid bar.
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Figure 7.4: Examples of virtual displacements for a rigid bar. These in-
finitesimal motions do not change the distance between the endpoints and
are thus compatible with the assumption that the baris rigid.

Now, the reason for using generalized coordinates is to avoid dealing with
complicated relationships such as Equation (7.18) above. If Equa.tion (7.16)
holds, then one can see that the set of all virtual displacements is precisely

=\ Or; .
oy = Zé&féq}; t=1|'--sk (719)

j=1
where the virtual displacements dqy, ... ,8g, of the generalized coordinates
are unconstrained (that is what makes them generalized coordinates).
Next, we begin a discussion of constrained systems in equihbrium.. Sul?—
pose each particle is in equilibrium. Then the net force on each partmle'ls
zero, which in turn implies that the work done by each set of virtual dis-
placements is zero. Hence, the sum of the work done by any set of virtual
displacements is also zero; that is,

k
Y Flori = 0 (7.20)
i=1

where F'; is the total force on particle i. As mentioned earlier, the force F;
is the sum of two quantities, namely (i) the externally applied force f;, and
(ii) the constraint force fi. Now, suppose that the total work done-by the
constraint forces corresponding to any set of virtual displacements is zero,
that is,

k
Y #Ter = 0 (7.21)

i=1

This will be true whenever the constraint force between a pair of parti-
cles is directed along the radial vector connecting the two particles .(see
the discussion in the next paragraph). Substituting Equation (7.21) into
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Equation (7.20) results in

k

Y fTor = 0 (1.22)

i=1

The beauty of this equation is that it does not involve the unknown con-
straint forces, but only the known external forces. This equation expresses
the principle of virtual work, which can be stated in words as follows:
Principle of Virtual Work: The work done by external forces correspond-
ing to any set of virtual displacements is zero.

Note that the principle is not universally applicable; it requires that
Equation (7.21) hold, that is, that the constraint forces do no work. Thus,
if the principle of virtual work applies, one can analyze the dynamics of a
system without having to evaluate the constraint forces.

It is easy to verify that the principle of virtual work applies whenever the
constraint force between a pair of particles acts along the vector connecting
the position coordinates of the two particles. In particular, when the con-
straints are of the form (7.12), the principle applies. To see this, consider
once again a single constraint of the form (7.12). In this case, the constraint
force, if any, must be exerted by the rigid massless wire, and therefore must
be directed along the radial vector connecting the two particles. In other
words, the force exerted on the first particle by the wire must be of the form

f1 = ¢elri—r) (7.23)

for some constant ¢ (which could change as the particles move about). By
the law of action and reaction, the force exerted on the second particle by
the wire must be just the negative of the above, that is,

2 = —c(r—ry) : (7.24)

Now, the work done by the constraint forces corresponding to a set of virtual
displacements is

f3%or+ f5Trs = e(ry—ra)T(6ry — drg) (7.25)

But, Equation (7.18) shows that the above expression must be zero for
any set of virtual displacements. The same reasoning can be applied if
the system consists of several particles that are pairwise connected by rigid
massless wires of fixed lengths, in which case the system is subjected to
several constraints of the form (7.12). Now, the requirement that the motion
of a body be rigid can be equivalently expressed as the requirement that the
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distance between any pair of points on the body remain constant as the
body moves, that is, as an infinity of constraints of the form (7.12). Thus,
the principle of virtual work applies whenever rigidity is the only constraint
on the motion. There are indeed situations when this principle does not
apply, such as in the presence of magnetic fields. However, in all situations
encountered in this book, we can safely assume that the principle of virtual
work is valid.

7.1.3 D’Alembert’s Principle

In Equation (7.22), the virtual displacements dr; are not independent, so
we cannot conclude from this equation that each coefficient F; individu-
ally equals zero. In order to apply such reasoning, we must transform to
generalized coordinates. Before doing this, we consider systems that are
not necessarily in equilibriumn. For such systems, D’Alembert’s princi-
ple states that, if one introduces a fictitious additional force —p; on each
particle, where p; is the momentum of particle Z, then each particle will be
in equilibrium. Thus, if one modifies Equation (7.20) by replacing F; by
F; — p;, then the resulting equation is valid for arbitrary systems. One can
then. remove the constraint forces as before using the principle of virtual
work. This results in the equation

k k
> flers =Y plor = 0 (7.26)
i=1 §=1

The above equation does not mean that each coefficient of dr; is zero
since  the virtual constraints dr; are not independent. The remainder of
this derivation is aimed at expressing the above equation in terms of the
generalized coordinates which are independent. For this purpose, we express
each §r; in terms of the corresponding virtual displacements of generalized
coordinates, as is done in Equation (7.19). Then, the virtual work done by
the forces f; is given by

k
Y ffon = ZZ fTBT dg; = Z!ﬁ_,ﬁq, (7.27)
=1 =] =]

where

) T (?r',
- LA 02)
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is called the j** generalized force. Note that %; need not have dimensions
of force, just as g; need not have dimensions of length; however, 1;0g; must
always have dimensions of work.

Now, let us study the second summation in Equation (7.26). Since p; =
m;T;, it follows that

k
Y ilor = Emir bri = sz q, (7.29)
i=1

i=1 j=1
Next, using the product rule of differentiation, we have

i Tafrl} TaT‘ Td@'l‘
g |7 Bgy| =™ g, T ‘dt[&qu

Rearranging the above and summing over all i = 1,...,n yields

(7.30)

k

k
..Ta'ri {d[ Ta’r, Td 67'1
mirl’_ = — :, = &
; bg; ; dt dq } ™ 5 {a J} (A

Now, differentiating Equation (7.16) using the chain rule gives

ar;
Y = =) 24 (7.32)
4 d;
Observe from the above equation that
8@,- B‘r{
9%; = B0 (7.33)
Next,
62?‘-5 . Ui
— i
[aqu Z 3qj3r1.e " 0g; Z qu 8 j )

=

where the last equality follows from Equation (7.32).
Substituting from Equation (7.33) and Equation (7.34) into Equation (7.31)
and noting that 7; = v; gives
T 31),-

ar; N A
T L Y il . =
E mF; = g {d.’t [m, v; 3 — My 3%} (7.35)

If we define the kinetic energy K to be the quantity

L
Z Em,-v?v,- (7.36)
i=1
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then Equation (7.35) can be compactly expressed as

k
or; d K 08K
Bl N o 7.37
; Tty qu dt c‘qu qu ( }

Now, substituting from Equation (7.37) into Equation (7.29) shows that the
second summation in Equation (7.26) is

k n
d0K 0K
Tor, = ——— — — 1 8g; 7.38
2.l Z{da 9, aqj}‘sq’ 5
=1

=1

Finally, combining Equations (7.26), (7.27), and(7.38) gives

Z{ia—{{_—a}f—%}é% =0 (7.39)
iy

j=1

Now, since the virtual displacements dg; are independent, we can conclude
that each coefficient in Equation (7.39) is zero, that is,

iﬁ_K_g(_ = W =L n (7.40)
dt dg;  Og;
If the generalized force 1/; is the sum of an externally applied generalized
force and another one due to a potential field, then a further modification
is possible. Suppose there exist functions 7; and a potential energy function
P(qg) such that

— + 15 (7.41)

Then Equation (7.40) can be written in the form

doL _ac

o = 15 7.42
dt 3(]3 BQj 2 (2)

where £ = K — P is the Lagrangian and we have recovered the Euler-
Lagrange equations of motion as in Equation (7.6).

7.2 KINETIC AND POTENTIAL ENERGY

In the previous section, we showed that the Euler-Lagrange equations can
be used to derive the dynamical equations in a straightforward manner,
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provided one is able to express the kinetic and potential energy of the sys-
tem in terms of a set of generalized coordinates. In order for this result to
be useful in a practical context, it is important that one be able to com-
pute these terms readily for an n-link robotic manipulator. In this section
we derive formulas for the kinetic energy and potential energy of a robot
with rigid links using the Denavit-Hartenberg joint variables as generalized
coordinates.

To begin we note that the kinetic energy of a rigid object is the sum of
two terms, the translational kinetic energy obtained by concentrating the
entire mass of the object at the center of mass, and the rotational kinetic
energy of the body about the center of mass. Referring to Figure 7.5 we
attach a coordinate frame at the center of mass (called the body attached
frame) as shown.

Ip

Figure 7.5: A general rigid body has six degrees of freedom. The kinetic
energy consists of kinetic energy of rotation and kinetic energy of translation.

The kinetic energy of the rigid body is then given as

1
K = §mvTv+%uTIw (7.43)

where m is the total mass of the object, v and w are the linear and angular
velocity vectors, respectively, and 7 is a symmetric 3 x 3 matrix called the
inertia tensor.

7.2.1 The Inertia Tensor

It is understood that the above linear and angular velocity vectors, v and
w, respectively, are expressed in the inertial frame. In this case, we know
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that w is found from the skew symmetric matrix
S(w) = RRT (7.44)

where R is the orientation transformation from the body attached frame and
the inertial frame. It is therefore necessary to express the inertia tensor, Z,
also in the inertial frame in order to compute the triple product w’Zw.
The inertia tensor relative to the inertial reference frame will depend on the
configuration of the object. If we denote as I the inertia tensor expressed
instead in the body attached frame, then the two matrices are related via a
similarity transformation according to

T=RIR® . (7.45)

This is an important observation because the inertia matrix expressed in the
body attached frame is a constant matrix independent of the motion of the
object and easily computed.

We next show how to compute this matrix explicitly. Let the mass
density of the object be represented as a function of position, p(z,y, z).
Then the inertia tensor in the body attached frame is computed as

Ly Izy L
= | Iy I I, (7.46)
y o Izy I,
where
Le = [ [ [0+ 200a,0, 200 dy d:
Ly = /[/(x2+zz}p(z,y,z)d$ dy dz
Iy, = /[/(x2+y2)p(a:,y,z)d:c dy dz
and

Ioy=1Ip = —/][wyp(z,y, z)dz dy dz
Iiz=Is = —///xzp(:c, Y, Z)d.’L‘ dy dz
Iyz = Izy = —///Uzﬂ{z,y, Z)dl‘ dy dz

The integrals in the above expression are computed over the region of space
occupied by the rigid body. The diagonal elements of the inertia tensor, Iz,
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Ly, I,, are called the principal moments of inertia about the z, Y, and z
axes, respectively. The off-diagonal terms I, I, etc., are called the cross
products of inertia. If the mass distribution of the body is symmetric
with respect to the body attached frame, then the cross products of inertia
are identically zero.

Example 7.2 Uniform Rectangular Solid
Consider the rectangular solid of length a width b and height ¢ shown in
Figure 7.6 and suppose that the density is constant, p(z,y,2) = p.

Figure 7.6: A rectangular solid with uniform mass density and coordinate
frame attached at the geometric center of the solid.

If the body frame is attached at the geometric center of the object, then
by symmetry, the cross products of inertia are all zero and it is a simple
ezercise to compute

c/2  rbf2
y A / / ] oz, y, 2)dz dy dz
—c/2J-b/2 —a/2 ‘

ﬂbC 2 2 o W
=+ )—12(6 + &)

since pabc = m, the total mass. Likewise, a similar calculation shows that

m ’ _ Mg 9
lz(a +c) 4 I‘”_12(a +b%)

Iy =
7.2.2 Kinetic Energy for an n-Link Robot

Now, consider a manipulator with n links. We have seen in Chapter 4 that
the linear and angular velocities of any point on any link can be expressed
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in terms of the Jacobian matrix and the derivatives of the joint variables.
Since, in our case, the joint variables are indeed generalized coordinates, it
follows that, for appropriate Jacobian matrices J, and J,,, we have

U= Jv;(Q)fjv Wi = Jw‘(q)q (747)

Now, suppose the mass of link 7 is m; and that the inertia matrix of link i,
evaluated around a coordinate frame parallel to frame ¢ but whose origin is
at the center of mass, equals ;. Then from Equations (7.43) and (7.47) it
follows that the overall kinetic energy of the manipulator equals

K= 3 [_i{mm.- @7 Ju(@)+ Jw.-(q)TRi(q)II-RAq)TJwi(q)}] i (149

- %QT D(q)q (7.49)

where

n
D(q) = [Z{mda.- (9)" Jue{a) + T (Q)TRe(Q)IfRs(Q)TJwt(Q)}} (7.50)
=1

is an n x n configuration dependent matrix called the inertia matrix. In
Section 7.4 we will compute this matrix for several commonly occurring
manipulator configurations. The inertia matrix is symmetric and posi-
tive definite for any manipulator. Symmetry of D({g) is easily seen from
Equation (7.50). Positive definiteness can be inferred from the fact that the
kinetic energy is always nonnegative and is zero if and only if all of the joint
velocities are zero. The formal proof is left as an exercise (Problem 7-5).

7.2.3 Potential Energy for an n-Link Robot

Now, consider the potential energy term. In the case of rigid dynamics,
the only source of potential energy is gravity. The potential energy of the
i*" link can be computed by assuming that the mass of the entire object is
concentrated at its center of mass and is given by

P= migTrc,- (7.51)

where g is the vector giving the direction of gravity in the inertial frame and
the vector r; gives the coordinates of the center of mass of link 7. The total
potential energy of the n-link robot is therefore

Pl Zn: P= imigTra- (7.52)
i=1 i=1
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In the case that the robot contains elasticity, for example if the joints are
flexible, then the potential energy will include terms containing the energy
stored in the elastic elements. Note that the potential energy is a function
only of the generalized coordinates and not their derivatives.

7.3 EQUATIONS OF MOTION

IFn this section we specialize the Euler-Lagrange equations derived in Sec-
tion 7.1 to the case when two conditions hold. First, the kinetic energy is a
quadratic function of the vector ¢ of the form

K = 38D@i= Y ds(a)id; (159
ij

where d; ; are the entries of the n xn inertia matrix D(g), which is symmetric
and positive definite for each ¢ € R", and second, the potential energy
P = P(q) is independent of §. We have already remarked that robotic
manipulators satisfy these conditions.

The Euler-Lagrange equations for such a system can be derived as fol-
lows. Using Equation (7.53) we can write the Lagrangian as

L = K-P=3Y dslo)iss - Pl (7.59)
i

The partial derivatives of the Lagrangian with respect to the k™ joint ve-
locity is given by

oL .
% - ;dkjfb (7.55)
and therefore
d oL = d ., .
&oG - ;dkjﬁ'ﬁ'zj: 7 kit
; Ody; . .
= deij‘f‘Z_(.;;';lQin (7.56)
i g *

Similarly the partial derivative of the Lagrangian with respect to the kt*
joint position is given by
arL 1 Gd,-,- .. 0P
= 5 Z 2
ij

B a_q;'?:fﬁ " s (7.57)
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Thus, for each k= 1,...,n, the Euler-Lagrange equations can be written
Odp;  10di;) . aP
dr:d; + {_l___i} il f — = 7.58
E kid; E_j o 2 g qiq; 30 Tk (7.58)

By interchanging the order of summation and taking advantage of symmetry,
one can show (Problem 7-6) that

O\ .. _ Ly~ [0dyy | Od)
Z{ BQi }qtqj = 2%{ aq:'. + aqj qiq; (759)

1.3
Hence
3dkj ladﬂ} o4 1{3dkj ady; ad-;_?} i
i e o e T iy
ZJ:{ o 2000 T Lo\ a0
= Cijk iy
1]
where we define
1 3dkj Ody; Bd.,'j
TSR . PR PR 76
e 2{ o 9g;  Ou e

The terms ¢;;x in Equation (7.60) are known as Christoffel symbols (of
the first kind). Note that, for a fixed k, we have Cijk = Cjik, which reduces
the effort involved in computing these symbols by a factor of about one half.
Finally, if we define

aP
9k = e (7.61)

then we can write the Euler-Lagrange equations as

n n n
D hi@i+ Y3 cnl@idi +orl@) =m  k=1,...,n (7.62)
j=1

=1 j=1

In the above equations, there are three types of terms. The first type
involves the second derivative of the generalized coordinates. The second
type involves quadratic terms in the first derivatives of q, where the coeffi-
cients may depend on g. These latter terms are further classified into those
involving a product of the type ¢ and those involving a product of the type
digj where ¢ # j. Terms of the type ¢? are called centrifugal, while terms
of the type ¢;g; are called Coriolis terms. The third type of terms are
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those involving only ¢ but not its derivatives. This third type arises from
differentiating the potential energy. It is common to write Equation (7.62)
in matrix form as

D(9)i+Clg,9)g+9(g) = 7 (7.63)

where the (F, )" element of the matrix C(q, q) is defined as
i3
i = Y cik(a)d (7.64)
i=1

3o (M 2 B,
2 5Qj an qu &

i=1

and the gravity vector g(g) is given by

9(a) = [91(q), .-, gn(g)]” (7.65)

In summary, the development in this section is very general and applies
to any mechanical systern whose kinetic energy is of the form (7.53) and
whose potential energy is independent of ¢. In the next section we apply
this discussion to study specific robot configurations.

74 SOME COMMON CONFIGURATIONS

In this section we apply the above method of analysis to several manipula-
tor configurations and derive the corresponding equations of motion. The
configurations are progressively more complex, beginning with a two-link
cartesian manipulator and ending with a five-bar linkage mechanism that
has a particularly simple inertia matrix.

Two-Link Cartesian Manipulator

Consider the manipulator shown in Figure 7.7 consisting of two links and
two prismatic joints. Denote the masses of the two links by m; and ma,
respectively, and denote the displacement of the two prismatic joints by ¢
and gy, respectively. It is easy to see, as mentioned in Section 7.1, that these
two quantities serve as generalized coordinates for the manipulator. Since
the generalized coordinates have dimensions of distance, the corresponding
generalized forces have units of force. In fact, they are just the forces applied
at each joint. Let us denote these by f;, i =1,2.
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)

Q1

/

Figure 7.7: Two-link planar Cartesian robot. The orthogonal joint axes and
linear joint motion of the Cartesian robot result in simple kinematics and
dynamics.

Since we are using the joint variables as the generalized coordinates, we
know that the kinetic energy is of the form (7.53) and that the potential
energy is only a function of ¢ and go. Hence, we can use the formulae in
Section 7.3 to obtain the dynamical equations. Also, since both joints are
prismatic, the angular velocity Jacobian is zero and the kinetic energy of
each link consists solely of the translational term.

It follows that the velocity of the center of mass of link 1 is given by

va = Ju,g (7.66)
where
00 .
Joa =10 0|, q‘=[ql] (7.67)
10 q2
Similarly,
g = Juf (7.68)
where
00
i 01 (7.69)
10
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Hence, the kinetic energy is given by
1; :
K = EqT {miJL Joy +madT Jua ) d (7.70)

Comparing with Equation (7.53), we see that the inertia matrix D is given
simply by

mi+mg 0
D = [ 10 2 m2] (7.71)

Next, the potential energy of link 1 is m;gq;, while that of link 2 is maggy,
where g is the acceleration due to gravity. Hence, the overall potential
energy is

2 = g(m1+mg)q1 (7.72)

Now, we are ready to write down the equations of motion. Since the
inertia matrix is constant, all Christoffel symbols are zero, Furthermore,
the components gy of the gravity vector are given by

apP P

—_—— = m.{..m, :—_0 7.73
o g(mi+mg), @ %0 (7.73)

fn
Substituting into Equation (7.62) gives the dynamical equations as

(m1 +ma)ds +g(my +mz) = fo (7.74)
mags = f?

Planar Elbow Manipulator

Now, consider the planar manipulator with two revolute joints shown in
Figure 7.8. Let us fix notation as follows. For i = 1,2, g; denotes the joint
angle, which also serves as a generalized coordinate; m; denotes the mass
of link 4, £; denotes the length of link #; /; denotes the distance from the
previous joint to the center of mass of link i; and I; denotes the moment of
inertia of link i about an axis coming out of the page, passing through the
center of mass of link .

We will use the Denavit-Hartenberg joint variables as generalized coor-
dinates, which will allow us to make effective use of the Jacobian expressions
in Chapter 4 in computing the kinetic energy. First,

U1 = J‘Uc;q (775)
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Xz

Figure 7.8: Two-link revolute joint arm. The rotational joint motion intro-
duces dynamic coupling between the joints.

where,
—f.singy 0
Jpcl = gcl Cosqp 0 (7.76)
0 0
Similarly,
vs = o (1.77)
where
—bising; — g sin(q1 + ) —Leasin(gr + o)
diy = feosq + g cos(qy +q2)  Leacos(qy + qo) (7.78)

0 0

Hence, the translational part of the kinetic energy is
1 1 1 c
Eml'ug]vd - Emzvfzvcg = i {mlJtilJvcl + nginvd} g (7.79)

Next, we consider the angular velocity terms. Because of the particularly
simple nature of this manipulator, many of the potential difficulties do not
arise. First, it is clear that

wi=qk, wr={(G1+¢g)k (7.80)

when expressed in the base inertial frame. Moreover, since w; is aligned
with the z-axes of each joint coordinate frame, the rotational kinetic energy
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reduces simply to I,'wf, where I; is the moment of inertia about an axis
through the center of mass of link ¢ parallel to the z-axis. Hence, the
rotational kinetic energy of the overall system in terms of the generalized

coordinates is
1.p 10 11 :
iq {II[O 0J+I2[1 1]}q (7.81)

Now, we are ready to form the inertia matrix D(q). For this purpose, we
merely have to add the two matrices in Equation (7.79) and Equation (7.81),
respectively. Thus

L+ b

M®=Wﬂ&ﬁm@%+[k h] (7.82)

Uel
Carrying out the above multiplications and using the standard trigonometric
identities cos® ¢ + sin?§ = 1, cosacos f+ sinasin 8 = cos(a — 3) leads to

dy = mlffl +m2(£'% +f§2 + 2¢1£5 cos q2) +0L+ 15
diz da1 = my(€2 + fify cos gp) + Iy (7.83)
dos mgéfz +5

Now, we can compute the Christoffel symbols using Equation (7.60). This
gives

an = %%_?11 =0
an = o= %% =—mpbilasing = h
a2
Cez1 = @E - Eg@ =
dg 2 0q
ez = aﬁ{—l%:—h
O 2 Ogy
Gm = gp= 100y _
2 O
a2 = 104y =0
2 Ogy

Next, the potential energy of the manipulator is just the sum of those of the
two links. For each link, the potential energy is just its mass multiplied by
the gravitational acceleration and the height of its center of mass. Thus

P1 = mlgfd sin q1
Py = mog(fysing +€gsin(q; + ¢3))
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and so the total potential energy is
P =P+ P; = (mifa +maly)gsingy + malagsin(q +g2)  (7.84)
Therefore, the functions g; defined in Equation (7.61) become

aP )
4= g = (mife + mafy)gcos g1 + maleogeos(q +q2) (7.85)
aP
n = 5= maleagcos(q + g2) (7.86)
q2 +

Finally, we can write down the dynamical equations of the system as in
Equation (7.62). Substituting for the various quantities in this equation
and omitting zero terms leads to

dyéiy + diad + 1216162 + ooy Feandi o1 = 7 (787)
da1d + doadia + c1126% + g2 =7
In this case, the matrix C(g, §) is given as

“= Lm0

Planar Elbow Manipulator with Remotely Driven Link

Now, we illustrate the use of Lagrangian equations in a situation where the
generalized coordinates are not the joint variables defined in earlier chap-
ters. Consider again the planar elbow manipulator, but suppose now that
both joints are driven by motors mounted at the base. The first joint is
turned directly by one of the motors, while the other is turned via a gearing
mechanism or a timing belt (see Figure 7.9).

In this case, one should choose the generalized coordinates as shown in
Figure 7.10, because the angle py is determined by driving motor number 2,
and is not affected by the angle p;. We will derive the dynamical equations
for this configuration and show that some simplifications will result.

Since py and py are not the joint angles used earlier, we cannot use the
velocity Jacobians derived in Chapter 4 in order to find the kinetic energy
of each link. Instead, we have to carry out the analysis directly. It is easy
to see that

—fqsinp; 0 ,
Yy = facosp; O [ P } (7.89)
0o ofLP

Vg = f1cospr Leacosps (7.90)

fisinpy —Leasinps [ ]
0 0
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Figure 7.9: Two-link revolute joint arm with remotely driven link. Because

of t]lne remote drive the motor shaft angles are not proportional to the joint
angles.

w1=pik,  wp=pk (7.91)
Hence, the kinetic energy of the manipulator equals

g
K = 20" Dip)p (7.92)
where
E +myl} 4 T 08
Dp) = | ™tatmbfi+l malilecos(p —py)
malile cos(py — py) mal% + I (7.93)

Computing the Christoffel symbols as in Equation (7.60) gives

(5 = m—=
111 2 O 0
21 = o= %% =
ad 10
C21 = 6—12 — ——dg = —malilez sin(py — py) (7.94)
P2 2 Om 1 :
_ Odyy  10dy;
T oy 2o - mAlamm)
1 Bdgz
€12 = =Cp=-—m=
122 2 m 0
g = -—— =
2 dpa
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X2

X0

Figure 7.10: Generalized coordinates for the robot of Figure 6.4.

Next, the potential energy of the manipulator, in terms of p; and ps, equals
P = maglasinp + maeg(fy sinp + £ sinps) (7.95)
Hence, the gravitational generalized forces are

g = (mife +mafy)gcosp
gy = maleagcosps

Finally, the equations of motion are

dupy +dipa +eomPi+q = 7 (7.96)
doipy +dpofe + 1122+ g2 = T

Comparing Equation (7.96) and Equation (7.87), we see that by driving the
second joint remotely from the base we have eliminated the Coriolis forces,
but we still have the centrifugal forces coupling the two joints.

Five-Bar Linkage

Now, consider the manipulator shown in Figure 7.11. We will show that,
if the parameters of the manipulator satisfy a simple relationship, then the
equations of the manipulator are decoupled, so that each quantity ¢; and ga
can be controlled independently of the other. The mechanism in Figure 7.11
is called a five-bar linkage. Clearly, there are only four bars in the figure,
but in the theory of mechanisms it is a convention to count the ground
as an additional linkage, which explains the terminology. It is assumed
that the lengths of links 1 and 3 are the same, and that the two lengths
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Figure 7.11: Five-bar linkage.

marked £ are the same; in this way the closed path in the figure is in fact a
parallelogram, which greatly simplifies the computations. Notice, however
that the quantities £ and £.3 need not be equal. For example, even thoug};
links 1 and 3 have the same length, they need not have the same mass
distribution.

It is clear from the figure that, even though there are four links being
moved, there are in fact only two degrees of freedom, identified as ¢ and
g2. Thus, in contrast to the earlier mechanisms studied in this book, this
one is a closed kinematic chain (though of a particularly simple kind). As a
result, we cannot use the earlier results on Jacobian matrices, and instead
have to start from scratch. As a first step we write down the coordinates
of the centers of mass of the various links as a function of the generalized
coordinates. This gives

[ o | _ [ £ cosqy

Ye1 | i £sing (7-97)

[z | _ [ lacosg

| Ye2 | | Leasings (7.98)

[23] [ facosq Lgcos gy

| Ye3 | | Zeasingy ¥ fasing ] (7.99)
Toq ] = [ ficosq o [ eacos(gz =)

| Yea fl sin q1 31:4 Siﬂ(qZ = ’ﬂ.’)

_ | hicosq {.4co8 gy
[fiﬁiﬂfh B €c4sinq2J (7.100)
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Next, with the aid of these expressions, we can write down the velqcities
of the various centers of mass as a function of ¢; and g. For conv.'er{ience we
drop the third row of each of the following Jacobian matrices as it i always
zero. The result is

_ [ ~tasingt 0],
Ve = L 'ecl cosq1 0
[0 —fasing d
Ve = o ot 9 COS g2
e (7.101)
[ —tasing -fpsing ] 5
b = | Lacosqr  facosg
[ ~bising Lasing ] :
Vet = | ficosqr  Lecosqe

Let us define the velocity Jacobians Jy,, i € {1,...,4} in the f)bvious fasl.l-
ion, that is, as the four matrices appearing in the above equatlops. Next, it
is clear that the angular velocities of the four links are simply given by

Wi = w3 = @k, wr = wy = Gk (7.102)

Thus, the inertia matrix is given by

4
L+13 0
i ! 7.103
i=1
If we now substitute from Equation (7.101) into the above equation and use
the standard trigonometric identities, we are left with

dll(@') = mlegl + m;;{fig + m4€% +h+13
dio(g) = dul(q) = (msbales — mafiles) cos(qa —q1)  (7.104)
d?Z(q) = mzfgz + mgf% + mqfi; + I2 + I4

Now, we note from the above expressions that if
malals = myliley (7.105)

then dyz and doy are zero, that is, the inertia matrix is diagonal and c9n§tant.
As a consequence the dynamical equations will contain neither Coriolis nor

centrifugal terms.
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Turning now to the potential energy, we have that

P =y E?:l Yei
= gsingq (mlfcl + males + m4£’1) (7.106)
1 gsinga(males +mals — myley)
Hence,
g1 = geosqy(miler +maley +mayly) (7.107)
92 = gcosqe(maley +maly — myley)

Notice that g, depends only on g; but not on gq and similarly that go depends
only on g2 but not on g;. Hence, if the relationship ( 7.105) is satisfied, then
the rather complex-looking manipulator in Figure 7.11 is described by the
decoupled set of equations

g +o(a) =7, dph+o(e)=mn (7.108)

This discussion helps to explain the popularity of the parallelogram con-
figuration in industrial robots. If the relationship (7.105) is satisfied, then
one can adjust the two angles ¢; and g2 independently, without worrying
about interactions between the two angles. Compare this with the situation
in the case of the planar elbow manipulators discussed earlier in this section.

7.5 PROPERTIES OF ROBOT DYNAMIC EQUATIONS

The equations of motion for an n-link robot can be quite formidable es-
pecially if the robot contains one or more revolute joints. Fortunately,
these equations contain some important structural properties that can be
exploited to good advantage for developing control algorithms. We will see
this in subsequent chapters. Here we will discuss some of these properties,
the most important of which are the so-called skew symmetry property
and the related passivity property, and the linearity-in-the-parameters
property. For revolute joint robots, the inertia matrix also satisfies global
bounds that are useful for control design.

7.5.1 Skew Symmetry and Passivity

The skew symmetry property refers to an important relationship between
the inertia matrix D(g) and the matrix C(q, §) appearing in Equation (7.63).

Proposition: 7.1 The Skew Symmetry Property
Let D(q) be the inertia matriz for an n-link robot and define C(q,q) in terms
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of the elements of D(q) according to Equation (7.64). Then the matriz
N(g,4) = D(q)-2C(q, q) is skew symmetric, that is, the components nji of
N satisfy nj = —ny;.

Proof: Given the inertia matrix D(q), the (k, )™ component of D(q) is
given by the chain rule as

0t (7.109)
i O ’

dkj =

Therefore, the (k, /)% component of N = D — 2C is given by

Mgy = dkj-‘2ij
) Z": ddy; [ Od; +3dki_%}] i@ (7.110)
£ | By, dg ~ Og;  Ogy
B i[@di}' _Bdki] &
B —|0q. dg '

Since the inertia matrix D(q) is symmetric, that is, di; = dj;, it follows from
Equation (7.110) by interchanging the indices k and j that

Wi 0 =i (7.111)

which completes the proof. _

It is important to note that, in order for N = D — 2C to be skew-
symmetric, one must define C' according to Equation (7.64). This will be
important in later chapters when we discuss robust and adaptive control
algorithms. -

Related to the skew symmetry property is the so-called passivity prop-
erty which, in the present context, means that there exists a constant, 3 > 0,
such that

f ' (Or(Q)d¢> -8, VT>0 (7.112)

The term ¢77 has units of power. Thus, the expression foT GT(O)r(¢)dC
is the energy produced by the system over the time interval [0, T]. Passivity
means that the amount of energy dissipated by the system has a lower bound
given by —3. The word passivity comes from circuit theory where a pass%ve
system according to the above definition is one that can be built from passive
components (resistors, capacitors, inductors). Likewise a passive mechanical
system can be built from masses, springs, and dampers.
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To prove the passivity property, let H be the total energy of the system,
that is, the sum of the kinetic and potential energies,

H = 24 D(g)i + P(o) (7.113)

The derivative H satisfies

b4

T 5 1-TH s, TOP
¢ D(g)i+ 2" D(q)¢ + ¢ F )

: 7.114
§{7 - C(0,4) ~ 9(a)} + 3¢"D(a)i + e (r-114)

Il

where we have substituted for D(g)§ using the equations of motion. Col-
lecting terms and using the fact that g9(g) = %% yields

H

I

" + 34" (D) ~ 2000 (r.115
= &

the latter equality following from the skew-symmetry property. Integrating
both sides of Equation (7.115) with respect to time gives,

i id
fn F(Qr(Q)d = H(T) - H(0) > ~H(0) (7.116)

since the total energy H(T') is nonnegative, and the passivity property there-
fore follows with 3 = H(0).

7.5.2 Bounds on the Inertia Matrix

We have remarked previously that the inertia matrix for an n-link rigid
robot is symmetric and positive definite. For a fixed value of the generalized
coordinate g, let 0 < Ay(g) < --- < An(q) denote the n eigenvalues of D(q).
These eigenvalues are positive as a consequence of the positive definiteness
of D(g). As a result, it can easily be shown that

M(@)nxn < D(g) < Ma(@)nxn (7.117)

where I,y denotes the n x n identity matrix. The above inequalities are
interpreted in the standard sense of matrix inequalities, namely, if A and B
are n X n matrices, then B < A means that the matrix A4 — B is positive
definite and B < A means that A — B is positive semi-definite.

.._:’

S el

[ oo
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If all of the joints are revolute, then the inertia matrix contains only
terms involving sine and cosine functions and, hence, is bounded as a func-
tion of the generalized coordinates. As a result one can find constants Am
and A that provide uniform (independent of g) bounds in the inertia matrix

Ml € D(Q) < )‘MInxn < 00 (7118)

7.5.3 Linearity in the Parameters

The robot equations of motion are defined in terms of certain parameters,
such as link masses, moments of inertia, etc., that must be determined
for each particular robot in order, for example, to simulate the equations
or to tune controllers. The complexity of the dynamic equations makes
the determination of these parameters a difficult task. Fortunately, the
equations of motion are linear in these inertia parameters in the following
sense. There exists an n x £ function, Y (g, ¢, §) and an {-dimensional vector
O such that the Euler-Lagrange equations can be written as

D(g)i+ Clg,4)d +g(g) =Y (g,9,§)® (7.119)

The function, ¥ (g, d, ) is called the regressor and © € R’ is the pa-
rameter vector. The dimension of the parameter space, that is, the num-
ber of parameters needed to write the dynamics in this way, is not unique.
In general, a given rigid body is described by ten parameters, namely, the
total mass, the six independent entries of the inertia tensor, and the three
coordinates of the center of mass. An n-link robot then has a maximum of
10n dynamics parameters. However, since the link motions are constrained
and coupled by the joint interconnections, there are actually fewer than
10n independent parameters. Finding a minimal set of parameters that can
parametrize the dynamic equations is, however, difficult in general.

Example 7.3 Two Link Planar Robot

Consider the two link, revolute joint, planar robot from Section 7.4. If
we group the inertia terms appearing in Equation (7.83) as

0, = mfi+my(B+h)+h+h (7.120)
8y = melily (7.121)
03 = molh+ I (7.122)
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then we can write the inertia matriz elements as

dyp = 6;+ 20, COS(QQ) (7.123)
da = dy =63+ 6, COS(QQ) (7.124)
deg = ©5 (7.125)

No ac?dz't:’ona! parameters are required in the Christoffel symbols as these are
functions of the elements of the inertia matriz. However, the gravitational
torques generally require additional parameters. Setting
B = male + maly (7.126)
85 = mgfg (7.127)

we can write the gravitational terms g1 and gy as

a1
g2

B4gcos(q1) + Bsgcos(qr + g2) (7.128)
B5gcos(q1 + g2) (7.129)

Substituting these into the equations of motion it is straightforward to write
the dynamics in the form (7.119) where

Il

Y(odid)= (7.130)
@1 cos(g2)(2G1+42)-sin(g2)(¢3+2d41d2)  Go geos{q1)  geos(qi+gz)
0 cos(ga)+sin(gz)g] Gtz 0 gcos(g1+q2)

and the parameter vector © is given by

(<h mily, + ma(B+ )+ I + 1,
e, mal1fe
0=|6; | = mab?, + I (7.131)
8, miler +maly
95 'mzfg

Thus, we have parameterized the dynamics using a five dimensional param-

eter space. Note that in the absence of gravity only three parameters are
needed.

<

7.6 NEWTON-EULER FORMULATION

I{l this section we present a method for analyzing the dynamics of robot ma-
nipulators known as the Newton-Euler formulation. This method leads
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to exactly the same final answers as the Lagrangian formulation presented
in earlier sections, but the route taken is quite different. In particular, in
the Lagrangian formulation we treat the manipulator as a whole and per-
form the analysis using a Lagrangian function (the difference between the
kinetic energy and the potential energy). In contrast, in the Newton-Euler
formulation we treat each link of the robot in turn, and write down the
equations describing its linear motion and its angular motion. Of course,
since each link is coupled to other links, these equations that describe each
link contain coupling forces and torques that appear also in the equations
that describe neighboring links. By doing a so-called forward-backward re-
cursion, we are able to determine all of these coupling terms and eventually
to arrive at a deseription of the manipulator as a whole. Thus, we see that
the philosophy of the Newton-Euler formulation is quite different from that
of the Lagrangian formulation.

At this stage the reader can justly ask whether there is a need for an-
other formulation, and the answer is not clear. Historically, both formu-
lations were evolved in parallel, and each was perceived as having certain
advantages. For instance, it was believed at one time that the Newton-Euler
formulation is better suited to recursive computation than the Lagrangian
formulation. However, the current situation is that both of the formulations
are equivalent in almost all respects. Thus, at present, the main reason for
having another method of analysis at our disposal is that it might provide
different insights.

In any mechanical system one can identify a set of generalized coordi-
nates (which we introduced in Section 7.1 and labeled ¢) and corresponding
generalized forces (also introduced in Section 7.1 and labeled 7). Analyzing
the dynamics of a system means finding the relationship between ¢ and 7.
At this stage we must distinguish between two aspects. First, we might be
interested in obtaining closed-form equations that describe the time evo-
lution of the generalized coordinates, such as Equation (7.87). Second, we
might be interested in knowing what generalized forces need to be applied
in order to realize a particular time evolution of the generalized coordinates.
The distinction is that in the latter case we only want to know what time de-
pendent function 7(t) produces a particular trajectory g(t) and may not care
to know the general functional relationship between the two. It is perhaps
fair to say that in the former type of analysis, the Lagrangian formulation is
superior while in the latter case the Newton-Euler formulation is superior.
Looking ahead to topics beyond the scope of the book, if one wishes to study
more advanced mechanical phenomena such as elastic deformations of the
links, then the Lagrangian formulation is clearly superior.
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In this section we present the general equations that describe the Newton-
Euler formulation. In the next section we illustrate the method by applying
it to the planar elbow manipulator studied in Section 7.4 and show that the
resulting equations are the same as Equation (7.87).

The facts of Newtonian mechanics that are pertinent to the present dis-
cussion can be stated as follows:

* Every action has an equal and opposite reaction. Thus, if body 1
applies a force f and torque 7 to body 2, then body 2 applies a force
—f and torque —7 to body 1.

o The rate of change of the linear momentum equals the total force
applied to the body.

o The rate of change of the angular momentum equals the total torque
applied to the body.

Applying the second fact to the linear motion of a body yields the rela-
tionship

d(mw)
dt

= f (7.132)

where m is the mass of the body, v is the velocity of the center of mass with
respect to an inertial frame, and f is the sum of external forces applied to
the body. Since in robotic applications the mass is constant as a function of
time, Equation (7.132) can be simplified to the familiar relationship

me = f (7.133)

where ¢ = 9 is the acceleration of the center of mass.
Applying the third fact to the angular motion of a body gives

d(Towo)

T = (7.134)

where Iy is the moment of inertia of the body about an inertial frame whose
origin is at the center of mass, wp is the angular velocity of the body, and
7o is the sum of torques applied to the body. Now, there is an essential
difference between linear motion and angular motion. Whereas the mass of
a body is constant in most applications, its moment of inertia with respect
an inertial frame may or may not be constant. To see this, suppose we
attach a frame rigidly to the body, and let I denote the inertia matrix of
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the body with respect to this frame. Then I remains the same irrespective
of whatever motion the body executes. However, the matrix Iy is given by

Iy = RIRT (7.135)

where R is the rotation matrix that transforms coordinates from the body
attached frame to the inertial frame. Thus, there is no reason to expect that
I is constant as a function of time.

One possible way of overcoming this difficulty is‘to write the angular
motion equation in terms of a frame rigidly attached to the body. This
leads to

Io+wx(lw) = 7 (7.136)

where I is the (constant) inertia matrix of the body with respect to the
body attached frame, w is the angular velocity, but expressed in the body
attached frame, and 7 is the total torque on the body, again expressed in
the body attached frame. Let us now give a derivation of Equation (7.136)
to demonstrate clearly where the term w x (Iw) comes from; note that this
term is called the gyroscopic term.

Let R denote the orientation of the frame rigidly attached to the body
with respect to the inertial frame; note that it could be a function of time.
Then Equation (7.135) gives the relation between I and Iy. Now, by the
definition of the angular velocity, we know that

RRT = $(wp) (7.137)

In other words, the angular velocity of the body, expressed in an inertial
frame, is given by Equation (7.137). Of course, the same vector, expressed
in the body attached frame, is given by

wy = Rw,w=Rw (7.138)
Hence, the angular momentum, expressed in the inertial frame, is
h = Iywo=RIRTRw= Rlw (7.139)

Differentiating and noting that I is constant gives an expression for the rate
of change of the angular momentum, expressed as a vector in the inertial
frame

h = Rlw+RIw (7.140)
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Now, since
R=5(w)R (7.141)
we ha\;e, with respect to the inertial frame, that
h = S(wy)RIw+ RIw (7.142)

With respect to the frame rigidly attached to the body, the rate of change
of the angular momentum is

RTh

RTS(wp)RlIw + I
S(RTwp)lw + Iy (7.143)
S(wlw+ 1o =w x (Iw) + I

This establishes Equation (7.136). Of course we can, if we wish, write the
same equation in terms of vectors expressed in an inertial frame. But we will
see shortly that there is an advantage to writing the force and moment equa-
tions with respect to a frame attached to link 1, namely that a great many
vectors reduce to constant vectors, thus leading to significant simplifications
in the equations.

Now, we derive the Newton-Euler formulation of the equations of motion
of an n-link manipulator. For this purpose, we first choose frames 0,...,n,
where frame 0 is an inertial frame, and frame 7 is rigidly attached to link
i for i > 1. We also introduce several vectors, which are all expressed in
frame 4. The first set of vectors pertains to the velocities and accelerations
of various parts of the manipulator.

aci = the acceleration of the center of mass of link i

@i = the acceleration of the end of link i (that is, the origin of frame i + 1)
wi = the angular velocity of frame ¢ w.r.t. frame 0
@ = the angular acceleration of frame i w.r.t. frame 0

The next several vectors pertain to forces and torques.

gi = the acceleration due to gravity (expressed in frame i )
fi = the force exerted by link i — 1 on link
7i = the torque exerted by link i — 1 on link i

Ri,; = the rotation matrix from frame i + 1 to frame i

The final set of vectors pertain to physical features of the manipulator. Note
that each of the following vectors is constant as a function of g. In other
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words, each of the vectors listed here is independent of the configuration of
the manipulator.

m; = the mass of link i
I; = the inertia matrix of link ¢ about a frame parallel
to frame ¢ whose origin is at the center of mass of link 7
= the vector from o; to the center of mass of link ¢

Tici
e the vector from o; to the center of mass of link ¢
riit1 = the vector from o; to 0j41

Now, consider the free body diagram shown in Figure 7.12.

mig; :
fi -RHf

Figure 7.12: Forces and moments on link 1.

This shows link i together with all forces and torques acting on it. Let
us analyze each of the forces and torques shown in the figure. First, f; is .the
force applied by link i — 1 to link ¢. Next, by the law of action and reactm?l,
link i + 1 applies a force of —fi11 to link 7, but this vector is expressed in
frame i+ 1 according to our convention. In order to express the same vector
in frame 7, it is necessary to multiply it by'the.rotation matrix /} ;. Similar
explanations apply to the torques 7; and ~ R}, ;7. The force migi is the
gravitational force. Since all vectors in Figure 7.12 are expressed in frame
i, the gravity vector g; is in general a function of 4.

Writing down the force balance equation for link i gives

fi—- R fin+migi = miag (7.144)

Next, we compute the moment balance equation for link i. For this purpose,
it is important to note two things. First, the moment exerted by a farce: i
about a point is given by f x r, where r is the radial vector from the point
where the force is applied to the point about which we are computing the
moment. Second, in the moment equation below, the vector m;g; does not
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appear, since it is applied directly at the center of mass. Thus, we have

T BTt + i X i — (Bl fint) X ripes (7.145)
=0+ w X (I,-w,')

Now, we present the heart of the Newton-Euler formulation, which con-
sists of finding the vectors f,..., f, and Ti--.,Tn corresponding to a given
set of vectors g,4,§. In other words, we find the forces and torques in the
manipulator that correspond to a given set of generalized coordinates and
their first two derivatives. This information can be used to perform either
type of analysis, as described above. That is, we can either use the equa-
tions below to find the f and 7 corresponding to a particular trajectory g(.),
or else to obtain closed-form dynamical equations. The general idea is as
follows. Given g, 4, §, suppose we are somehow able to determine all of the
velocities and accelerations of various parts of the manipulator, that is, all
of the quantities a.;, w;, and o;. Then we can solve Equation (7.144) and
Equation (7.145) recursively to find all the forces and torques, as follows.
First, set fny1 =0 and 75,41 = 0. This expresses the fact that there is no
link 7+ 1. Then we can solve Equation (7.144) to obtain

fi = Riifipr +miag; — mg; (7.146)

By successively substituting i = n, n — 1,...,1 we find all forces. Similarly,
we can solve Equation (7.145) to obtain

= (7.147)
Rymisi— fixrigi + (R, fip1) % Titlei + 0 +w; X (Liw;)

By successively substituting i = n, n — 1,...,1 we find all torques. Note
that the above iteration runs in the direction of decreasing i.

Thus, the solution is complete once we find an easily computed relation
between ¢, §,§ and @iy wi, and @;. This can be obtained by a recursive
procedure in the direction of increasing i. This procedure is given below
for the case of revolute joint s; the corresponding relationships for prismatic
joints are actually easier to derive.

In order to distinguish between quantities expressed with respect to
frame i and the base frame, we use a superscript (0) to denote the lat-
ter. Thus, for example, w; denotes the angular velocity of frame i expressed
in frame 1, while wgﬂ) denotes the same quantity expressed in an inertial
frame.

Now, we have that

w” = o® 424 (7.148)
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This merely expresses the fact that the angular velocity of frame 7 equals
that of frame ¢ — 1 plus the added rotation from joint i. To get a relation
between w; and w;_1, we need only express the above equation in frame i
rather than the base frame, taking care to account for the fact that w; and
wj—1 are expressed in different frames. This leads to

wi = (REM wio1+bigs (7.149)

where

b = (RO)T2i4 (7.150)
is the axis of rotation of joint i expressed in frame 4.

Next let us compute the angular acceleration ¢;. It is important to note
here that

o = (BT (7.151)
In other words, @; is the derivative of the angular velocity of frame 4, %)ut
expressed in frame 7. It is not true that a; = w;! We will encounter a similar
situation with the velocity and acceleration of the center of mass. Now, we
see directly from Equation (7.148) that

LE)EDJ = W«.(E)z + z1G; + LUED) X %1 (7.152)
Expressing the above equation in frame i gives
o = (R_1) ooy +bidi +w; x big (7.153)

Now, we come to the linear velocity and acceleration terms. Note that, in
contrast to the angular velocity, the linear velocity does not appear anywhere
in the dynamic equations; however, an expression for the linear velocity is
needed before we can derive an expression for the linear acceleration. From
Section 4.5, we get that the velocity of the center of mass of link i is given
by

9 - @ +u§0)xr§f2- (7.154)

X} e,i—1

: 0) .
To obtain an expression for the acceleration, we note that the vector rz(.' c)t is

constant in frame 7. Thus

o = oLy x 0 2

1,61

(7.155)
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Now
aes = (BT} (7.156)
Let us carry out the multiplication and use the familiar property
R{axb) = (Ra)x (Rb) (7.157)

‘We also have to account for the fact that (e -1 is expressed in frame 7 — 1
and transform it to frame 4. This gives
Qi = (Ré_l)Ta.e'g_;_ +uwy X Tiei +wy X (wi X ri,ci) (7.158}

Now, to find the acceleration of the end of link i, we can use Equation (7.158)
with r; ;41 replacing r; 4. Thus

Qe; = (R;Iml)Tae':__l +w; X Tiil +wi X (Lu',: ¥ 1",',5_*,1) (7.159}

Now, the recursive formulation is complete. We can now state the Newton-
Euler formulation as follows.

1. Start with the initial conditions
W = 0,09 =0, ac0=0,a.0=0 (7.160)

and solve Equations (7.149), (7.153), and (7.159) and (7.158) (in that
order) to compute w;, a;, and a; for ¢ increasing from 1 to n.

2. Start with the terminal conditions
fn+¥ = 01

and use Equation (7.146) and Equation (7.147) to compute f; and 7
for i decreasing from nto 1.

Tagr=10 (7.161)

7.6.1 Planar Elbow Manipulator Revisited

In this section we apply the recursive Newton-Euler formulation derived
in Section 7.6 to analyze the dynamics of the planar elbow manipulator
of Figure 7.9, and show that the Newton-Euler method leads to the same
equations as the Lagrangian method, namely Equation (7.87).

We begin with the forward recursion to express the various velocities
and accelerations in terms of q;, g2 and their derivatives. Note that, in this
simple case, it is quite easy to see that

wi = Gk, op =gk, wy = (B + gk, a = (1 + g2)k (7.162)
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so that there is no need to use Equations (7.149) and (7.153). Also, the
vectors that are independent of the configuration are as follows:

ra = fai, raa =l —La)i, ro=4 (7.163)
beat, T3, = (b3 — )i, 193 =Loi (7.164)

Il

79,62

Forward Recursion Link 1

Using Equation (7.158) with i = 1 and noting that a.g = 0 gives

aey = Gik x Lgi+ gk x (q'lk Xrecl'i)
_Eclql%
= Lafij~Ladli= | L (7.165)
0

Notice how simple this computation is when we do it with respect to frame
1. Compare with the same computation in frame 0. Finally, we have

sinqp
n = —(Ry)Tgi=g| —cosq (7.166)
0

where g is the acceleration due to gravity. At this stage we can economize
a bit by not displaying the third components of these accelerations, since
they are obviously always zero. Similarly, the third components of all forces
will be zero while the first two components of all torques will be zero. To
complete the computations for link 1, we compute the acceleration of the
end of link 1. Clearly, this is obtained from Equation (7.165) by replacing
Ecl by f1. Thus

[ ~hg J (7.167)

b

i

Forward Recursion: Link 2

Once again we use Equation (7.158) and substitute for wy from Equa-
tion (7.162); this yields

acg = (B aes +(§1 + Go)k x Lei
+ (g1 + da)k x {(d1 + G2)k X £e2i] (7.168)
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The only quantity in the above equation that is configuration dependent is
the first one. This can be computed as

. _g q'2
R)Ta,, = cosqy  sings ] 191
(B1) e [~sme;z cosq | | b
~b1 cos ga + 414 sin gy
: 1
[ b etng + 416, ek (s

Substituting into Equation (7.168) gives
- I3 - » . - . 2
wg = | Jien s biing Lol 4) |
14y singz + f1G1 cos ga — Lea (i + o) :
The gravitational vector is

_ sin(q1 + ¢2)
9 = g[_cos(qﬁqz)} (7.171)

Since there are only two links, there is no need to compute a. 9. Hence, the
forward recursions are complete at this point.

Backward Recursion: Link 2

Now, we carry out the backward recursion to compute the forces and joint
torques. Note that, in this instance, the joint torques are the externally ap-
plied quantities, and our ultimate objective is to derive dynamical equations
involving the joint torques. First we apply Equation (7.146) with i = 2 and
note that f3 = 0. This results in

fa = maacs —magy (7.172)
Ipay +wy x (wy) — fo % i (7.173)

T2

Now, we can substitute for wy, oy from Equation (7.162), and for a.y from
Equation (7.170). We also note that the gyroscopic term equals zero, since
both wy and fow; are aligned with k. Now, the cross product fa x £gi is
clearly aligned with k and its magnitude is just the second component of fa.
The final result is

T2 = DG + f2)k + [mafifeasin gagt + malile cos gody
+mal2(G1 + d2) + m)2eag cos(q + o)k (7.174)

We can see that the third component of the vector 7 in the above equation
is the same as the second equation in (7.87).
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Backward Recursion: Link 1

To complete the derivation, we apply Equation (7.146) and Equation (7.147)
with 7 = 1. First, the force equation is

i = miee+ R —mg (7.175)
and the torque equation is

= Rsz —fix -ec,li - (R%fz) >4 (fl'— E,;[)’i (7.175)
+Iiey +wy X (Ilwl)

Now, we can simplify things a bit. First, R#r» = m, since the rotation
matrix does not affect the third components of vectors. Second, the gyro-
scopic term is again equal to zero. Finally, when we substitute for f; from
Equation (7.175) into Equation (7.176), a little algebra gives

T = To—Matey X Lyt +mygy x £yi (7.177)
—ngfz) x i+ Li+ Lo

Once again, all these products are quite straightforward, and the only diffi-
cult calculation is that of R} f,. The final result is

1 = m+ [mild +mibagcosq + mafigeosq + Ly (7.178)
+mafiiy — mililea(dy + d2)?sin ga + malyleg G + ia) cos 0] k

If we now substitute for 7y from Equation (7.174) and collect terms, we will
get the first equation in Equation (7.87). The details are routine and are
left to the reader.

7.7 SUMMARY

In this chapter we treated the dynamics of n-link rigid robots in detail. We
derived the Euler-Lagrange equations from D’Alembert’s principle and the
principle of virtual work. These equations take the form

doL oL CE—1
Ea—qk-éa = Ty, k=1,...n

where n is the number of degrees of freedom and £ = K—~P is the Lagrangian
function; the difference of the Kinetic and Potential energies, which are
written in terms of a set of generalized coordinates (g, ..., gn). The terms
Ty, are generalized forces acting on the system.
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We derived computable formulas for the kinetic and potential energies;
the kinetic energy K is given as

Ly

Y {midu ()T Ty (a) + T (9)T Ri(@) ER:(0)T o () }} g

=1
4, _
= _EQTD(Q)Q

where
D(g) = [Z{miu’ui ()7 T (9) + Ju ()T Ril@):Re(g) T o, (Q)}]
i=1
is the n x n inertia matrix of the manipulator. The matrices I; in the

above formula are the link inertia tensors. The inertia tensor is computed
in a body attached frame as

Ipe In:y I,
I = Iye Iy Iy
L. zy L.
where
I = f / f (v* + 2)p(z,y, 2)dz dy dz
by = f]/(x2+z2)p(m,y,z)dz dy dz
L, = / / / («* +1%)p(z,y, 2)dz dy dz
and

Iy=Iz = - f / f zyp(z,y, 2)dz dy dz
S T — -///:czp(m,y,z)d:r dy dz
Ie=ly = —f//yzp(a:, y, z)dz dy dz

are the principle moments of inertia and cross-products of inertia, respec-
tively, where the integration is taken over the region of space occupied by
the body.

The formula for the potential energy of the i** link is

P =mig're
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where g is gravity vector expressed in the inertial frame and the vector rg
gives the coordinates of the center of mass of link 4 in the inertial. The total
potential energy of the n-link robot is therefore

n n
P=Y P=Y i ra
i=1 =l

We then derived a special form of the Euler-Lagrange equations using
the above expressions for the kinetic and potential energies as

n n n
Y di@a+ Y Y cin(@idi+os@ =1 k=1,..,n
=1 i=1 j=1

where the terms

_ o
g = B0

are gravitational generalized forces

1 {adkj ddy; (9dij }
Gk =

2| 8 ' dg; g

and the terms c;jk are Christoffel symbols of the first kind.
In vector-matrix form the Buler-Lagrange equations become

D(Q)i+Clg,4)g+9(g) = 7

where the (k,j)* element of the matrix C(q, q) is defined as
Ckj = ZQ;‘L—(Q’)!}:‘
i=1

o1 (o s,
2 GQj qu dqx !

i=1

and the gravity vector g(q) is given by

g(a) = la1(a), - -, ga(a)]"

Next, we derived some important properties of the Euler-Lagrange equa-
tions, namely, the properties of skew symmetry, passivity, and linearity
in the parameters. The skew symmetry property states that the matrix
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N (q, q) = D(q) - 2C(g,9). The passivity property states that there exists a
constant 3 > 0 such that

T
[Q FONOK > -8, YT>0

The linearity-in-the-parameters-property states that there exists an n x /
function, Y(q,¢,q), called the regressor, and an f-dimensional vector 0,
called the parameter vector such that the Euler-Lagrange equations can be
written

D(q) +C(g,4)§+9(q) =Y(q,4, )0 =7

We also derived bounds on the inertia matrix for an n-link manipulator
as

)\I(Q)Inxrn < D(Q') S M@ nxn

In case the robot contains only revolute joints, the functions ); and Ap can
be chosen as positive constants.

Finally, we discussed the Newton-Euler formulation of robot dynamics.
The Newton-Euler formulation is a recursive scheme that is equivalent to
the Euler-Lagrange method but offers some advantages from the standpoint
of online computation.

PROBLEMS

7-1 Verify Equation (7.18) by direct calculation, neglecting quadratic terms
in dry and drs.

» 7-2 Consider a rigid body undergoing a pure rotation with no external
forces acting on it. The kinetic energy is then given as

1
K = E(Imrwi + Iyywj + Law?)

with respect to a coordinate frame located at the center of mass and
whose coordinate axes are principal axes. Take as generalized co-
ordinates the Euler angles ¢, 6,y and show that the Euler-Lagrange
equations of motion of the rotating body are

Bttt (s — B iy =
Lty + (Ieg — Lo )wpwy =

Lopws + (Iyy — ez )watoy

I
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4 1-3 Find the moments of inertia and cross products of inertia of a uniform
rectangular solid of sides a,b, c with respect to a coordinate system
with origin at the one corner and axes along the edges of the solid.

' 7-4 Given the inertia matrix D(q) defined by Equation (7.83) show that
det D(g) # 0 for all q.

7-5 Show that the inertia matrix D(q) for an n-link robot is always positive
- definite.

7-6 Verify the expression (7.59) that was used to derive the Christoffel
symbols. i :

7-7 Consider a 3-link cartesian manipulator,

(a) Compute the inertia tensor J; for each link i = 1,2, 3 assuming
that the links are uniform rectangular solids of length 1, width %,
and height 7‘1‘, and mass 1.

(b) Compute the 3 x 3 inertia matrix D(g) for this manipulator.

(c) Show that the Christoffel symbols cijk are all zero for this robot.
Interpret the meaning of this for the dynamic equations of motion.

(d) Derive the equations of motion in matrix form:
Dig)i+C(a.4)i+9(g) = wu

7-8 Derive the Euler-Lagrange equations for the planar RP robot in Fig-
ure 3.25.

7-9 Derive the Euler-Lagrange equations for the planar RPR robot in Fig-
ure 3.33.

7-10 Derive the Euler-Lagrange equations of motion for the three-link RRR
robot of Figure 3.32. Explore the use of symbolic software, such as
Maple or Mathematica, for this problem. See, for example, the Robot-
ica package [96].

7-11 For each of the robots above, define a parameter vector, ©, compute

the regressor, Y (g,4,§) and express the equations of motion as

Y(q,4,)0 =7 (7.179)
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7-12 Recall for a particle with kinetic energy K = %ma’:z, the momentum
is defined as
= mE= ﬁ
=M=

Therefore, for a mechanical system with generalized coordinates q1,. . . , g,
we define the generalized momentum p; as

dL

i

where L is the Lagrangian of the system. With K = 147 D(qg)¢ and

L =K —V prove that

Pk

L
Y am = 2K
k=1

7-13 There is another formulation of the equations of motion of a mechan-
ical system that is useful, the so-called Hamiltonian formulation.
Define the Hamiltonian function H by

n
H = ZQ:«P}:—L
=

(a) Show that H=K + V.
(b) Using the Euler-Lagrange equations, derive Hamilton's equations

o
U 0
. _ O
Pk = O k

where 7} is the input generalized force.

(c) For two-link manipulator of Figure 7.8 compute Hamiltonian equa-
tions in matrix form. Note that Hamilton’s equations are a sys-
tem of first order differential equations as opposed to a second
order system given by Lagrange’s equations.

7-14 Given the Hamiltonian H for a rigid robot, show that
dH By
&® 17

where 7 is the external force applied at the joints. What are the units
of 47
dt *



288 CHAPTER 7. DYNAMICS

NOTES AND REFERENCES

A general reference for dynamics is [46]. More advanced treatments of dy-
namics can be found in [2] and [88]. The Lagrangian and recursive Newton-
Euler formulations of the dynamic equations are given in [52]). These two
approaches are shown to be equivalent in [116]. A detailed discussion of
holonomic and nonholonomic constraints is found in [71). The same ref-
erence also treats both the Lagrangian and Hamiltonian formulations of
dynamics in detail. The properties of skew symmetry and passivity are dis-
cussed in [117], [72], and [99]. Parametrization of robot dynamics in terms
of a minimal set of inertia parameters is treated in [43]. Identification of
manipulator inertia parameters is discussed in [42].

Chapter 8

MULTIVARIABLE
CONTROL

In Chapter 6 we discussed techniques to derive control laws for each joint of
a manipulator based on a single-input/single-output model. Coupling effects
among the joints were regarded as disturbances to the individual systems.
In reality, the dynamic equations of a robot manipulator form a complex,
nonlinear, and multivariable system. In this chapter, therefore, we treat
the robot control problem in the context of nonlinear, multivariable control.
This approach allows us to provide more rigorous analysis of the performance
of control systems, and also allows us to design robust and adaptive nonlinear
control laws that guarantee stability and tracking of arbitrary trajectories.

We first reformulate the manipulator dynamic equations in a form more
suitable for the discussion to follow. Recall the robot equations of mo-
tion given by Equation (7.62) and the actuator dynamics given by Equa-
tion (6.15)

n n n
2 dki(@d+ D Y ciela)ids + g6 =7 (8.1)
i=1 i=1 j=1
iy, + Bibimy, = Kony / RiVi — /1 (8.2)
fork=1,...,n where By = B, +Kp, K, /Rk. Multiplying Equation (8.2)
by the gear ratio ry, and using the fact that the motor angles f,, and the
link angles gy, are related by

9mk = Trqr (8,3)
we may write Equation (8.2) as
Tidmik + TEBrik = kKo /RVi — 7 (8.4)
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Substituting Equation (8.4) into Equation (8.1) yields
n n K
ridm e+ Y diidii + Y cijedids + 8Bk + g5 = Tk—é—n'vk (8.5)
i=1 £5=1
for k =1,...,n. In matrix form Equation (8.5) can be written as
M(q)§+Clg,9)i+Bi+glg) = u (8.6)

where M(q) = D(q) + J with J a diagonal matrix with diagonal elements
72Jpm,. The gravity vector g(q) and the matrix C(q, §) defining the Coriolis
and centrifugal generalized forces are defined as before in Equations (7.64)
and (7.65). The input vector u has components '

Uy = 'f‘kf;—;;kvk y fork=1,...,n

Note that uy has units of torque.

Henceforth, we will take the friction coefficient matrix B = 0 for simplic-
ity and use Equation (8.6) as the plant model for our subsequent develop-
ment. We leave it as an exercise for the reader (Problem 8-1) to show that
the properties of passivity, skew-symmetry, bounds on the inertia matrix,
and linearity in the parameters continue to hold for the system (8.6).

8.1 PD CONTROL REVISITED

It is a rather remarkable fact that the simple PD control scheme for set-
point control of rigid robots that we discussed in Chapter 6 can be rigorously
shown to work in the general case of Equation (8.6).! An independent joint
PD control scheme can be written in vector form as

v = -Kpj—Kpg (8.7)

where § = g — % is the error between the desired (constant) joint displace-
ment vector ¢% and the actual joint displacement vector ¢, and Kp, Kp are
diagonal matrices of (positive) proportional and derivative gains, respec-
tively. We first show that, in the absence of gravity, that is, if g(g) is zero in
Equation (8.6), the PD control law given in Equation (8.7) achieves asymp-
totic tracking of the desired joint positions. This, in effect, reproduces the
result derived previously but is more rigorous, in the sense that the nonlinear
coupling terms are not approximated by a constant disturbance.

"The reader should review the discussion on Lyapunov stability in Appendix C.
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To show that the control law given in Equation (8.7) achieves asymptotic
tracking consider the Lyapunov function candidate

V = 1/24"M(g)j+1/28" Kpq (88)

The first term in Equation (8.8) is the kinetic energy of the robot and
the second term accounts for the proportional feedback Kpd. Note that
V' represents the total energy that would result if the joint actuators were
replaced by springs with stiffness constants represented by Kp and with
equilibrium positions at ¢%. Thus, V is a positive function except at the
“goal” configuration ¢ = ¢¢, ¢ = 0, at which point V is zero. The idea is
to show that along any motion of the robot, the function ¥V is decreasing
to zero. This will imply that the robot is moving toward the desired goal
configuration.

To show this we note that, since ¢¢ is constant, the time derivative of V
is given by

Vo= {"M(q)j+1/24" M(q)i+ ¢ Kpi (8.9)

Solving for M(g)§ in Equation (8.6) with g(g) = 0 and substituting the
resulting expression into Equation (8.9) yields

V = {T(u-Clg, ))+1/2qTM( )i+ dTKpj
= qT (u+ Kpd) +1/2¢7 (M(q) — 2C(q,4))d (8.10)
= ¢"(u+Kpg)

where in the last equality we have used the fact that M — 2C is skew sym-
metric. Substituting the PD control law (8.7) for u into the above yields

V = —TKpi<0 (8.11)

The above analysis shows that V' is decreasing as long as ¢ is not zero.
This by itself is not enough to prove the desired result since it is conceivable
that the manipulator could reach a position where ¢ = 0 but ¢ # ¢%. To
show that this cannot happen we can use LaSalle’s theorem (Appendix C).
Suppose V = 02. Then Equation (8.11) implies that ¢ = 0 and hence § = 0.
From the equations of motion with PD control

M(g)§+Cla,4)¢ = -Kpj—Kpi

*The notation V = 0 means that the expression is identically equal to zero, not simply
zero at one instant
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we must then have
0 = —Kpg

which implies that § = 0. LaSalle’s theorem then implies that the equilib-
rium is globally asymptotically stable.

In case there are gravitational terms present in Equation (8.6), then
Equation (8.10) must be modified as

Vo= Fu-glg)+Kpd) (812

The presence of the gravitational term in Equation (8.12) means that PD
control alone cannot guarantee asymptotic tracking. In practice there will
be a steady state error or offset. Assuming that the closed-loop system is
stable, the robot configuration g that is achieved will satisfy

Kp(g—q%) = g¢(g) (8.13)

The physical interpretation of Equation (8.13) is that the configuration
g must be such that the motor generates a steady state “holding torque”
Kp(q—q%) sufficient to balance the gravitational torque g(g). Thus, we see
that the steady state error can be reduced by increasing the position gain
Kp.

In order to remove this steady state error we can modify the PD control
law as

v = —KpG—Kpg+g(q) - (8.14)

The modified control law given by Equation (8.14), in effect, cancels the
gravitational terms and we achieve the same Equation (8.11) as before. The
control law given by Equation (8.14) requires the computation at each in-
stant of the gravitational terms g(q) from the Lagrangian equations. In the
case that these terms are unknown the control law (8.14) cannot be com-
puted. We will say more about this and related issues later in the context
of robust and adaptive control.

8.1.1 The Effect of Joint Flexibility

In Chapter 6 we considered the effect of Joint flexibility and showed for a
lumped model of a single-link robot that a PD control could be designed for
set-point tracking. In this section we will discuss the analogous result in the
general case of an n-link manipulator.
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We first derive a model similar to Equation (8.6) to represent the dy-
namics of an n-link robot with joint flexibility. For simplicity, assume that
the joints are revolute and are actuated by permanent magnet DC motors.
We model the flexibility of the ** joint as a linear torsional spring with
stiffness constant k;, fori=1,...,n.

Figure 8.1: A single link of a flexible joint manipulator. The joint elasticity
is represented by a torsional spring between the link angle #; and the motor
shaft angle 0,,;.

Referring to Figure 8.1, we let ¢y = [f1,...,8,]T be the vector of DH-
joint variables and ¢; = [%Bm3 P %QW]T be the vector of motor shaft
angles (reflected to the link side of the gears). Then ¢, — ¢, is the vector of
elastic joint deflections. Neglecting the effect of link motion on the kinetic
energy of the rotors, the kinetic and potential energies of the manipulator
are given by

1 N
K = EQ{D(Ql)fh + EQ;JQQ (8.15)
1 .
P = Plg)+ 5(91 - ) K (g1 — q) (8.16)

where J and K are diagonal matrices of inertia and stiffness constants,
respectively.

J0 . 0 ky 0 0
0 5L . 0 0 k ¢ 0
= 7 CEK=| (8.17)
0 0 0 0 0 « 0
0 0 o 0 0 ki

Note that we have simply augmented the kinetic energy of the rigid joint
robot with the kinetic energy of the actuators and we have likewise aug-
mented the potential energy due to gravity of the rigid joint model with
the elastic potential energy of the linear springs at the joints. It is now
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straightforward to compute the Euler-Lagrange equations for this system as
(Problem 8-2)

il

D(q1)d1 + Clgr, 1)1 + 9(q) + K(gr —q2) = 0 (8.18)
Jip+K(@—-q) = u

For the problem of set point tracking with PD control, consider a control
law of the form

c

u=—Kp - Kpja (8.19)

where @ = g2 — g% and ¢ is a vector of constant set points. As in the case
of the rigid joint model, suppose now that the gravity vector gl@)=0. To
show asymptotic tracking for the closed-loop system consider the Lyapunov
function candidate

1. AU TP | | P
V=5t D(a)dr + Eq%" Jia+ 5 - @) K(q - g) + §qTqu (8.20)

We leave it as an exercise (Problem 83) to show that an application of
LaSalle’s theorem proves global asymptotic stability of the system,

In the absence of gravity it is easy to show (Problem 84) that the motor
and link angles are equal in the steady state. Thus, one may choose the set
point g% as a vector of desired DH variables.

If gravity is present, then it is not apparent how one can implement grav-
ity compensation in a manner similar to the rigid joint case. We will address
this question later in the context of feedback linearization in Chapter 10.

8.2 INVERSE DYNAMICS

We now consider the application of more complex nonlinear control tech-
niques for trajectory tracking of rigid manipulators. The first algorithm that
we consider is known as the method of inverse dynamics. The method
of inverse dynamics is, as we shall see in Chapter 10, a special case of the
method of feedback linearization.

After presenting the basic idea of inverse dynamics, both in joint space
and in task space, we will discuss the practical situation of uncertainty in the
parameters defining the manipulator dynamics. The problem of parametric
uncertainty naturally leads to a discussion of robust and adaptive control,
which we will discuss in the remaining sections.

8.2. INVERSE DYNAMICS g0

8.2.1 Joint Space Inverse Dynamics

Consider again the dynamic equations of an n-link rigid robot in matrix
form

M(q)i+Cla.9)4+9()) = u (8.21)

The idea of inverse dynamics is to seek a nonlinear feedback control law

u = flg,q,2) (8.22)

which, when substituted into Equation (8.21), results in a linear closed-loop
system. For general nonlinear systems, such a control law may be quite
difficult or impossible to find. In the case of the manipulator dynamics given
by Equations (8.21), however, the problem is actually easy. By inspecting
Equation (8.21) we see that if we choose the control 1 according to the
equation

u = M(g)ag+C(q,4)d+ g(q) (8.23)

then, since the inertia matrix M is invertible, the combined system given by
Equations (8.21)-(8.23) reduces to

q = q (8.24)

The term a, represents a new input that is yet to be chosen. Equa-
tion (8.24) is known as the double integrator system as it represents n
uncoupled double integrators. Equation (8.23) is called the inverse dy-
namics control and achieves a rather remarkable result, namely that the
system given by Equation (8.24) is linear and decoupled. This means that
each input a,, can be designed to control a SISO linear system. Moreover,
assuming that a,, is a function only of g and g, then the closed-loop system
will be decoupled.

Since a, can now be designed to control a linear second order system,
an obvious choice is to set

a = §'(t)-Kog— Kig (8.25)
where § = q — q"’, é =q- q'rd, Ky, K; are diagonal matrices with diago-
g

nal elements consisting of position and velocity gains, respectively and the
reference trajectory

t = (g'(t),d"), %) (8.26)
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defines the desired time history of joint positions, velocities, and accelera-
tions. Note that Equation (8.25) is nothing more than a PD control with
feedforward acceleration as defined in Chapter 6.

Substituting Equation (8.25) into Equation (8.24), results in

§(6) + Knd() + Kodlt) = 0 (8:27)
A simple choice for the gain matrices Kg and Kj is
wf 0 ... 0 2w 07 ... 0
TS R ™
0 0 ... W 0 0 ..

which results in a decoupled closed-loop system with each joint response
equal to the response of a critically damped linear second order system
with natural frequency w;j. As before, the natural frequency w; determines
the speed of response of the joint, or equivalently, the rate of decay of the
tracking error. ) '

The inverse dynamics approach is extremely important as a basis for
control and it is worthwhile to examine it from alternative viewpoints. We
can give a second interpretation of the control law (8.23) as follows. Consider
again the manipulator dynamics (8.21). Since M(g) is invertible for ¢ € R”
we may solve for the acceleration § of the manipulator as

i = M u-Clgq)i—g(a)} (8.29)

Suppose we were able to specify the acceleration as the input to the sys-
tem. That is, suppose we had actuators capable of producing directly a
commanded acceleration (rather than indirectly by producing a force or
torque). Then the dynamics of the manipulator, which is after all a position
control device, would be given as

i(t) = aylt) (830)

where a,(t) is the input acceleration vector. This is again the familiar double
integrator system. Note that Equation (8.30) is not an approximation in
any sense; rather it represents the actual open-loop dynamics of the system
provided that the acceleration is chosen as the input. The control problem
for the system (8.30) is now easy and the acceleration input a, can be chosen
as before according to Equation (8.25).

In reality, however, such “acceleration actuators” are not available to
us and we must be content with the ability to produce a generalized force
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(torque) u; at each joint i. Comparing Equations (8.29) and (8.30) we see
that the torque input u and the acceleration input a, of the manipulator
are related by

M Hu-Clg,d)i-9(a)} = a (8.31)
Solving Equation (8.31) for the input torque u(t) yields
u = M(g)ag+C(q,4)i+9(q) (8.32)

which is the same as the previously derived expression (8.23). Thus, the
inverse dynamics can be viewed as an input transformation that transforms
the problem from one of choosing torque input commands to one of choosing
acceleration input commands. -

Note that the implementation of this control scheme requires the real-
time computation of the inertia matrix and the vectors of Coriolis, centrifu-
gal, and gravitational generalized forces. An important issue therefore in the
control system implementation is the design of the computer architecture for
the above computations.

Linearized System

-------------------------------------------------------

Trajectory | ¢ Outer Loop aq; Inner Loop| q
Planner Controller : Controller

.......................................................

Figure 8.2: Inner-loop/outer-loop control architecture. The inner-loop con-
trol computes the vector u of input torques as a function of the measured
joint positions and velocities and the given outer-loop control in order to
compensate the nonlinearities in the plant model. The outer-loop control
designed to track a given reference trajectory can then be based on a linear
and decoupled plant model.

Figure 8.2 illustrates the so-called inner-loop/outer-loop control ar-
chitecture. By this we mean that the computation of the nonlinear control
law (8.23) is performed in an inner-loop with the vectors ¢, ¢, and a, as its
inputs and u as output. The outer loop in the system is then the compu-
tation of the additional input term a,. Note that the outer-loop control
a, is more in line with the notion of a feedback control in the usual sense
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of being error driven. The design of the outer-loop feedback control is in
theory greatly simplified since it is designed for the plant represented by the
dotted lines in Figure 8.2, which is now a linear system.

8.2.2 Task Space Inverse Dynamics

As an illustration of the importance of the inner-loop/outer-loop control
architecture, we will show that tracking in task space can be achieved by
modifying the outer-loop control a, in Equation (8:24) while leaving the
inner-loop control unchanged. Let X € RS represent the end-effector pose
using any minimal representation of SO(3). Since X is a function of the
joint variables qQ we have

X = Jg) (8.33)
X = Ji+J(9)i (8.34)

where J = J, is the analytical Jacobian of Equation (4.84). Given the
double integrator system (8.24) in joint space we see that if a, is chosen as

%:Jd{q—jﬂ (8.35)

the result is a double integrator system in task space coordinates

¥ =ax (8.36)

Given a task space trajectory X%(t) satisfying the same smoothness and
boundedness assumptions as the joint space trajectory ¢%(t), we may choose
ax as

ax = X - Ko(X - X% - Ky (X - X9 (8.37)

so that the task space tracking error X = X — X satisfies
XX 4 5E =0 (8.38)

Therefore, a modification of the outer-loop control achieves a linear and
decoupled system directly in the task space coordinates without the need
to compute a joint space trajectory and without the need to modify the
nonlinear inner-loop control.

Note that we have used a minimal representation for the orientation of
the end effector in order to specify a trajectory X € RS. In general, if
the end effector coordinates are given in SE(3), then the Jacobian J in the
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above formulation will be the geometric Jacobian of Equation (4.42). In this
case

W

X=[”]=[i]=J(q)¢ (5.39)

and the outer-loop control

Oy

o= = |- iai) B40)

applied to Equation (8.24) results in the system

# = ay €R® (8.41)
@ = a €R® (8.42)
R = S(w)R, ReSO(3), S € s0(3) (8.43)

Although, in this latter case, the dynamics have not been linearized to a
double integrator, the outer-loop terms a,, and a,, may still be used to define
control laws to track end-effector trajectories in SE(3).

In both cases we see that nonsingularity of the Jacobian is necessary to
implement the outer-loop control. If the robot has more or fewer than six
joints, then the Jacobians are not square. In this case, other schemes have
been developed using, for example, the Jacobian pseudoinverse. See [25] for
details. :

8.3 ROBUST AND ADAPTIVE MOTION CONTROL

A drawback to the implementation of the inverse dynamics control method-
ology described in the previous section is that the parameters of the system
must be known exactly. If the parameters are uncertain, for example when
the manipulator picks up an unknown load, then the ideal performance of
the inverse dynamics controller is no longer guaranteed. This section is con-
cerned with the robust and adaptive motion control problem. The goal of
both robust and adaptive control is to maintain performance in terms of sta-
bility, tracking error, or other specifications despite parametric uncertainty,
external disturbances, unmodeled dynamics, or other uncertainties present
in the system. In distinguishing between robust control and adaptive con-
trol, we follow the commonly accepted notion that a robust controller is a
fixed controller designed to satisfy performance specifications over a given
range of uncertainties, whereas an adaptive controller incorporates some sort
of online parameter estimation. This distinction is important. For example,
in a repetitive motion task, the tracking errors produced by a fixed robust
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controller would tend to be repetitive as well, whereas tracking errors pro-
duced by an adaptive controller might be expected to decrease over time
as the plant and/or control parameters are updated based on runtime in-
formation. At the same time, adaptive controllers that perform well in the
face of parametric uncertainty may not perform well in the face of other
types of uncertainty such as external disturbances or unmodeled dynamics.
Therefore, an understanding of the trade-offs involved is important in de-
ciding whether to employ robust or adaptive control design methods in a
given situation. ’

8.3.1 Robust Inverse Dynamics

The inverse dynamics approach relies on exact cancellation of nonlinearities
in the robot equations of motion. The practical implementation of inverse
dynamics control requires consideration of various sources of uncertainties
such as modeling errors, unknown loads, and computation errors. Let us
return to the Euler-Lagrange equations of motion

M(q)i+C(g,4)g+9(q) = u (8.44)
and write the inverse dynamics control input u as
u=M(g)ag + Clg,d)i+3(a) (8.45)

where the notation (-) represents the computed or nominal value of (-) and
indicates that the theoretically exact inverse dynamics control cannot be

achieved in practice due to the uncertainties in the system. The error or

mismatch () = () — (-) is a measure of one’s knowledge of the system
parameters. ?

If we substitute Equation (8.45) into Equation (8.44) we obtain, after
some algebra (Problem 8-8),

G = aq+1(q,4,0) (8.46)
where
n = MY (Ma,+Cq+3) (8.47)
is called the uncertainty. We define E as
E=MM=M'M-1I (8.48)
which allows us to express the uncertainty n as

n=Ea,+ M (Cq+3) (8.49)

L
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The system (8.46) is still nonlinear and coupled due to the uncertainty
1(q,4,a4) and, therefore, we have no guarantee that the outer-loop control
given by Equation (8.25) will satisfy desired tracking performance specifi-
cations. In the next section we show how to modify the outer-loop control
(8.25) to guarantee global convergence of the tracking error for the system
(8.46).

Outer Loop Design via Lyapunov’s Second Method

There are several approaches to treat the robust inverse dynamics prob-
lem outlined above. In this section we will discuss the so-called theory of
guaranteed stability of uncertain systems, which is based on Lya-
punov’s second method. In this approach we set the outer-loop control ag
as

1, = §*(t) - Kof — Ka + da (8.50)

where da is an additional term to be designed. In terms of the tracking error

[

we may write Equations (8.46) and (8.50) as
¢ = Ae + B{da+n} (8.52)

where
B 0 I |0
I ] ) R

Thus, the double integrator is first stabilized by the linear feedback term
~Ko§ — K1g, and the additional control term da should be designed to
overcome the potentially destabilizing effect of the uncertainty . The basic
idea is to assume that we are able to compute a bound p(e,t) > 0 on the
uncertainty 7 as

lInll < ple, t) (8.54)

and design the additional input term da to guarantee ultimate boundedness
of the error trajectory e(t) in Equation (8.52). Note that the bound p is in
general a function of the tracking error e and time,

Returning to our expression for the uncertainty 7 and substituting for
a, from Equation (8.50) we have

n = Eog+ M (Cq+3)

Eéa + B(§ - Koj— K13) + MG + §) (8:58)
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Let us assume that we can find constants @ < 1, 71, and ;, together with
possibly time-varying 3 such that

lInll < addal] +llel] +allell® +75 (8.56)

We note that the condition a := [|E|| = [M~1M - I|| < 1 determines
how close our estimate M must be to the true inertia matrix. Suppose that
we have bounds on M~! as

MM <M ' (8.57)

If we choose the estimated inertia matrix M as
- 2

Wi i f - (8.58)
M+M
then it can be shown that
A M-M
MIM-I|<=—=«<1 8.59
a| I o (859)

The point is that there is always a choice for M that satisfies the condition
IE] < 1.

Next, assume, for the moment, that ||de|| < p(e,t) which must then be
checked a posteriori. It follows that

lInll < ap(e, t) +mllell +ellel® + 3 =: ple,t) (8.60)

which, since a < 1, defines p as
1
plest) = T—(nllell +allell* + ) (8.61)

Since Kq and K are chosén so that the matrix A in Equation (8.52) is
Hurwitz,® we may choose Q > 0 and let P > 0 be the unique symmetric
positive definite matrix satisfying the Lyapunov equation

ATP4+PA=—Q (8.62)
Defining the control da according to

B BTpPe . . iy

ba= (8.63)

0 ; if ||BTPe||=0

3A Hurwitz matrix is one that has all its eigenvalues in the open left half of the complex
plane.
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it follows that the Lyapunov function V = e Pe satisfies V < 0 along
solution trajectories of Equation (8.52). To show this result, we compute

V = —€'Qe+ 2" PB{fa+n} (8.64)

For simplicity set w = BT Pe and consider the second term w7 {§a + 7} in
the above expression. If w = 0 this term vanishes and for w # 0 we have

w

and hence, using the Cauchy-Schwartz inequality we have

Wl (—pre < —pllw|| + |jw
(o) < =plull + |l Il &id
= [fwll(=p+|nll) <0
since ||77]| < p. Therefore
V<-eTQe<0 (8.67)

and the result follows. Finally, note that ||da|| < p as required.

Since the above control term da is discontinuous on the subspace defined
by BT Pe = 0, solution trajectories on this subspace are not well defined in
the usual sense. One may define solutions in a generalized sense, the so-called
Filippov solutions [37]. A detailed treatment of discontinuous control
systems is beyond the scope of this text. In practice, the discontinuity in
the control results in the phenomenon of chattering, where the control
switches rapidly between the control values in (8.63).

One may implement a continuous approximation to the discontinuous
control as

BTPe : T
—p(e,t) i if ||B*Pe|| > €
(e BrBer o it 167P
da= (8.68)
~2&lprpe i [|BTPe|<e

In this case, since the control signal given by Equation (8.68) is continuous,
a solution to the system (8.52) exists for any initial condition and we can
prove the following result.

Theorem 3 All trajectories of the system (8.52) are uniformly ultimately
bounded (u.u.b.) using the continuous control law (8.68). (See Appendiz C
for the definition of uniform ultimate boundedness.)
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Proof: As before, choose V(&) = e” Pe and compute

V = —"Qe+2uw” (ba+n) (8.69)
< T Qe+2u” (ba+ pnz—“) . (8.70)
with ||w|| = ||BTPe|| as above. For ||lw|| > € the argument proceeds as

above and V < 0. For [|w]|| < € the second term above becomes

20" (~Lu-+ i) = 2ol + 20l
P ) = e

This expression attains a maximum value of eg when [{w|| = % Thus, we
have

V< —eTQe+ eg <0 (8.71)
provided
eFQe > eg (8.72)
Using the relationship
Mnin(Q)llel[? < €7 Qe < Az (Q)llel? (8.73)

where Amin(Q), Mnaz(@Q) denote the minimum and maximum eigenvalues,
respectively, of the matrix (), we have that V < 0 if

Aria(@Uell* > €5 (8.74)
or, equivalently ;
€p 2

o ) = 8.75

He” g (ZAmin(Q)) ( }

Let S5 denote the smallest level set of V' containing B(d), the ball of radius
§ and let B, denote the smallest ball containing S5. Then all solutions of
the closed-loop system are u.u.b. with respect to B;. The situation is shown
in Figure 8.3. All trajectories will eventually enter the ball B;; in fact, all
trajectories will reach the boundary of Sj since V is negative definite outside
of 3,5.

Note that the radius of the ultimate boundedness set, and hence, the
magnitude of the steady state tracking error, is proportional to the product
of the uncertainty bound p and the constant e. The constant e is used to
reduce or eliminate chattering and can be chosen only as large as necessary
to eliminate chattering.
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(A
N

e

Figure 8.3: The uniform ultimate boundedness set. Since V is negative -
outside the ball By, all trajectories will eventually enter the level set S;, the
smallest level set of V' containing Bs. The system is thus u.u.b. with respect
to B,, the smallest ball containing Sj.

8.3.2 Adaptive Inverse Dynamics

Once the linear parametrization property for manipulators became widely
known in the mid-1980’s, the first globally convergent adaptive control re-
sults began to appear. These first results were based on the inverse dynam-
ics approach discussed above. Consider the plant given by Equation (8.44)
and the control given by Equation (8.45) as above, but now suppose that
the parameters appearing in Equation (8.45) are not fixed as in the robust
control approach, but are time-varying estimates of the true parameters.
Substituting Equation (8.45) into Equation (8.44) and setting

o = §* - K1(4 - ¢%) - Kolg - ¢%) (8.76)

it can be shown (Problem 8-10), using the linear parametrization property,
that

G+ K13+ Kog = M"Y (g,4,4)0 (8.77)

where Y is the regressor function and § = 4 — 8, where @ is the estimate of
the parameter vector 4. In state space we write the system (8.77) as

¢ = Ae+ B®f (8.78)

A={ ¢ I],B:[”],¢=M*Ymmm (8.79)
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with Ky and K7 chosen as before as diagonal matrices of positive gains so
that A is a Hurwitz matrix. Let P be the unique symmetric, positive definite
matrix P satisfying the matrix Lyapunov equation

ATP+PA = —Q (8.80)
and choose the parameter update law as
6=-r"'97BTPe (8.81)

where T is a constant, symmetric, positive definite matrix. Then, global
convergence to zero of the tracking error with all internal signals remaining
bounded can be shown using the Lyapunov function

Vs
V=elPe+ EGTI‘Q (8.82)

To see this we calculate V' as (Problem 8-11)
V = —eTQe+0"{87 B Pe+Th) (8.83)

the latter term following since @ is constant, that is, g = f. Using the
parameter update law (8.81) we have

= e (8.84)

From this it follows that the position tracking errors converge to zero asymp-
totically and the parameter estimation errors remain bounded. We will not
go through the details of the proof in this section. The argument is sim-
ilar to that of the passivity-based, adaptive control approach of the next
section so we will defer the details until later. In order to implement this
adaptive inverse dynamics scheme, however, one notes that the acceleration
g is needed in the parameter update law and that M must be invertible.
The need for the joint acceleration in the parameter update law presents a
serious challenge to its implementation. Acceleration sensors are noisy and
introduce additional cost whereas calculating the acceleration by numerical
differentiation of position or velocity signals is not feasible in most cases.
The invertibility of M can be enforced in the algorithm by resetting the
parameter estimate whenever 6 would otherwise result in M becoming sin-
gular. The passivity-based approaches that we treat next remove both of
these impediments.
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8.4 PASSIVITY-BASED MOTION CONTROL

The inverse dynamics based approaches in the previous section rely on can-
cellation of nonlinearities in the system dynamics. In this section we discuss
control techniques based on the passivity or skew symmetry property of the
Euler-Lagrange equations. These methods do not rely on cancellation of
nonlinearities and hence, do not lead to a linear closed-loop system even in
the exact case of no uncertainty. However, as we shall see, the passivity-
based methods have other advantages with respect to robust and adaptive
control.

To motivate the robust and adaptive methods to follow consider again
the Euler-Lagrange equations

M(g)i+Clg,4)q+9(g) =u (8.85)
and choose the control input according to
u=M(q)a+C(q,¢)v+g(qg) — Kr ) (8.86)
where the quantities v, ¢, and r are given as

v = ¢ —Ag
a = v=¢"-A§
l— Q—U=§+A§

where K and A are diagonal matrices of constant, positive gains. Substitut-
ing the control law (8.86) into the plant model (8.85) leads to

M(g)7 + Cg,g)r + Kr=0 : (8.87)

Note that, in contrast to the inverse dynamics control approach, the closed-
loop system (8.87) is still a coupled nonlinear system. Stability and asymp-
totic convergence of the tracking error to zero therefore are not obvious and
require additional analysis. Consider the Lyapunov function candidate

e %TTM(Q)T + FAKG (8.88)

Calculating V yields

1

T M7 + LrTMr + 2§TAKG

—rTKr+ 24TAK G+ 3T (M - 20)r (859
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Using the skew symmetry property and the definition of r, Equation (8.89)
reduces to

V = —FATKA - Kq
70 (8.90)
where AP
o= ¥ 1] s

Therefore the equilibrium e = 0 in error space is globally asymptotically
stable.

In fact, assuming constant norm bounds on the inertia matrix M(q),
as happens, for example, when all joints are revolute, it is fairly straight-
forward to prove global exponential stability of the tracking error. In the
case of the inverse dynamics control considered previously, we concluded
exactly the same result in a much simpler way. Therefore the advantages,
if any, of the passivity-based control over the inverse dynamics control are
unclear at this point. We will see in the next two sections that the real ad-
vantage of the passivity-based approach occurs for the robust and adaptive
control problems. In the robust control approach considered next we will
see that the assumption ||E|| = ||[M~*M — I|| < 1 can be eliminated and
that the computation of the uncertainty bounds is greatly simplified. In the
adaptive control approach we will see that the requirements on acceleration
measurement and boundedness of the estimated inertia matrix M can be
eliminated. Thus, the passivity-based approach has some very important
advantages over the inverse dynamics approach for the robust and adaptive
control problems.

8.41 Passivity-Based Robust Control

In this section we use the passivity-based approach above to derive an al-
ternative robust control algorithm that exploits both the skew symmetry
property and linearity in the parameters and leads to a much easier design
in terms of computation of uncertainty bounds. We modify the control input
(8.86) as

u=M(g)a+Clg,4)v+d(g) — Kr (8.92)

where K, A, v, a, and r are given as before. In terms of the linear parametriza-
tion of the robot dynamics, the control (8.92) becomes

u =¥(q f},a,t})é - Kr (8.93)
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and the combination of Equation (8.92) with Equation (8.44) yields
M(q)# +C(g,d)r + Kr =Y (6 —8) (8.94)
We now choose the term  in Equation (8.93) as
0=0y+ 066 (8.95)

where 8 is a fixed nominal parameter vector and 66 is an additional control
term. The system (8.94) then becomes

M(g)# +Clg,9)r + Kr =Y (g,,0,v)(0 + 56) (8.96)

where § = 6y — § is a constant vector and represents the parametric un-
certainty in the system. If the uncertainty can be bounded by finding a
nonnegative constant g > 0 such that

16]) = 116 — o]l < p (8.97)

then the additional term 66 can be designed according to

I .l T 7
,OW Y if ”Y T||>6

56 = (8.98)

—'gYTr s if |[YTr|| <€

Using the same Lyapunov function candidate from Equation (8.88) above,
we may show uniform ultimate boundedness of the tracking error. Carrying
out the details of the calculation of V yields

V = —eTQe+rTY(6+06) (8.99)

Uniform ultimate boundedness of the tracking error follows with the control
86 from Equation (8.98) exactly as in the proof of Theorem 3. The details
are left as an exercise (Problem 8-13).

Comparing this approach with the approach in Section 8.3.1 we see that
finding a constant bound p for the constant vector § is much simpler than
finding a time-varying bound for 1 in Equation (8.47). The bound p in this
case depends only on the inertia parameters of the manipulator, while p(z, t)
in Equation (8.54) depends on the manipulator state vector, the reference
trajectory and, in addition, requires some assumptions on the estimated
inertia matrix M(q).
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8.4.2 Passivity-Based Adaptive Control

In the adaptive approach the vector f in Equation (8.93) is taken to be a
time-varying estimate of the true parameter vector §. Combining the control
law, Equation (8.92), with Equation (8.44) yields

M(q)7 +C(q,)r + Kr=Y8 (8.100)

The parameter estimate § may be computed using standard methods of
adaptive control such as gradient or least squares. For example, using the
gradient update law

b= (G400 (8.101)

together with the Lyapunov function

V= %TTM(q)T + ARG+ %é’*“ré (8.102)
results in global convergence of the tracking errors to zero and boundedness
of the parameter estimates.

To show this, we first note an important difference between the adaptive
control approach and the robust control approach from the previous section.
In the robust approach the states of the system are § and q. In the adaptive
control approach, the fact that @ satisfies the differential equation {8.101)4
means that the complete state vector now includes @ and the state equa-
tions are given by the coupled system, Equations (8. .100) and (8.101). For
this reason we included the positive definite term 167T4 in the Lyapunov
function (8.102).5

If we now compute V along trajectories of the system (8.100), we obtain

V = —FATKAG-§TKG+6T{0d+ YTr) (8.103)

Substituting the expression for § from the gradient update law (8.101) into
Equation (8.103) yields

V = —§"ATKAj- TKG=-eTQe<0 (8.104)

where e and Q are defined as before, showing that the closed-loop system is
stable in the sense of Lyapunov.

4Note that 6 = @ since the parameter vector 4 is constant.

*Similar remarks hold for the adaptive inverse dynamics approach in the previous
section,
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Note that we have claimed only that the Lyapunov function is negative
semi-definite, not negative definite since V does not contain any terms that
are negative definite in 8. In fact, this situation is common in such adaptive
control schemes and is a funda.mental reason for several difficulties that arise
in adaptive control such as lack of robustness to external disturbances and
lack of parameter convergence. A detailed discussion of these and other

- problems in adaptive control is outside the scope of this text.

Returning to the problem at hand, although we conclude only stability
in the sense of Lyapunov for the closed-loop system (8.100) and (8. 101),
further analysis will allow us to draw stronger conclusions. First, note that
since V is nonincreasing from Equation (8.104), the value of V(t) can be no
greater than its value at ¢ = 0. Since V consists of a sum of nonnegative
terms, this means that each of the terms r, §, and @ are bounded as functions
of time.

With regard to the tracking error, §, g, we also note that V is quadratic
in the error vector e(t). Integrating both sides of Equation (8.104) gives

V{t)-V(0) = - ]ﬂteT(U)Qe(a)da < oo (8.105)

As a consequence, the tracking error vector e(t) is a so-called square inte-
grable function. Such functions, under some mild additional restrictions,
must tend to zero as t — 0. Specifically, we may appeal to the following
known, as Barbalat’s Lemma.

Lemma 8.1 Suppose f : R — R is a square integrable function and further
suppose that its derivative f is bounded. Then f(t) = 0ast— oo.

We note that, since both r = § + Ag and g have already been shown to be
bounded, it follows that § is also bounded. Therefore, we have that § is
square integrable and its derivative is bounded. Hence, the tracking error
g—0ast— co.

To show that the velocity tracking error also converges to Z€ro, one
must appeal to the equations of motion (8.100), from which one may argue
that the acceleration § is bounded. It follows that the velocity error §
asymptotically converges to zero provided that the reference acceleration
{%(t) is bounded.

8.5 SUMMARY

In this chapter we discussed the nonlinear control problem for robot manip-
ulators. We developed models of both rigid and flexible joint robots. We
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then developed several control algorithms and discussed pros and cons of
each as well as implementation aspects. Among the algorithms we discussed
were PD control, inverse dynamics, and passivity-based control. Moreover
we showed how to formulate robust and adaptive versions of the latter two
approaches.

Plant Models
The rigid and flexible joint robot models are, respectively:
M(g)i+Clg,d)i+glg) = u

D(q1)i1 + Clq, @)z + 9(@) + Ko — 2)
Ji+ K(g2 — q1)

|
&

PD Control

A PD control law in joint space is of the form
v = —Kpj—Kpg

Global asymptotic tracking for the rigid model can be shown using the
Lyapunov function candidate below together with LaSalle’s theorem in case

the gravity vector g(g) = 0.

Vo= 1/20"M(g)i+1/28"Kpd

PD Control with gravity compensation
With gravity present, the PD plus gravity compensation algorithm below
also results in global asymptotic tracking for the rigid model.

v = —Kpg—Kpi+g(q)

Joint Space Inverse Dynamics

The inverse dynamics control law consists of the following two expressions,
the first being the inner-loop control and the second being the outer-loop
control.

u = M(q)ay+Clg,)d+9(a)
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ag = §t) - Koj— Ki§

The inverse dynamics algorithm results in a closed-loop system that is linear
and decoupled.

Task Space Inverse Dynamics

We showed that the modified outer-loop term below results in a linear,
decoupled system in task space coordinates X, where X is a minimal rep-
resentation of SE(3) and J is the so-called analytical Jacobian.

ag = J {ax - Jq}

gy =H =Ko (X—~ XN ~ By (X — X

Robust Inverse Dynamics

Wel presented a Lyapunov-based approach for robust inverse dynamics con-
trol.

u=M(g)a, + Clg,d)i + d(q)

Wht_are M, C, and G(g) are the nominal values of M, C, and g. From this we
derived the state space model

é= Ae+ B{da + n}

where 7 represents the uncertainty resulting from inexact cancellation of

nonlinearities and
0 J) 0
A: ) pr== |
| % x|+ 5=]7]

The additional control input da was chosen as
BTPe ;
=) t y T
- ple, )_T_IIB P if ||B"Pel| > e
Q=
t
_Helprp, i |BTPel| <«

and shown to achieve uniform ultimate boundedness of all trajectories. This

is a practical notion of asymptotic stability in the sense that the tracking
errors can be made small.
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Adaptive Inverse Dynamics

The adaptive version of the inverse dynamics control results in a system of
the form

- ¢ = Ae+ B®0

= -T1a7BTPe

where f represents the unknown parameters (masses, moments of iner.tia,
etc.) The second equation above is used to estimate 'the parameters on]mse.
The Lyapunov function candidate below can be used to show asymptotic
convergence of the tracking errors to zero and boundedness of the parameter
estimation error.

¥ el Pay géfré

Passivity-Based Robust Control

Following the treatment of inverse dynamics we introduced the notion of
passivity-based control. This approach exploits the passivity prop_el:ty of
the robot dynamics rather than attempting to cancel the nonlinearities as
in the inverse dynamics approach. We presented an algorithm of the form

u=M(g)a+Clg,dv+dlg) — Kr

where the quantities v, a, and r are given as

v = ¢#-A7
a = v=§—-A§

r o= -v=q¢+A§

and K is a diagonal matrix of positive gains. This results in a closed-loop
system

M(q)f +Clg,d)r + Kr=Y(6-6)
In the robust passivity-based approach the term § is chosen as

é=90+6ﬂ
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where 0 is a fixed nominal parameter vector and 64 is an additional control
term. The additional term 46 can be designed according to

ot i i (YT
el
06 =
~ByTr i ||YTr|<e

where p is a bound on the parameter uncertainty. Uniform ultimate bound-
edness of the tracking errors follows using the Lyapunov function candidate
1

V=
2

T M(q)r + §TAKG

Passivity-Based Adaptive Control

In the adaptive version of this approach we derived the system

M(q)7 +Cl(q,)r+ Kr=Y8

6 =-T7'Y"(g,4,0,0)r

and used the Lyapunov function candidate

1 lop -
V= 5rTM(q)r +qTAKG+ §191"1“:9
to show global convergence of the tracking errors to zero and boundedness
of the parameter estimates.

PROBLEMS

81 Verify the properties of skew symmetry, passivity and linearity in the
parameters for the system giveti-by Equation (8.6). Compute bounds
on the inertia matrix, M(g), in terms of bounds on D(q). Show that
M(q) is positive definite.

8-2 Form the Lagrangian for an n-link manipulator with joint flexibility
using Equations (8.15) and (8.16). From this derive the equations of
motion (8.18).

8-3 Complete the proof of stability of PD control for the flexible joint robot
without gravity terms using the Lyapunov function candidate (8.20)
and LaSalle’s theorem.
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8-4 Given the flexible joint model defined by Equation (8.18) with the PD
control law (8.19), show that ¢y = go in the steady state. What are
the steady state values of ¢ and gq if the gravity term is present? How
could one define the reference position ¢? in the case that gravity is

present?

8-5 Suppose that the PD control law given by Equation (8.19) is imple-
mented using the link variables

u = Kpg— Kpg

where § = q; — ¢%. Show that the equilibrium § =0 = ¢; is unstable.
Hint: Use Lyapunov’s First Method, that is, show that the equilibrium
is unstable for the linearized system.

86 Simulate an inverse dynamics control law for a two-link elbow manipu-
lator whose equations of motion were derived in Chapter 7. Investigate
what happens if there are constraints on the input torque.

8-7 For the system of Problem 8-6 what happens to the response of the
system if the coriolis and centrifugal terms are dropped from the in-
verse dynamics control law in order to facilitate computation? What
happens if incorrect values are used for the link masses? Investigate

via computer simulation.
88 Carry out the details to derive the uncertain system (8.46) and (8.47).

8-9 Add an outer-loop correction term da to the control law of Problem -7
to overcome the effects of uncertainty. Base your design on the second
method of Lyapunov as in Section 8.3.1. .

8-10 Derive the error equation (8.77) using the linearity in the parameters
property of the robot dynamics.

8-11 Verify the expression for V in Equation (8.83).
8-12 Consider the coupled nonlinear system

h+3np+r = u+tpun
fia +cosyrgn +3(n — ) = ua—3(cosyr) your

where u1,us are the inputs and y;,yz are the outputs.

a) What is the dimension of the state space?
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b) Choose state variables and write the system as a system of first
order differential equations in state space.

c) Fi‘nd_ an inverse dynamics control so that the closed-loop system
is linear and decoupled, with each subsystem having natural fre-
quency 10 radians and damping ratio 1/2.

8-13 Complete the proof of uniform ultimate boundedness for the passivity-
based robust control law given by Equation (8.92) applied to the rigid
robot model.

8-14 Prove the inequality (8.59).

NOTES AND REFERENCES

Many of the fundamental theoretical problems in motion control of robot
manipulators were solved during an intense period of research from about
the mid-1980's until the early-1990’s during which time researchers first
began to exploit the structural properties of manipulator dynamics such as
feedback linearizability, skew symmetry and passivity, multiple time-scale
behavior, and other properties. For a more advanced treatment of some of
these topics, the reader is referred to [124] and [25].

The literature on robot control is vast and we have given only the basic
results in several of the main areas of control. In the area of PD and PID
control of manipulators, the earliest results are contained in [132]. These
results were based on the Hamiltonian formulation of robot dynamics and
effectively exploited the passivity property. The use of energy as a Lyapunov
function is described in [65).

The problem of joint flexibility was first brought to the forefront of
robotics research in [97), [130], and [131]. The model presented here to
describe the dynamics of flexible joint robots is due to (122].

The inverse dynamics approach to control is also called the method
of computed torque in the literature. The earliest results on computed
torque appeared in [86] and [104]. A related approach known as the method
of resolved motion acceleration control is due to [82]. In [69] these
various control schemes are all compared to the method of inverse dynamics
and shown to be essentially equivalent.

The robust inverse dynamics control approach here follows closely the
general methodology in [21]. The earliest application of this method to the
manipulator control problem was in [24] and [125]. This technique is closely
related to the so-called method of sliding modes which has been applied
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to manipulator control in [118]. A very complete survey of robust control
of robots up to about 1990 is found in [1]. Other results in robust control
from an operator theoretic viewpoint are [127] and [49]. The passivity-based
robust control result here is due to [123].

The adaptive inverse dynamics control result presented here is due to
[22]. Other notable results in this area appeared in [90]. The first results
in passivity-based adaptive control of manipulators was in [55] and [117].
The Lyapunov stability proof presented here is due to [121]. A unifying
treatment of adaptive manipulator control from a passivity perspective was
presented in [99]. Other works based on passivity are [14] and [10].

One of the problems with the adaptive control approaches considered
here is the so-called parameter drift problem. The Lyapunov stability
proofs presented show that the parameter estimates are bounded but there is
no guarantee that the estimated parameters converge to their true values. It
can be shown that the estimated parameters converge to the true parameters
provided the reference trajectory satisfies the condition of persistency of
excitation

to+T
al < f YT(q% ¢4, ¢)Y (6%, ¢, d)dt < BI (8.106)

to

for all ty, where o, 3, and T are positive constants.

Chapter 9

FORCE CONTROL

In previous chapters we considered the problem of tracking motion trajec-
tories using a variety of elementary and advanced control methods. These
position control schemes are adequate for tasks such as materials transfer,
spray painting, or spot welding where the manipulator is not interacting
significantly with objects in the workplace (hereafter referred to as the en-
vironment). However, tasks such as assembly, grinding, and deburring,
which involve extensive contact with the environment, are often better han-
dled by controlling the forces! of interaction between the manipulator and
the environment rather than simply controlling the position of the end effec-
tor. For example, consider an application where the manipulator is required
to wash a window, or to write with a felt tip marker. In both cases a pure
position control scheme is unlikely to work. Slight deviations of the end
effector from a planned trajectory would cause the manipulator either to
lose contact with the surface or to press too strongly on the surface. For a
highly rigid structure such as a robot, a slight position error could lead to
extremely large forces of interaction with disastrous consequences (broken
window, smashed pen, damaged end effector, etc.). The above applications
are typical in that they involve both force control and trajectory control. In
the window washing application, for example, one clearly needs to control
the forces normal to the plane of the window and position in the plane of
the window.

A force control strategy is one that modifies position trajectories based
on the sensed forces. There are three main types of sensors for force feedback,
wrist force sensors, joint torque sensors, and tactile or hand sensors. A
wrist force sensor such as that shown in Figure 9.1 usually consists of an

'Hereafter we use force to mean force and/or torque and position to mean position
and/or orientation.
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Figure 9.1: A wrist force sensor.

array of strain gauges and can delineate the three components of the vector
force along the three axes of the sensor coordinate frame, and the three
components of the torque about these axes. A joint torque sensor consists
of strain gauges located on the actuator shaft. Tactile sensors are usually
located on the fingers of the gripper and are useful for sensing gripping
force and for shape detection. For the purposes of controlling the end-
effector/environment interactions, the six-axis wrist sensor usually gives the
best results and we shall henceforth assume that the manipulator is equipped
with $uch a device,

9.1 COORDINATE FRAMES AND CONSTRAINTS

Force control tasks can be thought of in terms of constraints imposed by the
robot /environment interaction. A manipulator moving through free space
within its workspace is unconstrained in motion and can exert no forces
since there is no source of reaction force from the environment. A wrist
force sensor in such a case would record only the inertial forces due to any
acceleration of the end effector. As soon as the manipulator comes in contact
with the environment, say a rigid surface as shown in Figure 9.2, one or more
degrees of freedom in motion may be lost since the manipulator cannot move
through the environment surface. At the same time, the manipulator can
exert forces against the environment.
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KA

Figure 9.2: Robot end effector in contact with a rigid surface.

9.1.1 Reciprocal Bases

In order to describe the robot/environment interaction, let ¢ = b7, w7|T
represent the instantaneous linear and angular velocity of the end effector
and let F' = [f7,nT|T represent the instantaneous force and moment acting
on the end effector. The vectors £ and F' are each elements of six dimen-
sional vector spaces, which we denote by M and F, the motion and force
spaces, respectively. The vectors £ and F are called Twists and Wrenches,
respectively, in more advanced texts [93] although we will continue to refer
to them simply as velocity and force for simplicity.

Definition 9.1

1. If{es,...,es} is a basis for the vector space M, and {f1,..., fe} isa
basis for F, we say that these basis vectors are reciprocal provided

T op e .
Ifi = 0 ifi#j
e 9.1
effi = 1 #fi=j (@1)
2. A twist £ € M and a wrench F € F are called reciprocal if
EF=vTf+wTn=0 (9.2)

The advantage of using reciprocal basis vectors is that the product ¢TF is
then invariant with respect to a linear change of basis from one reciprocal
coordinate system to another. Thus, the reciprocity condition given by
Equation (9.2) is invariant with respect to choice of reciprocal bases of M
and F. We shall see in specific cases below that the reciprocity relation
given by Equation (9.2) may be used to design reference inputs to execute
motion and force control tasks.
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Since M and  are each six dimensional vector spaces, it is tempting to
identify each with R®. However, it turns out that inner product expressions
such as {r{& or FlT F, for vectors &;, F; belonging to M an.d F, respectively,
are not necessarily well defined. For example, the expression

E?& = 'ufvg + wfwg (9.3)

is not invariant with respect to either choice of units or l?asis vectors i.n M It
is possible to define inner product like operations, that is, symmefric, bilin-
ear forms on M and F that have the necessary invariance properties. These
are the so-called Klein form, KL(¢;,£2), and Killing form, K1 (&,8&),
defined according to -

KL(&,6) = vl wg +wl g (9.4)
KI(£1,6) = wiws (9.5)

However, a detailed discussion of these concepts is beyond the scope of this
text. As the reader may suspect, the need for a careful treatment f’f these
concepts is related to the geometry of SO(3) as we have seen before in other
contexts.

Example 9.1
Suppose that
gl = [1r 1: 11 21 2) 2}T
& [2,2,2,—1,~1,-1"

where the linear velocity is in.meters/sec and angular velocity is in radi-
ans/sec. Then clearly, £7€; = 0 and so one could infer that & and & are
orthogonal vectors in M. However, suppose now that the linear velocity is
represented in units of centimeters/sec. Then

& = [1x10%1x10%1x10%2,2,2f
¢ = [2x102,2x102,2><102,—1,—1,—1]T

and clearly £, # 0. Thus, the usual notion of orthogonality is not mean-
ingful in M. It is easy to show that the equality K L(£1,&2) = 0 (respectively,
KI(&,6) =0) is independent of the units or the basis chosen to represent
&1 and &. For example, the condition KI(£1,&2) =0 means that the azes of
rotation defining wy and wy are orthogonal.

(3
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9.1.2 Natural and Artificial Constraints

In this section we discuss so-called natural constraints, which are defined
using the reciprocity condition given by Equation (9.2). We then discuss
the notion of Artificial Constraints, which are used to define reference
inputs for motion and force control tasks.

We begin by defining a so-called compliance frame 0.z, (also called
a constraint frame) in which the task to be performed is easily described.
For example in the window washing application we can define a frame at
the tool with the z.-axis along the surface normal direction. The task spec-
ification is then expressed in terms of maintaining a constant force in the z,
direction while following a prescribed trajectory in the z.-y. plane. Such a
position constraint in the z. direction, arising from the presence of a rigid
surface, is a natural constraint. The force that the robot exerts against the
rigid surface in the z. direction, on the other hand, is not constrained by the
environment. A desired force in the 2, direction would then be considered
as an artificial constraint that must be maintained by the control system.

Natural Constraints | Artificial Constraints
By = I 0
vy =0 fy =20
f = 0 UV, = U4
We = 0 iy, = 0
wy =0 ny = 0
n, =0 Wy =

Figure 9.3: Inserting a peg into a hole.

Figure 9.3 shows a typical task, that of inserting a peg into a hole. With
respect to a compliance frame o.z.y.z, as shown at the end of the peg, we
may take the standard orthonormal basis in RS for both M and F, in which
case

T = Upfz + vy fy + 0. f2 + weng +wyny +wyn, (9.6)

If we assume that the walls of the hole and the peg are perfectly rigid and
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there is no friction, it is easy to see that
vy=0 v=0 f=0 (9.7
wy=0 wy=0 n,=0

and thus, the reciprocity condition ¢7F = 0 is satisfied. . These rela_ti?n-
ships given by Equation (9.7) are termed natural constraints. Examining
Equation (9.6) we see that the variables

fo fy vz Mz Ny Wi (9.8)

are unconstrained by the environment. In other words, given the natural
constraints from Equation (9.7), the reciprocity condition ¢TF = 0 holds
for all values of the above variables in Equation (9.8). We may therefore
arbitrarily assign reference values, called artificial constraints, for these
variables that must then be enforced by the control system to carry out t.he
task at hand. For example, in the peg-in-hole task, we may define artificial
constraints as

fz=0 fy=0 vy =4* (9.9)
n,=0 ny=0 w,=0

where v is the desired speed of insertion of the peg in the z-direction. .
Figure 9.4 shows natural and artificial constraints for the task of turning
a crank.

Natural Constraints | Artificial Constraints
vy =0 =10
fy =0 v, =0
B, =0 f, =1
wy = 0 M == §
wy = 0 ny = 0

L n, =0 W, = Wy

Figure 9.4: Turning a crank.
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9.2 NETWORK MODELS AND IMPEDANCE

The reciprocity condition (€T F = 0 means that the forces of constraint do no
work in directions compatible with motion constraints and holds under the
ideal conditions of no friction and perfect rigidity of both the robot and the
environment. In practice, compliance and friction in the robot/environment

interface will alter the strict separation between motion constraints and force
constraints.

Figure 9.5: Compliant environment.

For example, consider the situation in Figure 9.5. Since the environment
deforms in response to a force, there is clearly both motion and force normal
to the surface. Thus, the product &(t)F(¢) along this direction will not be
zero. Let k represent the stiffness of the surface so that F = kz. Then

[ tepatiin=r [ L i
ﬂzu:ruug odU,ZIu

/ ) F(u)du
0

SH(z(t) ~ 22(0)

is the change of the potential energy due to the material deformation. The
environment stiffness k determines the amount of force needed to produce a
given motion. The higher the value of k the more the environment “impedes”
the motion of the end effector.

In this section we introduce the notion of mechanical impedance,
which captures the relation between force and motion. We introduce so-
called network models, which are particularly useful for modeling the
interaction between the robot and the environment.

We model the robot and the environment as one port networks as
shown in Figure 9.6. The dynamics of the robot and environment determine
the relations among the port variables, V,, F,, and V., F,, respectively.
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The forces F,, F. are known as effort or across variables while th§ vc?locities
V., V, are known as flow or through variables. With this description, the

1-Port F

Figure 9.6: One-port network.

product of the port variables, VT F, represents instantaneous power and
the integral of this product

/t VT (a)F(c)do
0

is the energy dissipated by the Network over the time interval [0, t.]. .

The robot and the environment are then coupled through their inter-
action ports, as shown in Figure 9.7, which describes the energy exchange
between the robot and the environment.

v =¥

g ———

Iviron-
F E

Robot whp

Figure 9.7: Robot /environment interaction.

9.2.1 Impedance Operators

The relationship between the effort and flow variables may be described in
terms of an impedance operator. For linear, time invariant systems, we
may utilize the s-domain or Laplace domain to define the impedance.

Definition 9.2 Given the one-port network in Figure 9.6 the impedance,
Z(s) is defined as the ratio of the Laplace transform of the effort to the
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Laplace transform of the flow,

Z(s) = == (9.10)

Example 9.2
Suppose a mass-spring-damper system is described by the differential
equation

Mi+Bi+Kz=F (9.11)

Taking the Laplace transforms of both sides (assuming zero instial condi-
tions) it follows that

Z(s)=F(s)/V(s)=Ms+B+K/s (9.12)

9.2.2 Classification of Impedance Operators

It seems intuitive that different types of environments would dictate different
control strategies. For example, as we have seen, pure position control would
be difficult in contact with a very stiff environment as in the window washing
example. Similarly, interaction forces would be difficult to control if the
environment is very soft. In this section we introduce terminology to classify
robot and environment impedance operators that will prove useful in the
analysis to follow.

Definition 9.3 An impedance Z(s) in the Laplace variable s is-said to be
1. Inertial if and only if |Z(0)| =0
2. Resistive if and only if |Z(0)| = B for some constant 0 < B < 0
3. Capacitive if and only if | Z(0)| = c0

Example 9.3

Figure 9.8 shows ezamples of environment types. Figure 9.8(a) shows
¢ mass on a frictionless surface. The impedance is Z(s) = Ms, which
is inertial. Figure 9.8(b) shows a mass moving in @ viscous medium with
resistance B. Then Z(s) = Ms+ B, which is resistive. Figure 9.8(c) shows
a linear spring with stiffness K. Then Z(s) = K/s, which is capacitive.
o
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Mass Viscous Fluid Spring
"\_/: k
F-{ N F :@5 F
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(a) Inertial (b) Resistive () Capacitive

Figure 9.8: Examples of (a) inertial, (b) resistive, and (c) capacitive envi-
ronments.

9.2.3 Thévenin and Norton Equivalents

In linear circuit theory it is common to use so-called Thévenin and Norton
equivalent circuits for analysis and design. It is easy to show that any one-
port network consisting of passive elements (resistors, capacitors, inductors)
and current or voltage sources can be represented either as an impedance
Z(s) in series with an effort source (Thévenin Equivalent) or as an impedance
Z(s) in parallel with a flow source (Norton Equivalent). The independent
sources Fy and V, may be used to represent reference signal generators for
force and velocity, respectively, or they may represent external disturbances.

V. Z(s)
— 3 3
F, F |4 Z2(s) F

Figure 9.9: Thévenin and Norton equivalent networks.

9.3 TASK SPACE DYNAMICS AND CONTROL

Since a manipulator task, such as grasping an object, or inserting a peg into
a hole, is typically specified relative to the end-effector frame, it is natural
to derive the control algorithm direetly in the task space rather than joint
space.

9.3.1 Task Space Dynamics

When the manipulator is in contact with the environment, the dynamic
equations of Chapter 7 must be modified to include the reaction torque
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JTF, corresponding to the end-effector force F,, where J is the manipulator
Jacobian. The modified equations of motion of the manipulator in joint
space are, therefore,

M(g)i+Cg,d)q+9(g) + T (QF. = u (9.13)
Let us consider a modified inverse dynamics control law of the form
w=M(g)ag +C(q,)d +9(q) + J (q)ay (9.14)

where ag and a are outer-loop controls with units of acceleration and force,
respectively. Using the relationship between joint space and task space
variables derived in Chapter 8

i = Jg)§+ () (9.15)
@ = J(glag+J(q9)d (9.16)

we substitute Equations (9.14)-(9.16) into Equation (9.13) to obtain
& = 4, + W(g)(F. — af) (0.17)

where W (q) = J(g)M~'(¢)J"(q) is called the mobility tensor. There is
often a conceptual advantage to separating the position and force control
terms by assuming that a; is a function only of position and velocity and
ay is a function only of force. However, for simplicity, we shall take a ;= Fe
to cancel the environment force and thus recover the task space double
integrator system

E=ay (9.18)

and we will assume that any additional force feedback terms are included
in the outer-loop term a,. This entails no loss of generality as long as the
Jacobian (hence W (g)) is invertible. This will become clear later in this
chapter.

9.3.2 Impedance Control

In this section we discuss the notion of impedance control. We begin with
an example that illustrates in a simple way the effect of force feedback

Example 9.4

Consider the one-dimensional system in Figure 9.10 consisting of a mass
M on a frictionless surface subject to an environmental force F' and control
input u. The equation of motion of the system is

Mi=u—F (9.19)
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—a T

u M +—F
/.

Figure 9.10: One dimensional system.

With u = 0, the object “appears to the environment” as a pure inertia with
mass M. Suppose the control input u is chosen as a force feedback term
u= —mF. Then the closed-loop system is

1+m

Hence, the object now appears to the environment as an inertia with mass
M_ Thus, the force feedback has the effect of changing the apparent

inertia of the system.

© . N

The idea behind impedance control is to regulate the apparent inertia,
damping, and stiffness, through force feedback as in the above example. For
instance, in a grinding operation, it may be useful to reduce tha? apparent
stiffness of the end effector normal to the part so that excessively large
normal forces are avoided.

Next we show that impedance control may be realized within our stan-
dard inner-loop/outer-loop control architecture by a suitable choice of lthe
outer-loop term a; in Equation (9.18). Let z%(t) be a reference trajec-
tory defined in task space coordinates and let My, Ba, Ky, be 6 % 6 ma-
trices specifying desired inertia, damping, and stiffness, respectively. Let
#(t) = z(t) — 2%(t) be the tracking error in task space and set

6y = i — M7 (BaZ + K4+F) (9.21)

where F is the measured environmental force. Substituting Equation (9.21)
into Equation (9.18) yields the closed-loop system

Mg + Bab + Ko = —F B2

which results in desired impedance properties of the end effector. Note that
for F' = 0 tracking of the reference trajectory, z%(t), is achieved, whereas f?r
nonzero environmental force, tracking is not necessarily achieved. We will
address this difficulty in the next section.
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9.3.3 Hybrid Impedance Control

In this section we introduce the notion of hybrid impedance control.
We again take as our starting point the linear, decoupled system given by
Equation (9.18). The impedance control formulation in the previous section
is independent of the environment dynamics. It is reasonable to expect that
stronger results may be obtained by incorporating a model of the environ-
ment dynamics into the design. For example, we will illustrate below how
one may control the manipulator impedance while simultaneously regulat-
ing either position or force, which is not possible with the pure impedance
control law given by Equation (9.21).

We consider a one-dimensional system representing one component of
the outer-loop system (9.18)

Fi = ag (9.23)

and we henceforth drop the subscript i for simplicity. We assume that
the impedance Z, of the environment in this direction is fixed and known, a
priori. The impedance of the robot Z; is of course determined by the control
input. The Hybrid Impedance Control design proceeds as follows based on
the classification of the environment impedance into inertial, resistive, or
capacitive impedances;

1. If the environment impedance Z,(s) is capacitive, use a Norton net-

work representation. Otherwise, use a Thévenin network representa-
tion.?

2. Choose a desired robot impedance Z,(s) and represent it as the dual
to the environment impedance. Thévenin and Norton networks are
considered dual to one another.

3. Couple the robot and environment one-ports and design the outer-loop
control a5 to achieve the desired impedance of the robot while tracking
a reference position or force.

We illustrate this procedure on two examples, a capacitive environment and
an inertial environment, respectively.

Example 9.5 Capacitive Environment

In the case that the environment impedance is capacitive we have the
robot/environment interconnection as shown in Figure 9.11 where the en-
vironment one-port is the Norton network and the robot one-port is the

2In fact, for a resistive environment, either representation may be used.
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Figure 9.11: Capacitive environment case.

Thévenin network. Suppose that V; = 0, that s, suppose there are no envi-
ronmental disturbances, and that F, represents a reference force. From the
circuit diagram it is straightforward to show that

P (9.24)

d |,
Then the steady state force error ess to a step reference force Fy = FT is

given by the final value theorem as

—Z:(0)

Egg = M =0 (925)

since Z.(0) = co (capacitive environment) and Z. # 0 (non-capacitive
robot).

The implications of the above calculation are that we can track a constant
force reference value, while simultaneously specifying a given impedance Z,
for the robot. ’

In order to realize this result we need to design outer-loop control term
a; in Equation (9.23) using only position, velocity, and force feedback. This
imposes a practical limitation on the achievable robot impedance functions,
Zy.

Suppose Z* has relative degree one. This means that

Zo(8) = M8+ Zrem(s) (9.26)

where Zrem(s) is a proper rational function. We now choose the outer-loop

term a, as i q
Oz = “"'ﬂzremi"' 'T;;(Fs - F) (927)

c C

Substituting this info the double tntegrator system & = a yields

Z ()i =F,—F (9.28)
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Thus, we have shown that, for a capacitive environment, force feedback can

be used to requlate contact force and specify a desired robot impedance.
<

Example 9.6 Inertial Environment
In the case that the environment impedance is inertial we have the robot/
environment interconnection as shown in Figure 9.12, where the environ-

Vv Ze(s)
/W
F

V, 27s)

Figure 9.12: Inertial environment case.

ment one-port is a Thévenin network and the robot one-port is a Norton
network. Suppose that Fy = 0 and that V; represents a reference velacity.
From the circuit diagram it is straightforward to see that
V_ Zs)
Ve Ze(s)+2:(s) .
Then tﬁle steady state force error ess to a step reference velocity command
Vo= VT is given by the final value theorem as

_Ze (D) _
Z:(0) + Z.(0)

since Zo(0) = 0 (inertial environment) and Z, # 0 (non-inertial robot).
To achieve this non-inertia robot impedance we take, as before,

(9.29)

€ss =

0 (9.30)

Ze(8) = M8 + Zrem(s) (9.31)
and set L i
b =54 Ez,mwi -i)+ EF (9.32)
Then, substituting this into the double integrator equation & = a, yields
Z(s)(@l—z)=F (9.33)

Thus, we have shoun that, for an inertial environment, position control can

be used to regulate a motion reference and specify a desired robot impedance.
o
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9.4 SUMMARY

This chapter covers some of the basic ideas in robot force control. A force
control strategy is one that modifies position trajectories based on the sensed
force.

Natural and Artificial Constraints

We first described so-called natural and artificial constraints using the no-
tion of reciprocity. Given six dimensional velocity (or twist) and force (or
wrench) vectors V and F, respectively, an ideal robot/environment contact
task satisfies

VTFzﬂu,;_fx+'uyfy+vzfz + Wtz + wyhy + wyn; =0

In general, the chosen task imposes environmental constraints on six
of the above variables. These are the natural constraints. The remain-
ing variables can be arbitrarily assigned artificial constraints that are then
maintained by the control system in order to complete the task.

Network Models and Impedance

We next introduced the notion of mechanical impedance to model the re-
alistic case that the robot and environment are not perfectly rigid. The
impedance is a measure of the ratio of force and velocity and is analogous
to electrical impedance as a ratio of voltage and current. For this reason
we introduced one-port network models of mechanical systems and modeled
the robot/environment interaction as a connection of one-port networks.

Task Space Dynamics and Control

When the manipulator is in contact with the environment, the dynamic
equations must be modified to include the reaction torque JT F,, correspond-
ing to the end-effector force F,. Thus, the equations of motion of the ma-
nipulator in joint space are given by

M(g)i+Clg. )i+ 9@+ (@F. = u

We therefore introduced a modified inverse dynamics control law of the
form

u = M(q)ay +C(q,9)i+9la) + J" (a)as
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where a, and a; are outer-loop controls with units of acceleration and force,
respectively. The resulting system can be written as

£ = a; + W(g)(F. — o)
where
ar = J(g)ag+J(a)g

is the outer-loop control in task space and W (g) = J(g)M ~(g)J”(q) is the
mobility tensor.

Impedance Control

Using this model we introduced the notions of impedance control and hybrid
impedance control. The impedance control methodology is to design the
outer-loop control terms a, and ay according to

ar = &%~ M;YBsé+Kue+F.)
ar = Fe

to achieve the closed-loop system
Myé + Byé + Kge = —F, (9.34)

which results in desired impedance properties of the end effector.

Hybrid Impedance Control

Using our network models we introduced a classification of robot /environment
impedance operators Z(s) as

1. Inertial if and only if |Z(0)| =0

2. Resistive if and only if |Z(0)| = B for some constant 0 < B < 0o

3. Capacitive if and only if | Z(0)| = 0o

Using this impedance classification scheme we were able to derive so-

called hybrid impedance control laws that allowed us both to regulate impedance
and to regulate position and force.
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Figure 9.13: Two-link manipulator with remotely driven link.

PROBLEMS

9.1 Civen the two-link planar manipulator of Figure 4.11, find the joint
torques 7, and 7, corresponding to the end-effector force [—1, —1}T.

9.2 Consider the two-link planar manipulator with remotely driven links
shown in Figure 9.13. Find an expression for the motor torques needed
to balance a force I at the end effector. Assume that the motor gear

ratios are 71, 2, respectively.

9.3 What are the natural and artificial constraints for the task of inserting
a square peg into a square hole? Sketch the compliance frame for this

task.

0-4 Describe the natural and artificial constraints associated with the task
of opening a box with a hinged lid. Sketch the compliance frame.

9.5 Discuss the task of opening a long two-handled drawer. How would
you go about performing this task with two manipulators? Discuss
the problem of coordinating the motion of the two arms. Define com-
pliance frames for the two arms and describe the natural and artificial

constraints.

9-6 Given the following tasks, classify the environments as either inertial,
capacitive, or resistive according to Definition 9.3.

1. Turning a crank
2. Inserting a peg in a hole
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3. Polishing the hood of a car
4. Cutting cloth

5. Shearing a sheep

6. Placing stamps on envelopes

7. Cutting meat

NOTES AND REFERENCES

Among the earliest results in robot force control was the work of Mason
[89], who introduced the notion of natural and artificial constraints and
Raibert and Craig [107], who introduced the notion of hybrid position/force
control based on the decomposition of the force control problem into position
controlled and force controlled directions relative to a compliance frame.
Our use of the reciprocity condition is an outgrowth of this early work. The
use of twists and wrenches to define global geometric notions in this context
was introduced to the robotics community in [30].

The notion of impedance control is due to Hogan [51]. The hybrid
impedance control concept and the classification of environments as iner-
tial, resistive, or capacitive is taken from Anderson and Spong [3]. Alternate
formulations of force control can be found in [25).




Chapter 10

GEOMETRIC
NONLINEAR CONTROL

In this chapter we present some basic, but fundamental, ideas from geo-
metric nonlinear control theory. We first give some background from
differential geometry to set the notation and define basic quantities, such as
manifold, vector field, Lie bracket, and so forth that we will need later.
The main tool that we will use in this chapter is the Frobenius theorem,
which we introduce in Section 10.1.2.

We then discuss the notion of feedback linearization of nonlinear
systems. This approach generalizes the concept of inverse dynamics of rigid
manipulators discussed in Chapter 8. The idea of feedback linearization
is to construct a nonlinear control law as an inner-loop control which,
in the ideal case, exactly linearizes the nonlinear system after a suitable
state space change of coordinates. The designer can then design the outer-
loop control in the new coordinates to satisfy the traditional control design
specifications such as tracking and disturbance rejection.

In the case of rigid manipulators the inverse dynamics control of Chap-
ter 8 and the feedback linearizing control are the same. However, as we
shall see, the full power of the feedback linearization technique for manip-
ulator control becomes apparent if one includes in the dynamic description
of the manipulator the transmission dynamics, such as elasticity resulting
from shaft windup and gear elasticity.

We also give an introduction to modeling and controllability of non-
holonomic systems. We treat systems such as mobile robots and other sys-
tems subject to constraints arising from conservation of angular momentum
or rolling contact. We discuss the controllability of a particular class of
such systems, known as driftless systems. We present a result known as
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Chow’s theorem, which gives a sufficient condition for controllability of
driftless systems.

10.1 BACKGROUND

In recent years an impressive volume of literature has emerged. in the area
of differential geometric methods for nonlinear systems, treating not only
feedback linearization but also other problems such 3s disturbance decou-
pling, estimation, observers, and adaptive control. It is our intex?t hfare to
give only that portion of the theory that finds an immediate application to
robot control, and even then to give only the simplest. versions of the results.

10.1.1 Manifolds, Vector Fields, and Distributions

The fundamental notion in differential geometry is that of a differentiable
manifold (manifold for short) which is a topological space that is loc.a.]ly
diffeomorphic! to Euclidean space R™. For our purposes here a manifold
may be thought of as a subset of R defined by the zero set of a smooth
vector valued function® h: R® — R?, forp< m,

hi(z1,...,20) = 0

hpl1,e-20) = 0

We assume that the differentials dhy,...,dhy are linearly independent at
each point, in which case the dimension of the manifold is m = n —p.
Given an m-dimensional manifold M we may attach at each point z‘e .M
a tangent space T, M, which is an m-dimensional vector space specifying
the set of possible velocities (directional derivatives) at z.

Example 10.1
Consider the unit sphere 5% in R® defined by

h(z,y,z)=$2+y2+zz—1=0

!A diffeomorphism is simply a differentiable function whose inverse exisifs aqd is
also differentiable. We shall assume both the function and its inverse to be infinitely
differentiable. Such functions are customarily referred to as C* diﬁ'eomorphisms_.

20ur definition amounts to the special case of an embedded submanifold of dimen-
sionm=n—pinR"™
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Figure 10.1: The sphere as a two-dimensional manifold in R3.

S* is a two-dimensional submanifold of R®. At points in the upper hemi-
sphere z = /1 — 2% — y? and the tangent space is spanned by the vectors

v = [1,0,—z/y/1-22 -7
v o= [0,1,-y/v1-22— 2T

The differential of h is

dh = (2z,2y,2z) = (2z,2y,2+/1 — 2% — y2)

which is easily shown to be normal to the tangent plane at z,y, 2.
o

Definition 10.1 A smooth vector field on a manifold M is an infinitely
differentiable function f : M — T, M represented as a column vector

fil=)

flz)=] :
fm(2)

Another useful notion is that of cotangent space and covector field.

The cotangent space T; M is the dual space of the tangent space. It is

an m-dimensional vector space specifying the set of possible differentials of

functions at z. Mathematically, T; M is the space of all linear functionals
on T, M, that is, the space of functions from T, M to R.

Definition 10.2 A smooth covector field is a function w : M — T} M
which is infinitely differentiable, represented as a row vector,

w(z) = [ wi (%), - - -y Wi () J
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Figure 10.2: Pictoral representation of a vector field on a manifold.

Henceforth, whenever we use the term function, vector field, or covector
field, it is assumed to be smooth. Since T, M and T} M are m-dimensional
vector spaces, they are isomorphic and the only distinction we will make
between vectors and covectors below is whether or not they are represented
as column vectors or row vectors.

We may also have multiple vector fields defined simultaneously on a given
manifold. Such a set of vector fields will span a subspace of the tangent space
at each point. Likewise, we will consider multiple covector fields spanning
a subspace of the cotangent space at each point. These notions give rise to
so-called distributions and codistributions.

Definition 10.3

1. Let X1(x),...,Xx(z) be vector fields on M thet are linearly indepen-
dent at each point. A distribution A is the linear span (at each
TEM)

A = span {X1(z),. .., Xi(2)} (10.1)

2. Likewise, let wi(z),...,wx(z) be covector fields on M, which are lin-
early independent af each point. By o Codistribution 2 we mean
the linear span (at each z € M)

Q = spanf{wi(z),..., ws(z)} (10.2)

A distribution therefore assigns a vector space A(z) to each point z € M.
A(z) is a k-dimensional subspace of the m-dimensional tangent space T..M.
A codistribution likewise defines a k-dimensional subspace €)(z) at each z
of the m-dimensional cotangent space Ty M.
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Vector fields are used to define differential equations and their associated
flows. We restrict our attention here to nonlinear systems of the form

b= f(o)+a@hn++gmle
f(z}+g:1(z):1 el (10.3)

where f(z), g1(z),...,gm(z) are smooth vector fields on M, and where we
define G(z) = [g1(2),...,9m(z)] and u = [u1,..., )T For simplicity we
will assume that M = R™.

Definition 10.4 Let f and g be two vector fields on R™. The Lie bracket
of f and g, denoted by [f,g], is a vector field defined by

[f.q] = g—i —-g—f;g (10.4)

d 3
where &% (respectively, g‘% ) denotes the n x n Jacobian matriz whose 15
. Og; . af;
entry is ==t (respectively, w2 ).
Ty 39—%_ (respectively 5%.)

Example 10.2
Suppose that vector fields f(z) and g(z) on R? are given as

I 0
f(z) = | sinz g(z)=| =
| 7193 1

Then the vector field [f, g] is computed according to Equation (10.4) as

0 0 0 Ty 0 1 0 0
(fig] = |0 225 0 sinzy | —|cosz 0 O 2
[0 0 0] |z+ad 1 0 223 1
—x%
— 2z9sinz;
—2z3

We also denote (£, g] as ady(g) and define ad¥(g) inductively by

adf(g) = [f,adf(g)] (10.5)

with ad?(g) =g.
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Definition 10.5 Let f : R* — R" be a vector field on R* and let h: R" —
R be a scalar function. The Lie derivative of h with respect to f, denoted
Lyh, is defined as

Lih = —f(z) = Z az, (10.6)

The Lie derivative is simply the directional derivative of h in the direction
of f. We denote by L%h the Lie derivative of L¢h witht respect to f, that is,
Lih = Ly(Lyh) (10.7)

In general we define
Lkh=Ly(LE'h) fork=1,...,n (10.8)

with L?.h =l
The following technical lemma gives an important relationship between
the Lie bracket and Lie derivative and is crucial to the subsequent develop-

ment.

Lemma 10.1 Let h : R® — R be a scalar function and f and g be vector
fields on R™. Then we have the following identity

L[f,g]h = LyLoh— LgL¢h (10.9)
Proof: Expand Equation (10.9) in terms of the coordinates 2y, ...,z and

equate both sides. The i*" component [f, g]; of the vector field [f, g] is given
as

4 ag; - af;
el 3JJJ' 4 i=1 33,‘,‘ 4

Therefore, the left-hand side of Equation (10.9) is

= 0h
L[f‘g]h. 6_z:,[f’ gli

; 8_h T ?ﬁf._ 5 af"g.
= B:Ei = BIJ‘ 2 in Or; ¢

- dg: , O
- zza@(ax}: )

i=l j=1
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If the right-hand side of Equation (10.9) is expanded similarly it can be
shown, with a little algebraic manipulation, that the two sides are equal.
The details are left as an exercise (Problem 10-1).

10.1.2 The Frobenius Theorem

In this section we present a basic result in differential geometry known as
the Frobenius theorem. The Frobenius theorem can be thought of as an
existence theorem for solutions to certain systems of first order partial dif-
ferential equations. Although a rigorous proof of this theorem is beyond the
scope of this text, we can gain an intuitive understanding of it by considering
the following system of partial differential equations

0z
% = f{Ivsz) (1010)
0z
= = gz, y,2) (10.11)

In this example there are two partial differential equations in a single depen-
dent variable z. A solution to Equations (10.10) and (10.11) is a function
z = ¢(z,y) satisfying

a
2 = e bl (1012)
a
a—ﬁ = glkudten) (1013)

We can think of the function z = @(z,y) as defining a surface in R3 as in
Figure 10.3. The function @ : R — R3 defined by

®(z,y) = (z,y,9(z,y)) (10.14)

then characterizes both the surface and the solution of Equations (10.10) and
(10.11). At each point (z,y) the tangent plane to the surface is spanned by
two vectors found by taking partial derivatives of @ in the z and y directions,
respectively, that is, by

X = T
RIREE

The vector fields X; and X, are linearly independent and span a two-
dimensional subspace at each point. Notice that X; and X are completely
specified by Equations (10.10) and (10.11). Geometrically, one can now
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z

T

Figure 10.3: Integral manifold in R3.

think of the problem of solving this system of first order partial differential
equations as the problem of finding a surface in R® whose tangent space a:t
each point is spanned by the vector fields X; and X5. Such a surface, if
it can be found, is called an integral manifold for Equations (10.10) and
(10.11). If such an integral manifold exists then the set of vector fields, equiv-
alently, the system of partial differential equations, is called completely
integrable.

Let us reformulate this problem in yet another way. Suppose thaf: z=
#(z,y) is a solution of Equations (10.10) and (10.11). Then it is a simple
computation (Problem 10-2) to check that the function

hiz,y,2) = z-¢(z,y) (10.16)
satisfies the system of partial differential equations

Lxh =0 (10.17)
Lx,h = 0

Conversely, suppose a scalar function h can be found satisfying (10.17), and
suppose that we can solve the equation

h{z,y,2) = 0 (10.18)

for z, as z = ¢(z,y).® Then it can be shown (Problem 10-3) that ¢ sat-
isfies Equations (10.10) and (10.11). Hence, complete integrability of the

3The implicit function theorem states that Equation (10.18) can be solved for z as
long as %% #0.
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set of vector fields {X1, Xy} is equivalent to the existence of h satisfying
Equation (10.17). With the preceding discussion as background we state
the following.

Definition 10.6 A distribution A = span{X, ..., X} on R™ is said to be
completely integrable if and only if there are n —m linearly independent
functions hy, ..., hn_m satisfying the system of partial differential equations

Lxhi=0 for1<i<m,1<j<n-m (10.19)

Another important concept is the notion of involutivity as defined next.

Definition 10.7 A distribution A = span{X,..., X} is said to be invo-
lutive if and only if there are scalar functions aijk : R™ = R such that

m
(X0 X;] = ) auXifor all 4,5,k * (10.20)
k=1

Involutivity simply means that if one forms the Lie bracket of any pair
of vector fields in A then the resulting vector field can be expressed as a
linear combination of the original vector fields Xi1,..., X An involutive
distribution is thus closed under the operation of taking Lie brackets. Note
that the coefficients in this linear combination are allowed to be smooth
functions on R™.

In the simple case of Equations (10.10) and (10.11) one can shaw that
involutivity of the set {X1, X3} defined by Equation (10.19) is equivalent to

2
interchangeability of the order of partial derivatives of h, that is, 3%% =

2
B%ah—‘ The Frobenius Theorem, stated next, gives the conditions for the

existence of a solution to the system of partial differential Equations (10.19).

Theorem 4 Frobenius A4 distribution A is completely integrable if and
only if it is involutive.

The importance of the Frobenius theorem is that it allows one to de-
termine whether or not a given distribution is integrable without having to
actually solve the partial differential equations. The involutivity condition
can, in principle, be computed from the given vector fields alone.
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10.2 FEEDBACK LINEARIZATION

To introduce the idea of feedback linearization consider the following simple
gystem,
.’u:"] = ﬂ.Sill(:cg) (10.21)
iy = -Ti+u (10.22)

Note that we cannot simply choose u in the above system to cancel the
nonlinear term asin(z;). However, if we first change variables by setting

w o= m (10.23)
yp = esin(zz) =31 (10.24)

then, by the chain rule, y; and y; satisfy

ho= b 10.25
Uy = acos(a:z)(—z%-l-u) ( )

We see that the nonlinearities can now be cancelled by the control input

L 4z (10.26)
acos(zg)

which results in the linear system in the (y1,y2) coordinates

o= (10.27)
g o= v

The term v has the interpretation of an outer-loop control and can be
designed to place the poles of the second order linear system given by Equa-
tion (10.27) in the coordinates (y1,y2). For example, the outer-loop control

v = —kiyl—kgyg (10.28)

applied to Equation (10.27) results in the closed-loop system

ho= R (10.29)
g2 = —kup = ko

which has characteristic polynomial
p(s) = s+kas+k (10.30)

and hence, the closed-loop poles of the system with respect to the coordi-
nates (y1,y2) are completely specified by the choice of k; and k3. Figure 10.4
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Linearized System
3 2 B = asin(ey)| A%
o B R o PR i
Inner Loop
( yl) : :
h= &1
Quter Loop Y2 = asin(zy)

Figure 10.4: Inner-loop/outer-loop control architecture for feedback lin-
earization.

illustrates the inner-loop/outer-loop implementation of the above control
strategy. The response in the y variables is easy to determine. The cor-
responding response of the system in the original coordinates (z1,z2) can
be found by inverting the transformation given by Equations (10.23) and
(10.24). The result is

= n

] sin~!(y2/a) —a<yp<ta (10.31)

This example illustrates several important features of feedback linearization.
The first thing to note is the local nature of the result. We see from Equa-
tions (10.23) and (10.24) that the transformation and the control make sense
only in the region —co < ) < 00, —§ < 22 < §. Second, in order to control
the linear system given by Equation (10.27), the coordinates (y,y2) must
be available for feedback. This can be accomplished by measuring them
directly if they are physically meaningful variables, or by computing them
from the measured (zy,z2) coordinates using the transformation given by
Equations (10.23) and (10.24). In the latter case the parameter o must be
known precisely.

In Section 10.3 we give necessary and sufficient conditions under which
a general single-input nonlinear system can be transformed into a linear
system using a nonlinear change of variables and nonlinear feedback as in
the above example.
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10.3 SINGLE-INPUT SYSTEMS

The idea of feedback linearization is easiest to understand in the context of
single-input systems. In this section we give necessary and sufficient con-
ditions for single-input nonlinear system to be locally feedback linearizable.
As an illustration, we apply this result to the control of a single-link manip-
ulator with joint elasticity.

Definition 10.8 A single-input nonlinear system
& = fz)+g(z)u (10.32)

where f(z) and g(z) are vector fields on R™, f(0) = 0, and u € R, is said
to be feedback linearizable if there exists a diffeomorphism T : U — R",
defined on an open region U in R™ containing the origin, and nonlinear
feedback

u = az)+ Bz (10.33)
with B(z) # 0 on U such that the transformed state
y = T(z) (10.34)

satisfies the linear system of equations

§ = Ay+b (10.35)
where
010 0 0
001 : 0
A= 0 0 |, b= : (10.36)
1
00 --00 1

The nonlinear transformation given by (10.34) and the nonlinear control
law (10.33), when applied to the nonlinear system (10.32), result in a linear
controllable system (10.35). The diffeomorphism T'(z) can be thought of as
a nonlinear change of coordinates in the state space. The idea of feedback
linearization is that, if one first changes to the coordinate system y = T'(z),
then there exists a nonlinear control law to cancel the nonlinearities in the
system. The feedback linearization is said to be global if the region U is all
of R™.
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We next derive necessary and sufficient conditions on the vector fields f
and g in Equation (10.32) for the existence of such a transformation. Let us
sef

y = T(z) (10.37)

and see what conditions the transformation T'(z) must satisfy. Differentiat-
ing both sides of Equation (10.37) with respect to time yields

) = Q?::r 10.38

where L
tions (10.32) and (10.35), Equation (10.38) can be written as

aT
5, @) +gle)u) = Ay+b (10.39)
In component form with
010 0 0
1_11 001 : 0
T=| - |, A= z | , b= (10.40)
: - 1 ,
. 00 --00 1

we see that the first equation in Equation (10.39) is
Lle o Lng'H. = Tg {1041)
Similarly, the other components of T satisfy

L+ LiThu = T3
: (10.42)
v

LiTo+ LyThu

Since we assume that T3,...,T,, are independent of u while v is not inde-
pendent of u we conclude from (10.42) that

LTy = LTg=+=LT =0 (10.43)
LT, # 0 (10.44)

This leads to the system of partial differential equations

LiTi=Ti; i=1...,n—1 (10.45)

is the Jacobian matrix of the transformation T'(z). Using Equa-

ﬂ

; flmﬂ'-r:".—(‘

s

!
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together with
LiT, + LyTqu=v (10.46)

Using Lemma 10.1 together with Equations (10.43) and (10.44) we can
derive a system of partial differential equations in terms of Th alone as
follows. Using h = T} in Lemma 10.1 we have

LiggTi = LiLgTy — LyLiTy = 0~ LT =0 (10.47)
Thus, we have shown '
LiggTi =0 (10.48)
By proceeding inductively it can be shown (Problem 10—4) that
LggTi = 0 k=0,1,...n=2 (10.49)
Lud};wlng # 0 (10.50)

If we can find Ty satisfying the system of partial differential equations
(10.49), then Ty, ..., T, are found inductively from Equation (10.45) and
the control input w is found from (10.46) as
1
LT

(v— LsT,) (10.51)

u=

We have thus reduced the problem to solving the system given by Equa-
tion (10.49) for Tj. When does such a solution exist?

First note that the vector fields g, adg(g), ... ,ad}“l(g) must be linearly

independent. If not, that is, if for some index i
) i—1
ad(g) = 3 aodi(o) (1052)
k=0

then aa!?"(g) would be a linear combination of g, adf(g),- .. ,ad}"%g) and
Equation (10.50) could not hold. Now, by the Frobenius theorem, Equa-
tion (10.49) has a solution if and only if the distribution A = span{g, ad(g),
...,ad?'g(g)} is involutive. Putting this together we have shown the fol-
lowing

Theorem 5 The nonlinear system
i = flz)+g(z)u (10.53)

is feedback linearizable if and only if there exists an open region U containing
the origin in R™ in which the following conditions hold:
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1. 5?163 vector fields {g, ad¢(g),. .. ,ad}"l(g)} are linearly independent in

2. The distribution A = span{g, ads(g),..., ad?-2(g)} is involutive in U.

Example 10.3 Flexible Joint Robot

Mgl

Figure 10.5: Single-link, flexible joint robot.

C?nsider the single link, flexible joint manipulator shown in Figure 10.5.
Ignoring demping for simplicity, the equations of motion are

Ig + Mglsin(q) + k(g —q) = 0

Jio + k(g2 - q) (D54}

Il

Note that since the nonlinearity enters into the first equation the control u

cannot simply be chosen to cancel it as in the case of the rigid manipulator
equations. In state space we set

TI=q I2=q

I3=q@ T1=g (105)
and write the system (10.54) as
B = ]
: MgL | k
iy = — f sin(zg) — T(n - z3)
b = (10.56)
k 1

ty = (z1-m)+Ju
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The system is thus of the form (10.32) with

= " i 0
—MﬁL sin(z1) — ?(ml — z3) 0

flz)= i . glz) = t: (10.57)
- ;(1’1 — 13) ! J

Therefore, with n = 4, the necessary and sufficient conditions for feedback
linearization of this system are that

rank [g,ady(g), ad3(s),ad}()] = 4 (10.58)
and that the distribution
A = span{g, ads(g),ad}(9)} (10.59)

is involutive. Performing the indicated coleulations it is easy to check that
(Problem 10-8)

00 0 #
00 &£ 0
lg,ad(g), 0d}(g),ad}(9)] = , I | (10.60)
0+ 0 %
Lo -% o

which has rank 4 for k, I, J # 0. Also, since the vector fields {g,ads(g),
a.d%(g)} are constant, the distribution A 1s involutive. To see this it suffices
to note that the Lie bracket of two constant vector fields is zero. Hence, the
Lie bracket of any two members of the set of vector fields in Equation (10.59)
is zero which is trivially o linear combination of the vector fields themselves.
It follows that the system given by Equation (10.54) is feedback linearizable.
The new coordinates

u=T i=1..4 (10.61)
are found from the conditions given by Equation (10.49), with n = 4, that is

LT =
LijgTh =
Lad"}ng =
Ligsh #

(10.62)

o oo o
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Carrying out the above calculations leads to the system of equations (Prob-
lem 10-9)

BTI_‘O.BTl o

B ’8_m=0;3_z4=0 (10.63)
and
T
Fr #0 (10.64)

From this we see that the function Ty should be a function of z1 alone.
Therefore, we take the simplest solution

n="I=xn (10.65)
and compute from Equation (10.45) (Problem 10-10)
v2 = D=LiTi =

MgL
vy = Ta=LiTh= —Tgsiﬂ(fm) - E(-Tl - 13)

T (10.66)
MgL k
o = Ty=LiT3= _Tg cos(z1 )x2 — f(wz — zy)
The feedback linearizing control input u is found from the condition
1
as (Problem 10-11)
IJ
u = }—(U —a(z)) = fz)v + a(z) (10.68)
" where
MgL . MgL
a(z) = —Ig— sin(z;) (x% + Tg cos(zy) + ;)
+E(x ) 245y M e
AR cos(z1)
Therefore in the coordinates yy, ..., yq with the control law given by Equa-
tion (10.68) the system becomes
nho=1mn
h =mn
% = (10.70)
g = v
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or, in matriz form,

g = Ay+b (10.71)

where

(10.72)

o

I
(— N~
coo~
como
e I B e T e

o

I
- o oo

It is interesting to note that the above feedback linearization is actually
global. In order to see this we need only compute the inverse of the change
of variables given by Equations (10.65)and (10.66). By inspection we see
that

nn = un

T2 = Y
g MgL

T3 = y1+E(ys+ ? sm(yl)) (10.73)
I MgL

zg = yto(ut— cos(y1)y2

The inverse transformation 1s well defined and differentiable everywhere and,
hence, the feedback linearization for the system given by Equation (10.54)
holds globally. The transformed variables y1, . - ., ya are themselves physically
meaningful. We see that

yp=a; = link position

Y2 = $.z = Zz:nk velocity . . (10.74)
ys=y2 = link acceleration

=13 = link jerk

Since the motion trajectory of the link is typically specified in terms of these
quantities they are natural variables to use for feedback.
o

Example 10.4

One way to ezecute a step change in the link position, while keeping the
manipulator motion smooth, is to reguire a constent jerk during the motion.
This can be accomplished by a cubic polynomial trajectory using the methods
of Chapter 5.5. Therefore, let us specify a trajectory

@it) = 1¥ =ap+at + ast? + a5t (10.75)
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80 that
:Ug = yf = a1 + 2agt + 30:!.3152
¥§ = 4§ =205+ Bast
vi = §=6as

Then a linear control law that tracks this trajectory, which is essentially
equivalent to the feedforward/feedback scheme of Chapter 8, is given by

v o= —ko(yr - vf) — ku(ve — 8) — kalys — 8) — ka(ye — 1) (10.76)

Applying this control law to the fourth order linear system given by Equa-
tion (10.68) we see that the tracking error e(t) = y1 — y} satisfies the fourth
order linear equation

dle de d?e de

— tk3—+kh— + ki — = b 10.77

art T g Thagg Thig ke MU
and, hence, the error dynamics are completely determined by the choice of
gains ky, ..., k3.
o

Notice that the feedback control law given by Equation (10.76) is stated
in terms of the variables #,...,ys. Thus, it is important to consider how
these variables are to be determined so that they may be used for feedback
in case they cannot be measured directly. Although the first two variables,
representing the link position and velocity, are easy to measure, the re-
maining variables, representing link acceleration and jerk, are difficult to
measure with any degree of accuracy using present technology. One could
measure the original variables z;,.. ., z4 which represent the motor and link
positions and velocities, and compute yy,...,ys using the transformation
Equations (10.65) and (10.66). In this case the parameters appearing in the
transformation equations would have to be known precisely.

10.4 FEEDBACK LINEARIZATION FOR N-LINK ROBOTS

In the general case of an n-link manipulator the dynamic equations represent
a multi-input nonlinear system. The conditions for feedback linearization of
multi-input systems are more difficult to state, but the conceptual idea is
the same as the single-input case. That is, one seeks a coordinate system
in which the nonlinearities can be exactly cancelled by one or more of the
inputs. In the multi-input system we can also decouple the system, that
is, linearize the system in such a way that the resulting linear system is
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composed of subsystems, each of which is affected by only a single one
of the outer-loop control inputs. Since we are concerned only with the
application of these ideas to manipulator control we will not need the most
general results in multi-input feedback linearization. Instead, we will use
the physical insight gained by our detailed derivation of this result in the
single-link case to derive a feedback linearizing control both for n-link rigid
manipulators and for n-link manipulators with elastic joints.

Example 10.5

We will first verify what we have stated previously, namely that for an
n-link rigid manipulator the feedback linearizing control is identical to the
inverse dynamics control of Chapter 8. To see this, consider the rigid robot
equations of motion given by Equation (8.6), which we write in state space
as

I; - '2M($1}—1{C(1‘1,$g)$2 +g(z1)) + M(z1) " u (10.78)

with T, = g, 2 = §. In this case a feedback linearizing control is found by
simply inspecting Equation (10.78) as

u = M(z)v+ C(z1,22)T2 + g(71) (10.79)

Substituting Equation (10.79) into Equation (10.78) yields

i‘1 = I3
& o 3 (10.80)

Equation (10.80) represents a set of n. second order systems ‘of the form

Ty = Tai

; 5 10.81
Goi = M, =l (1081}
Comparing Equation (10.79) with Equation (8.23) we see indeed that the
feedback linearizing control for a rigid manipulator is precisely the inverse
dynamics control of Chapter 8.

<

Example 10.6

Including the joint flezibility in the dynamic description of an n-link robot
results in a Lagrangian system with 2n degrees of freedom. Recall the Euler-
Lagrange equations of motion for the flezible joint robot from Chapter &

D(g)d1 + Clgy,d)ar +9(q) + Kl —q) = 0 3
h .82
Jip—Klg—q) = u (e
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In state space, which is now R*, we define state variables in block form

Bi=q T=q

I‘g =g Ty = ‘52 (1083)

Then from Equation (10.82) we have:

T = o

k) —~D(z1)"Yh(z1,22) + K (z1 -
i . 1) {h(z1,z2) + K (21 — 23)} (1080

& = JUK(z)—z3) + T u

where we define h(zy,z3) = C(z1, 29)z T _
: : ) 9+ g(z1) for simplicity.
15 of the form g(z1) f plicity. This system

& = f(z)+G(z)u (10.85)

Ii_*: the single—lz’@k case we saw that the system could be linearized by
nonhnear: feedback' if we took as state variables the link position, velocity,
acceleration, and jerk. Following the single-input example, we can attempt

to do the same thing in the multi-link case and derive a feedback linearizing
transformation blockwise as follows. Set

n=Ti(z) ==

w=NE)=h=1

y3="Tz) =1 = iz;— =D Yh(zy,12) + K(71 — 23)}

Y4 = T4(:r) =13 = —E[D‘l}{h(:s]_, Ez) w K(.’Bl - :Ug)} (1086)
N .

D7 g gD i) + Ko - 2]+ K20

= 04("5113:2) :ES) + D(El)ilK.'L"!

whgm for simplicity we define the function ay to be everything in the defi-
mtwr_1 of ;(,_.u; except the last term, which is D™ Kz4. Note that x4 appears
only in this last term so that a4 depends only on 1, 3, T3.

.fis in the single-link case, the above mapping is a global diffeomorphism.
Its inverse can be found by inspection to be

I = n

T2 = 1

Ty = y1-I;K_1(D(3J1)y3+h(y1,y2)) W
T4 = K D(y1)(ys — as(y1,v2,v3))
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The linearizing control law can now be found from the condition

Y4 = v (10.88)
Computing g4 from Equation (10.86) yields

Oay day 1 day
i e h+ K(z)— +—=z
v o T asz (h+ K(z1 —z3)) Fr

+ d%[D‘l]KCC.;-i— DLK(JK (2, — 23) + J~"u) (10.89)
= a(z) + b(x)u

where a(z) denotes all the terms in Equation (10.89) but the last term, which
involves the input u, and b(z) = D™} (2)KJ ™.
Solving the above expression for u yields

u=b(z) (v —a{z)) = a(z) + Blz)v (10.90)

where B(z) = JK~1D(z) and a(z) = —b(z) 'a(z).

With the nonlinear change of coordinates given by Equation (10.86) and
nonlineor feedback given by Equation (10.90) the transformed system now
has the linear block form

v (10.91)

o0 OIS
oo ~NOo
o o O
—_ o O o

g ecoe =~

= Ay+ Bv

where I = nxn identity matriz, 0 = nxn zero matriz, y* = (y7,v3 43,97 ) €
R* andv € R™. The system (10.91) represents a set of n decoupled quadru-

ple integrators. The outer-loop design con now proceed as before, because not

only is the system linearized, but it consists of n subsystems each identical

to the fourth order system (10.70).

o

10.5 NONHOLONOMIC SYSTEMS

In this section we return to a discussion of systems subject to constraints. A
constraint on a mechanical system restricts its motion by limiting the set of
paths that the system can follow. We briefly discussed so-called holonomic
constraints in Chapter 7 when we derived the Euler-Lagrange equations of
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motion. Our treatment of force control in Chapter 9 dealt with unilateral
constraints defined by the environmental contact. In this section we expand
upon the notion of systems subject to constraints and discuss nonholo-
nomic systems.

Let Q denote the configuration space of a given system and let g =

[@1,..-,8]7 € Q denote the vector of generalized coordinates defining the
system configuration. We recall the following definition.

Definition 10.9 A set of k < n constraints
hi(qr,. .- qn) =0, di=1,....,k (10.92)
is called holonomic, where each h; is a smooth mapping from Q — R.

We assume that the constraints are independent so that the differentials

dhy = [‘% %]

""" Ogn
[0k Ohy

dhy = |2 O
g [f’fn' ’aqn]

are linearly independent covectors. Note that in order to satisfy these con-
straints the motion of the system must lie on the hypersurface defined by

hi(g(t) =0, i=1,....k forallt>0 (10.93)

As a consequence, by differentiating the functions in Equation (10.93), we
have

<dhi,§>=0 i=1,..k (10.94)

which says that the differentials dh; are orthogonal to the velocity g.

It frequently happens that constraints are expressed, not as constraints
on the configuration as in Equation (10.92), but as constraints on the veloc-
ity, namely,

<wi,G>=0,i=1,...k (10.95)

where w;(g) are covectors. Constraints of the form given by Equation (10.95)
are known as Pfaffian constraints. The erucial question in such cases is,
therefore, when can the covectors wy, . .., w be expressed as differentials of
smooth functions, hy,...,ht? We express this as
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Definition 10.10 Constraints of the form

CEd>=0 =1k (10.96)
are holonomic if there exists smooth functions hy, ...,k such that

wi(g) =dhi(g) i=1,...,k (10.97)
and nonholonomic otherwise, that is, if no such functions hy,. .., hy exist.
We can begin to see a connection with our earlier discussion of integrability
and the Frobenius Theorem if we think of Equation (10.97) as a set of
partial differential equations in the (unknown) functions h;. Indeed, the term

integrable constraint is frequently used interchangeably with holonomic
constraint for this reason.

10.5.1 Involutivity and Holonomy
Now, given a set of Pfafian constraints (10.95), let  be the codistribution
defined by the covectors wy, ..., wy and let {g1,...,9n)} form=n—-kbea
basis for the distribution A that annihilates €, that is, such that

<wjg; >=0 foreachi,j {10.98)
We use the notation A = Q2+.4 Notice from Equation (10.97) that

0 =< wj,g; >=< dhy,g; > for each i, j (10.99)

Using our previous notation for Lie derivative, the above system of equations
may be written as

Lhk=0 i=l...k,i=1...m (10.100)

The following theorem thus follows immediately from the Frobenius Thec-
rem.

Theorem 6 Let Q0 be the codistribution defined by covectors wy, ..., wg.
Then the constraints < w;, ¢ >= 0, i =1,...,k, are holonomic if and only
if the distribution A = QL is involutive.

“This is pronounced “omega perp”.

10.5. NONHOLONOMIC SYSTEMS 363

10.5.2 Driftless Control Systems

It is important to note that the velocity vector § of the system is orthogonal
to the covectors w; according to Equation (10.96) and, hence, lies in the
distribution A = Q. This means that the velocity vector § can be expressed
as a linear combination of the basis vectors gy, ..., gm. In other words, we
may write

§=guldis £+ -+ gnldim. (10.101)

for suitable coefficients u1,...,u,. In many systems of interest, the coef-
ficients u; in Equation (10.101) have the interpretation of control inputs.
In such cases, Equation (10.101) defines a useful model for control design.
Equation (10.101) is called driftless because ¢ = 0 when the control inputs
Uf,. .., Unp are zero. In the next section we give some examples of driftless
systems arising from nonholonomic constraints, followed by a discussion of
controllability of driftless systems and Chow’s Theorem in Section 10.6.

10.5.3 Examples of Nonholonomic Systems

Nonholonomic constraints arise in two primary ways:

1. In so-called rolling without slipping constraints. For example, the
translational and rotational velocities of a rolling wheel are not inde-
pendent if the wheel rolls without slipping. Examples include

¢ a unicycle
e an automobile, tractor/trailer, or wheeled mobile robot

e manipulation of rigid objects
2. In systems where angular momentum is conserved. Examples include

e space robots
o satellites

e gymnastic robots

Example 10.7 The Unicycle

The unicyele is equivalent to a wheel rolling on a plane and is thus the
simplest ezample of a nonholonomic system. Refering to Figure 10.6 we see
that the configuration of the unicycle is defined by the variables =, y, 0, and
¢, where x and y denote the Cariesian position of the ground contact point,
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Figure 10.6: The unicycle.

0 denotes the heading angle, and ¢ denotes the angle of the wheel measured
from the vertical. The rolling without slipping condition means that

ml—‘rqtgc?sﬂ = B (10.102)
y—rpsingd = 0
where r 15 the radius of the wheel. These constraints can be written in the
form (10.96) with q = [z,y,0,4]T and
w = [1 00 —rcosﬂ]
(10.103)
wy = [0 1 0 -rsinf |
Since the dimension of the configuration space is n = 4 and there are two
constraint equations, we need to find two function q1, go orthogonal to w,
wa. It is easy to see that

0 recosf
0 rsind
1 0
0 1
are both orthogonal to wy and wy. Thus, we can write
§=n(gw + ga(q)ua (10.105)
where wy s the turning rate and ug is the rate of rolling.

°

We can now check to see if rolling without slipping constraint on the
unicycle is holonomic or nonholonomic using Theorem 6. It is easy to show
(Problem 10-18) that the Lie bracket [gy, go| is given by

—rsinf

8
gl =| " (10.106)

0
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which is not in the distribution A = span{gy, go}. Therefore, the constraints
on the unicycle are nonholonomic. We shall see the consequences of this fact

in the next section when we discuss controllability of driftless systems.

Example 10.8 The Kinematic Car

Figure 10.7: The kinematic car.

Figure 10.7 shows a simple representation of a car, or mobile robot with
steerable front wheels. The configuration of the car can be described by q =
[z,,0,8]T, where z and y are the point at the center of the rear azle, § s
the heading angle, and ¢ is the steering angle as shoun in the figure. The
rolling without slipping constraints are found by setting the sideways velocity
of the front and rear wheels to zero. This leads to

sinfz—cosfy = 0
sin(0 + ¢) & —cos(f + ¢) g —dcosp § = 0 L
which can be written as
[sinf cos® 0 0]¢ = <wy,¢>=0
(10.108)
[sin(6+¢) —cos(8+¢) —dcosd 0]¢ = <wp,g>=0
It 1s thus straightforward to find vectors
0 cosf
0 sinf
2 ¢ fpss 10.109
92=o| %= Ly ( )
1 0
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orthogonal to wy and wy and write the corresponding control system in the
form of Equation (10.101). It is left as an ezercise (Problem 10-19) to show
that the above constraints are nonholonomic.

¢

Example 10.9 A Hopping Robot

Figure 10.8: Hopping robot.

Consider the hopping robot in Figure 10.8. The configuration of this
robot is defined by ¢ = [, ¢,6]7, where

W = the leg angle

0 the body angle

{ = the leg extension

During its flight phase the hopping robot’s angular momentum is con-
served. Letting I and m denote the body moment of inertia and leg mass,
respectively, conservation of angular momentum leads to the expression

1§ +m(e+d)2(@+9)=0 (10.110)

assuming the initial angular momentum is zero. This consiraint may be
written as

<w,g>=0 (10.111)

where w = [ m(£+d)? 0 I+m(f+d)? . Since the dimension of the
configuration space is three and there is one constraint, we need to find
two independent vectors, gy and ga spanning the annihilating distribution
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A =0t where Q = span {w}. It is easy to see that

0 I
g=|1| and g= 0 (10.112)

m(f+d)?
0 _I+m(£+)35§
are linearly independent at each point and orthogonal to w. Checking invo-
lutivity of A we find that

0
g2l = 0 10.113
ol =| 0 (10.113
[I+m(£+d}§%5
which is not a linear combination of g; and go it follows that A is not an

involutive distribution and hence the constraint is nonholonomic.
o

10.6 CHOW’S THEOREM

In this section we discuss the controllability properties of driftless systems
of the form

i=gi(z)ur + -+ gmlz)um (10.114)

with z € R". We assume that the vector fields g(z), ..., gm(z) are smooth,
complete,® and linearly independent at each z € R™.

We have seen previously that, if the £ < n, the Pfaffian constraints
are holonomic then the trajectory of the system lies on an m = (n — k)-
dimensional surface (an integral manifold) found by integrating the con-
straints. In fact, at each x € R the tangent space to this manifold is spanned
by the vectors gi(x), ..., gm(2). If we examine Equation (10.114) we see
that any instantaneous direction in this tangent space, that is, any linear
combination of gi,...,9gm, is achievable by a suitable choice of the control
input terms u;, ¢ = 1,...,m. Thus, every point on the manifold may be
reached from any other point on the manifold by a suitable control input.
However, points not lying on the manifold cannot be reached no matter
what control input is applied. Thus, for an initial condition g, only points
on the particular integral manifold through zj are reachable.

What happens if the constraints are nonholonomic? Then no such inte-
gral manifold of dimension m exists. Thus, it might be possible to reach a

®A complete vector field is one for which the solution of the associated differential
equation exists for all time f.
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space (manifold) of dimension larger than m by suitable application of the
control inputs w;. It turns out that this interesting possibility is true. In
fact, by suitable combinations of two vector fields g; and g, it is possible to
move in the direction defined by the Lie bracket vector field [g1, go]. If the
distribution A = span{gy, g2} is not involutive, then the Lie bracket vector
field [g1,go] defines a direction not in the span of g; and gy. Therefore,
given vector fields g, ..., gy, one may reach points not only in the span of
these vector field but in the span of the distribution obtained by augmenting
91, -, gm With various Lie bracket directions. :

Definition 10.11 Let A = span{gy,...,gm} be a distribution. The invo-
lutive closure A of A is the smallest involutive distribution containing
A. In other words, A is an involutive distribution such that if Ag is any
involutive distribution satisfying A C Ap then, A C Ag.

Conceptually, the involutive closure of A can be found by forming larger and
larger distributions by repeatedly computing Lie brackets until an involutive
distribution is found, ‘that is,

A':i = spa.n{gl, cos sy Om, [giagj] § [Q’k: [g"’g.‘fH yos } (10.115)

The involutive closure A in Equation (10.115) is also called the control Lie
algebra for the driftless control system (10.114). Intuitively, if dimA = n,
then all points in R™ should be reachable from zp. This is essentially the
conclusion of Chow’s theorem.

Definition 10.12 A driftless system of the form (10.101) is said to be Con-
trollable if, for any xy and z1 € R", there exists a time T > 0 and a control
input u = [hv.l,...,um]iP : [0,T] — R™ such that the solution z(t) of Equa-
tion (10.101) satisfies z(0) = zg and 2(T) = z;.

The next result, known as Chow’s Theorem, gives a sufficient condi-
tion for the system given by Equation (10.101) to be controllability.

Theorem 7 The driftless system
&= gi(z)ug +- -+ gm ()t (10.116)
is controllable if and only if rank A(z) = n af each z € R™.

The proof of Chow’s Theorem is beyond the scope of this text. The condition
rank A(z) = n is called the Controllability Rank Condition.
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Example 10.10
Consider the system on R3\ {0}.
I3 0
T = |z |w+| 0 |u
; . (10.117)

= gi(z)ur + ga(z)uz

For z # 0 the distribution A = span{g1, g2} has rank two. It is easy to
compute the Lie bracket [g1, g3] as

-1
[91:92J= 0
I3
and therefore
Z3 0 —I
rank(gy, g2, [g1,00)]) =tank | zo 0 0 [ =3
0 Ty I3

for z # 0. Therefore, the system is controllable on R \ {0}. Note that
the origin is an equilibrium for the system independent of the control input,
which is why we must ezclude the origin from the above analysis.

o2

Example 10.11 Attitude Control of a Satellite with Reaction Wheels -

Figure 10.9: Satellite with reaction wheels.

Consider a cylindrical satellite equipped with reaction wheels for control
as shoum in Figure 10.9. Suppose we can control the angular velocity about



R ————

370 CHAPTER 10. GEOMETRIC NONLINEAR CONTROL

the 71, T2, end T3 azres with controls wy, ug, and u3, respectively. The
equations of motion are then given by

W=wXU
wnth
w1 u1
w=| Wz u=\| u
ws ug

Carrying out the above calculation, it is readily shoum (Problem 10-20) that

0 —w3 w2
L;J = w3 U1 + 0 Ug =+ ! (%) (10 118)
—w2 uh 0 '

qu(w)us + ga(w)uz + gs(w)us

It is easy to show (Problem 10-21 ) that the distribution A = span{g, 92, 93}
is involutive of rank 3 on R*\ {0}. A more interesting property is that the
satellite is controllable as long as any two of the three reaction wheels are
functioning. The proof of this strictly nonlinear phenomenon is left as an
ezercise (Problem 10-22).

o

10.7 CONTROL OF DRIFTLESS SYSTEMS

Chow’s theorem tells us when a driftless system is controllability but does
not tell us how to find the control input to steer the system from a given
initial state zp to a desired final state zj. A detailed treatment of this
topic is outside the scope of the present text. There are several approaches
to designing controllers for this class of systems based on optimal control
methods, Fourier methods, piecewise constant inputs, and other approaches.
We will give a simple example to illustrate one approach on the unicycle

example.

Example 10.12
Consider aguin the unicycle example but ignore the wheel orientation ¢

for simplicity. Thus, the model becomes
& = rcos(f)w
g = rsin(f)w

é=u2
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Let us change state and input variables by defining

=z v =rcos(fy
Ty = 9 Vg = Ug

3=y

With respect to these new variables the system is

$.1 = 1
Ty =
&3 = tan(za)n

For simplicity we consider first th e
B fi e small angle approzimation tan(0) =~ 8

I = 0
T2 = (10.119)
T3 = ITon

;’Vote from .these equations that x) and zy can be independently controlled
t;i any defzred value. In the process however, 3 may drift. One approach
exere);om is :Ogrst move T and Ty to their desired final values and then to
ecute a periodic motion of z1 and T3 to move ; ;i
5 to its desired
For ezample, if we set vt

up- = asin(wt)

up = beos(wt)

it is easily shoum .(Pmblem 10-23) that after 2m/w seconds, T1 and 3 Te-
turn to thlezr initial values whereas the change in z3 is ab/w®. Suppose
that we wish to move the system from the origin (z1,22,23) = (0,0 (]I; to
(z1, 2, 23) = (0,0,10) in two seconds. Using the above cr;ntmls ‘un't}u; =7

w =, b= 10 results in the response shown in Figure 10.10.
L]

10.8 SUMMARY

This chapter introduced some basic concepts from differential geometric non-

llllear COl]tI'Ol theO and Serv (8] 0 eX )]H e 0) V
Ty €es as a foundat] n t
Te more ad a.nCEd
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Figure 10.10: Response of z1, 23 and z3. Note that 1 and z; return to their
original values after 2 seconds while z3 moves from the origin to z3 = 10 as
desired.

Manifolds, Vector Fields, Distributions

We introduced basic definitions from differential geometry, such as a dif-
ferentiable manifold, vector field, and distribution. We introduced some
geometric operations such as the Lie derivative and Lie bracket and showed
how they are related. We stated the Frobenius Theorem, which is an im-
portant tool for nonlinear analysis.

Feedback Linearization

We derived the necessary and sufficient conditions for feedback linearization
of single-input nonlinear systems. This important result serves as a basis
for controller design for a wide range of physical systems. In particular,
we showed how feedback linearization can be used to design globally stable
tracking controllers for flexible joint robots.

Nonholonomic Systems

We introduced the notion of nonholonomic systems, which has applications
in mobile robots, hopping robots, gymnastic robots, and other systems that
are subject to either rolling without slipping constraints or conservation of
momentum constraints. We presented a fundamental result for so-called
driftless systems known as Chow’s Theorem, which tells us when a driftless
system is controllable.
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PROBLEMS

10-1 Complete the proof of Lemma 10.1 by direct calculation.

10-2 Show that the function h = z — ¢(z, y) satisfies the system given by
Equation (10.17) if ¢ is a solution of Equations (10.10) and (10.11)
and X, X are defined by Equation (10.15).

10-3 Show that if h(z,y, z) satisfies Equation (10.17) and 2% # 0, then
Equation (10.18) can be solved for z as z = ¢(x,y) where ¢ satisfies
Equations (10.10) and (10.11). Also show that % = () can occur only
in the case of the trivial solution h = 0 of Equation (10.17).

10-4 Verify Equations (10.49) and (10.50).

10-5 Show that the system below is locally feedback linearizable.
£ = 5."% + 9
iz = rg g

Find explicitly the change of coordinates and nonlinear feedback to
linearize the system.

10-6 Derive Equation (10.54) which gives the equations of motion for the
single-link manipulator with joint elasticity of Figure 10.5 using La-
grange's equations.

10-7 Repeat Problem 10-6 if there is viscous friction both on the link side
and on the motor side of the spring in Figure 10.5.

10-8 Perform the calculations necessary to verify Equation (10.60).

10-9 Derive the system of partial differential equations’ (10.63) from the
condition (10.62). Also verify Equation (10.64).

10-10 Compute the change of coordinates (10.66).
10-11 Verify Equations (10.68) and (10.69).
10-12 Verify Equations (10.73).

10-13 Design and simulate a linear outer-loop control law v for the system
given by Equation (10.54) so that the link angle 31 (¢) follows a desired
trajectory y{(t) = 8%(t) = sin8t. Use various techniques such as pole
placement, linear quadratic optimal control, etc.
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10-14 Consider again a single-link manipulator (either rigid or elastic joint).
Add to your equations of motion the dynamics of a permanent magnet
DC-motor. What can you say now about feedback linearizability of
the system?

10-15 What happens to the inverse coordinate transformation given by
Equation (10.73) as the joint stiffness k — co? Give a physical inter-
pretation. Use this to show that the system given by Equation (10.54)
reduces to the equation governing the rigid joint manipulator in the
limit as k — o0.

10-16 Consider the single-link manipulator with elastic joint of Figure 10.5
but suppose that the spring characteristic is nonlinear, that is, suppose
that the spring force F is given by F = ¢(q — q2), where ¢ is a
diffeomorphism. Derive the equations of motion for the system and
show that it is still feedback linearizable. Carry out the feedback
linearizing transformation. Specialize the result to the case of a cubic
spring characteristic ¢ = k(qy —qgz)®. The cubic spring characteristic is
a more accurate description for many manipulators than is the linear
spring, especially for elasticity arising from gear flexibility.

10-17 Consider again the single link flexible joint robot given by Equa-
tion (10.54) and suppose that only the link angle ¢, is measurable.
Design an observer to estimate the full state vector, = [q1, ¢1, g2, qm]'f.

Hint: Set y = ¢y = Cz and show that the system can be written in
state space as

T = Az + bu+ ¢(y)

where ¢(y) is a nonlinear function depending only on the output .
Then a linear observer with output injection can be designed as

&= A% +bu+ ¢(y) + L(y - C2)
10-18 Fill in the details in Example 10.7 showing that the constraints are
nonholonomic.

10-19 Fill in the details in Example 10.8 necessary to derive the vector fields
g1 and go and show that the constraints are nonholonomic.

10-20 Carry out the calculations necessary to show that the equations of mo-
tion for the satellite with reaction wheels is given by Equation (10.118).
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10-21 Show that the distribution A = span(gy, g2, g3) for the satellite model
given by Equation (10.118) is involutive of rank 3.

10-22 Using Chow’s theorem, show that the satellite with reaction wheels
described by Equation (10.118) is controllable as long as any two of
the three reaction wheels are functioning.

10-23 Complete the details of Example 10.12 showing that the control law
given by Equations (10.120) and (10.120) applied to the system given
by Equation (10.119) moves the state from (0,0,0) to (0,0, 10).

NOTES AND REFERENCES

A rigorous treatment of differential geometry can be found, for example, in
a number of texts, for example, [12] or [120]. A comprehensive treatment of
differential geometric methods in control is [56]. For specific applications in
robotics of these advanced methods, the reader is referred to [93] and [25].
- Our treatment of feedback linearization for single-input, affine, nonlinear
systems follows closely the pioneering result of Su [129]. The first application
of the method of feedback linearization for the single-link flexible joint robot
appeared in Marino and Spong [85). The corresponding result for the case
of n-link flexible joint robots is due to Spong [122]. Dynamic feedback
linearization for flexible joint robots was treated in DeLuca [80].

A more complete treatment of the control of nonholonomic systems,
including mobile robots, can be found in [93] and [25]. The problem of
designing nonlinear observers is treated in [67] and [68].



Chapter 11

COMPUTER VISION

II a robot is to interact with its environment, then the robot must be able
to sense its environment. Computer vision is one of the most powerful sens-
ing modalities that currently exist. Therefore, in this chapter we present a
number of basic concepts from the field of computer vision. It is not our
intention here to cover the now vast field of computer vision. Rather, we aim
to present a number of basic techniques that are applicable to the highly con-
strained problems that often present themselves in industrial applications.
The material in this chapter, when combined with the material of previous
chapters, should enable the reader to implement a rudimentary vision-based
robotic manipulation system. For example, using techniques presented in
this chapter, one could design a system that locates objects on a conveyor
belt and determines the positions and orientations of those objects. This
information could then be used in conjunction with the inverse kinematic
solution for the robot to enable it to grasp these objects.

We begin by examining the geometry of the image formation process.
This will provide us with the fundamental geometric relationships between
objects in the world and their projections in an image. We then describe a
calibration process that can be used to determine the values for the various
camera parameters that appear in these relationships. We then consider
image segmentation, the problem of dividing the image into distinct regions
corresponding to the background and to objects in the scene. When there
are multiple objects in the scene, it is often useful to deal with them indi-
vidually; therefore, we present an approach to component labelling. Finally,
we describe how to compute the positions and orientations of objects in the
image.
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11.1 THE GEOMETRY OF IMAGE FORMATION

A digital image is a two-dimensional array whose elements are called pixels
(derived from picture element). In this chapter, we will denote by Image
the array of dimension Nygys X Nygis that contains the image. The image is
formed by focusing light onto a two-dimensional array of sensing elements,
and each pixel’s value corresponds to the intensity of the light incident on
a particular sensing element. A lens with focal length )\ is used to focus
the light onto the sensing array, which is often composed of CCD (charge-
coupled device) sensors. The lens and sensing array are packaged together
in a camera, which is connected to a digitizer or frame grabber. In the
case of analog cameras, the digitizer converts the analog video signal that is
output by the camera into discrete values that are then transferred to the
pixel array by the frame grabber. In the case of digital cameras, a frame
grabber merely transfers the digital data from the camera to the pixel array.

In robotics applications, it is often sufficient to consider only the geomet-
ric aspects of image formation. Therefore, in this section we will deseribe
only the geometry of the image formation process. We will not deal with
the photometric aspects of image formation, such as issues related to depth
of field, lens models, or radiometry.

We begin by assigning a coordinate frame to the imaging system. We
then discuss the pinhole model of image formation, and derive the corre-
sponding equations relating the coordinates of a point in the world to its
image coordinates. Finally, we deseribe camera calibration, the process by
which all of the relevant parameters associated with the imaging process can
be determined.

11.1.1 The Camera Coordinate Frame

In order to simplify many of the equations of this chapter, it is useful to
express the coordinates of objects relative to a camera centered coordinate
frame. For this purpose we define the camera coordinate frame as follows.
We define the image plane as the plane that contains the sensing array. The
axes . and y, form a basis for the image plane and are typically taken to be
parallel to the horizontal and vertical axes (respectively) of the image. The
axis z. is perpendicular to the image plane and aligned with the optical axis
of the lens, that is, it passes through the focal center of the lens. The origin
of the camera frame is located at a distance A behind the image plane. This
point is also referred to as the center of projection. The point at which
the optical axis intersects the image plane is known as the principal point.
This coordinate frame is illustrated in Figure 11.1.
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Figure 11.1: Camera coordinate frame.

With this assignment of the camera frame, any point in the image plane
will have coordinates (u,v,). Thus, we can use (u,v) to parameterize the
image plane and we will refer to (u,v) as image plane coordinates.

11.1.2  Perspective Projection

The image formation process is often modeled by the pinhole lens model.
With this approximation, the lens is considered to be an ideal pinhole that is
located at the focal center of the lens.! Light rays pass through this pinhole
and intersect the image plane. )

Let P be a point in the world with coordinates (z,y, 2) relative to the
camera frame. Let p denote the projection of P onto the image plane with
coordinates (u,v, ). Under the pinhole assumption, the points P, p, and
the origin of the camera frame will be collinear. This is illustrated in Figure
11.1. Thus, for some unknown positive constant k we have

'Note that in our mathematical model, illustrated in Figure 11.1, we have placed the
pinhole behind the image plane in order to simplify the model.
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which can be rewritten as the system of equations

kz = (1L.1)
ky = v (11.2)
kz = A (11.3)

This gives k = A/z, which can be substituted into Equations (11.1) and
(11.2) to obtain

e=AZ, w=i (11.4)
Z A

These are the well-known equations for perspective projection.

11.1.3 The Image Plane and the Sensor Array

As described above, the image is a discrete array of gray level values. We
will denote the row and column indices for a pixel by the pixel coordinates
(ryc). In order to relate digital images to the 3D world, we must determine
the relationship between the image plane coordinates {u,v) and the pixel
coordinates(r, c).

We typically define the origin of the pixel array to be located at a corner
of the image rather than at the center of the image. Let the pixel array
coordinates of the pixel that contains the principal point be given by (o, ;).
In general, the sensing elements in the camera will not be of unit size, nor
will they necessarily be square. Denote by s, and sy the horizontal and
vertical dimensions, respectively, of a pixel. Finally, it is often the case that
the horizontal and vertical axes of the pixel array coordinate system point
in opposite directions from the horizontal and vertical axes of the camera
coordinate frame.? Combining these, we obtain the following relationship
between image plane coordinates and pixel array coordinates

—Z=(r-0), ——=(c—0) (11.5)
85 8y
Note that the coordinates (r,¢) will be integers, since they are the dis-
crete indices into an array that is stored in computer memory. Therefore,
this relationship is only an approximation. In practice, the value of (r,c)
can be obtained by truncating or rounding the ratio on the left-hand side of
these equations.

This is an artifact of our choice to place the center of projection behind the image
plane. The directions of the pixel array axes may vary, depending on the frame grabber.
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11.2 CAMERA CALIBRATION

The objective of camera calibration is to determine all of the parameters that
are necessary to relate the pixel coordinates (r, ¢) to the (z, v, z) coordinates
of a point in the camera’s field of view. In other words, given the coordinates
of P relative to the world coordinate frame, after we have calibrated the
camera we will be able to predict (r,c), the image pixel coordinates for the
projection of this point.

11.2.1 Extrinsic Camera Parameters

To this point in our derivations of the equations for perspective projection,
we have dealt only with coordinates expressed relative to the camera frame.
In typical robotics applications, tasks are expressed in terms of the world
coordinate frame. If we know the position and orientation of the camera
frame relative to the world coordinate frame we have

¥ =R7x*+OY
or, if we know z" and wish to solve for z°,
2 = B (c* - 0F)
In the remainder of this section, to simplify notation, we will define
R=R,, T=-R,0)

and we write
2°=Ra" 4T

Together, R and T are called the extrinsic camera parameters.

Cameras are typically mounted on tripods or on mechanical positioning
units. In the latter case, a popular configuration is the pan/tilt head. A
pan/tilt head has two degrees of freedom: a rotation about the world z
axis and a rotation about the pan/tilt head’s z axis. These two degrees of
freedom are analogous to those of a human head, which can easily look up
or down, and can turn from side to side. In this case, the rotation matrix
R is given by

R= Rz,ﬂRz,a

where 0 is the pan angle and o is the tilt angle. More precisely, 8 is the
angle between the world z-axis and the camera r-axis, about the world z-

axis, while a is the angle between the world z-axis and the camera z-axis,
about the camera z-axis.
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11.2.2 Intrinsic Camera Parameters

The mapping from 3D world coordinates to pixel coordinates is obtained by
combining Equations (11.4) and (11.5) to obtain

A A
r=-2Z4o, e=-2Y4,, (11.6)
Sz 2 5y %
Thus, once we know the values of the parameters A, sz, 0,8y, 0. We can
determine (r, c) from (z,y, z), where (z,y, z) are coordinates relative to the
camera frame. In fact, we don’t need to know all of A, sz, 8,; it is sufficient

to know the ratios N \
fr=— fy ==

85 Sy

These parameters fz, oy, fy, 0c are known as the intrinsic parameters of the
camera. They are constant for a given camera and do not change when the
camera mMoves.

11.2.3 Determining the Camera Parameters

We will first determine the parameters associated with the image center and
then solve for the remaining parameters.

Of all the camera parameters, o, 0. (the image pixel coordinates of the
principal point) are the easiest to determine. This can be done by using the
idea of vanishing points. Although a full treatment of vanishing points is
beyond the scope of this text, the idea is simple: a set of parallel lines in the
world will project onto image lines that intersect at a single point, and this
intersection point is known as a vanishing point. The vanishing points
for three mutually orthogonal sets of parallel lines in the world will define
a triangle in the image. The orthocenter of this triangle (that is, the point
at which the three altitudes intersect) is the image principal point (Problem
11-9). Thus, a simple way to compute the principal point is to position a
cube in the workspace, find the edges of the cube in the image (this will
produce the three sets of mutually orthogonal parallel lines), compute the
intersections of the image lines that correspond to each set of parallel lines
in the world, and determine the orthocenter for the resulting triangle.

Once we know the principal point, we proceed to determine the remain-
ing camera parameters. This is done by constructing a linear system of
equations in terms of the known coordinates of points in the world and the
pixel coordinates of their projections in the image. The unknowns in this
system are the camera parameters. The first step is to acquire a data set
of the form {r,c;,Zs,y;,2:} for 2 = 1.-- N, in which r,¢; are the image
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pixel coordinates of the projection of a point in the world with coordinates
T, i, % relative to the world coordinate frame. This acquisition is often
done manually, for example, by placing a small bright light at known (z, y, z)
coordinates in the world and then hand selecting the corresponding image
point.

Once we have acquired the data set, we proceed to set up the linear
system of equations. The extrinsic parameters of the camera are given by

Tl T2 T13 T:
R=|ry rg 3|, T=|Ty
T3l T2 T33 T;

With respect to the camera frame, the coordinates of a point in the world
are thus given by

¥ = mzt+rey+rsz+l;
T + Ty + 3z + T,
= ruz+ray+rzt+l:

Combining these three equations with Equation (11.6) we obtain

z° mz+ripytrsz+T;
r—o = —fo—=- 117
’ Ja 2 “rags +ray+raz+ T (1L.7)
ye ro1Z + rozy + 3z 4+ Ty
e=0 = —fyt=— 11,
2 by z° Yrqiz + ragy + i3z + T, {118

Since we know the coordinates of the principal point, we can simplify
these equations by using the coordinate transformation

T&—Tr—0, C—C—0

We now write the two transformed projection equations as functions of
the unknown variables r;j, T:, Ty, T, fz, fy- This is done by solving Equa-
tions (11.7) and (11.8) for 2¢, and setting the resulting equations to be equal
to one another. In particular, for the data points ry, ¢, 7;, i, 2; we have

rify(rnzi + rooys + 13z + T) = cife(rinzi + rogi + 113z + Tz
Defining o = f;/ fy, we can rewrite this as
rirg i + riraa¥i +rireszi +nily — acirn @ — acrayi —acrizz —acT, =0
We can combine the N such equations into the matrix equation

Az =0 (11.9)
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in which
i ™ T rizi T —C121 —C1l1 —=C12y =1 T
TeTy Tolp TaZp T2 —Clz  —Cla —C22 O
A:

L TNIN TNYN TNZN TN —CNEN —CNYN —CNZN —CN |

and

T21
T22
T23
Ty
a1
712
aris
ol

If Z = [Z1,...,7s]" is a solution for Equation (11.9) we only know that
this solution is some scalar multiple of the desired solution x, namely,

i . T
% = k[ro1, ra2, 723, Ty, arn, aria, aryz, o7k

in which & is an unknown scale factor.
In order to solve for the true values of the camera parameters, we can
exploit constraints that arise from the fact that R is a rotation matrix. In

particular,
1 1
@+ 234 33)7 = (k2(rd + 1 +15))7 = [K]

and likewise

(@ + 28+ 3Dt = (@ (rdy + rdy + )7 = alk|
Note that by definition, « > 0.

Our next task is to determine the sign of k. Using Equation (11.6) we
see that 7z° < 0 (recall that we have used the coordinate transformation
7 + r—or). Therefore, we choose k such that r(ri;z+ rigy+rizz+Tp) < 0.

At this point we know the values for k, &, Ta1, 722, 723,711, 712, 713, Ty Ty
and all that remains is to determine Ty, fz, fy, since the third column of
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R can be determined as the vector cross product of its first two columns.
Since o = f./ f,;, we need only determine T, and f,. Returning again to the
projection equations, we can write

_ sz +roytrsz+ T
“rae+ray+rz+ T

rT=- f Iz_c
Using an approach similar to that used above to solve for the first eight
parameters, we can write this as the linear system

r(raiz +raoy + rasz + T;) = — fo(rinz + rioy + ri3z + Tx)

which can easily be solved for T, and f.

11.3 SEGMENTATION BY THRESHOLDING

Segmentation is the process by which an image is divided into meaningful
components. Segmentation has been the topic of computer vision research
since its earliest days, and the approaches to segmentation are far too numer-
ous to survey here. These approaches are sometimes concerned with finding
features in an image, such as edges, and sometimes concerned with par-
titioning the image into homogeneous regions (region-based segmentation).
In many practical applications the goal of segmentation is merely to divide
the image into two regions: one region that corresponds to an object in the
scene and one region that corresponds to the background. The resulting im-
age is called a binary image since each pixel belongs to one of two classes:
object or background. In many industrial applications this segmentation
can be accomplished by a straightforward thresholding approach. For light
objects against a dark background, pixels whose gray levels are greater than
the threshold are considered to belong to the object and pixels whose gray
level is less than or equal to the threshold are considered to belong to the
background. For dark objects against a light background, these categories
are reversed.

In this section we will describe an algorithm that automatically selects a
threshold. The basic idea behind the algorithm is that the pixels should be
divided into two groups, background and object, and that the intensities of
the pixels in a particular group should all be fairly similar. To quantify this
idea, we will use some standard techniques from statistics. Thus, we begin
the section with a quick review of the necessary concepts from statistics and
then proceed to describe the threshold selection algorithm.
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11.3.1 A Brief Statistics Review

Many approaches to segmentation exploit statistical information containe_d
in the image. The basic premise for most of these statistical- concepts is
that the gray level value associated with a pixel in an image is a random
variable that takes on values in the set {0,1,... N — 1}. Let P(z) Qenote
the probability that a pixel has gray level value z. In general, we will not
know this probability, but we can estimate it with the use of a histogram.
A histogram is an array H that encodes the number of occurrences of each
gray level value in the image. In particular, the entry H|z] is the number of
times gray level value z occurs in the image. Thus, 0 < H[z] < Nrows X -’_Vool.q
for all z. A simple algorithm to compute the histogram for an image is as
follows.

FORi=0TO N -1
H[‘t] «—0
FOR 1 =0TO Npoys — 1
FOR ¢=0TO Nygs—1
Index — I'magelr,d]
Hl[Indez] — H|Indez] +1

S 200

Given the histogram for the image, we estimate the probability that a
pixel will have gray level z by
Plz)= . - (11.10)
Nrows ¥ Ncois
Thus, the image histogram is a scaled version of our approximation of P.
Given P we can compute the average or mean value of the gray level
values in the image. We denote the mean by p and compute it as

N-1
p= Z zP(2) (11.11)
2=0

In many applications the image will consist of one or more objects against
some background. In such applications, it is often useful to compl-lte the
mean for each object in the image and also for the background. This com-
putation can be effected by constructing individual histogram arrays for ea.ch
object and for the background in the image. If we denote by H; the his-
togram for the " object in the image, where i = 0 denotes the background,
the mean for the i object is given by
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= (11.12)
Z f 01 H [2]
which is a straightforward generahzatlon of Equation (11.11). The term
Hilz]
N—
:."=01 H; [z]

Is in fact an estimate of the probability that a pixel will have gray level value
z given that the pixel is a part of object i in the image. For this reason, i
is sometimes called a conditional mean.

The mean conveys useful but limited information about the distribution
of gray level values in an image. For example, if half of the pixels have
gray value 127 and the remaining half have gray value 128, the mean will
be p = 127.5. Likewise, if half or the pixels have gray value 255 and the
remaining half have gray value 0, the mean will be u = 127.5. Clearly, these
two images are very different, but this difference is not reflected by the mean.
One way to capture this difference is to compute the average deviation of
gray values from the mean. This average would be small for the first example

and large for the second. We could, for example, use the average value of -

|2 —u|. It is more convenient mathematically to use the square of this value
instead. The resulting quantity is known as the variance, which is denoted
by 0% and is defined by

at= Z(z — p)?P(z) (11.13)

As with the mean, we can also compute the conditional variance o? for each .

object in the image as

S A
o= Y (- P
2w T

11.3.2 Automatic Threshold Selection

We are now prepared to develop an automatic threshold selection algorithm.
We will assume that the image consists of an object and a background and
that the background pixels have gray level values less than or equal to some
threshold while the object pixels are above the threshold. Thus, for a given
threshold value z, we divide the image pixels into two groups: those pixels
with gray level value z < z and those pixels with gray level value z > 2.

=)

) rl,". E_ i"'-_':‘j

5

l
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We can compute the mean and variance for each of these groups using the
equations of Section 11.3.1. Clearly, the conditional means and variances
depend on the choice of z, since it is the choice of 2 that determines which
pixels will belong to each of the two groups. The approach that we take in
this section is to determine the value for z; that minimizes a function of the
variances of these two groups of pixels.

It is convenient to rewrite the conditional means and variances in terms
of the pixels in the two groups. To do this, we define g;(z;) as the probability
that a pixel in the image will belong to group i for a particular choice of
threshold z. Since all pixels in the background have gray value less than or
equal to 2 and all pixels in the object have gray value greater than z, we
can define g;(2) for i =0,1 by

Zt P i H
o) = et )= (J%r;?*?wf )

We now rewrite Equation (11.12) as

N-1 N-1

H; [z] _ H; [z]/( rows X Nmts)
a Z N_IH[Z] Z Zz:ﬂ Hilz]/(Nrows X Neots)

2=0

Using again the fact that the two pixel groups are defined by the threshold
z, we have

g (Nrows X Neals)P(2) z<zn
Hie) = { 0 otherwise

Hyf] = 0 25y
W= (Nrows % Negis)P(z)  otherwise
Thus, we can write the conditional means for the two groups as

N-1

Juo(zf)=th—Pﬁ mz)= Y o] (11.14)

= dolz) iy 0l2)

Similarly, we can write the equations for the conditional variances by

) = 3 (e o))

0 qo(2t)
N
> (2= m(=)) P((Zt))

z=z+1

o1 ()
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We now turn to the selection of z;. If nothing is known about the true
values of yu; or a how can we determine the optimal value of z? To
answer this question, recall that the variance is a measure of the average
deviation of pixel intensities from the mean. Thus, if we make a good
choice for z, we would expect that the variances o7(z) would be small.
This reflects the assumption that pixels belonging to the object will have
intensity values that are clustered closely about i; and that pixels belonging
to the background will have intensity values that are clustered closely about
po. We could, therefore, select the value of z; that minimizes the sum of
these two variances. However, it is unlikely that the object and background
will occupy the same number of pixels in the image; merely adding the
variances gives both regions equal importance. A more reasonable approach
is to weight the variances o7 by the probability that a pixel will belong to
the corresponding region

on(2) = qo(2)od (22) + a1 (2)o3 ()

The value o2 is known as the within-group variance. The approach that
we will take minimizes this within-group variance, giving a threshold that
divides the image into two groups,

At this point we could implement a threshold selection algorithm. The
naive approach would be to simply iterate over all possible values of z; and
select the one for which cf?u(zt) is smallest. Such an algorithm performs an
enormous amount of calculation, much of which is identical for successive
candidate values of the threshold. As we will see, most of the calculations
required to compute o2 (z;) are also required to compute 02 (z + 1); the
summations that are required change only slightly from one iteration to the
next.

To develop a more efficient algorithm, we take two steps. First, we will
derive the between-group variance o?, which depends on the within-
group variance and the variance over the entire image. The between-group
variance is a bit simpler to deal with than the within-group variance, and
we will show that maximizing the between-group variance is equivalent to
minimizing the within-group variance. Then, we will derive a recursive
formulation for the between-group variance that lends itself to an efficient
implementation.

To derive the between-group variance, we begin by expanding the equa-
tion for the total variance of the image and then simplifying and grouping
terms. The total variance for the image o is a constant, and does not de-
pend on the choice of threshold value. The total variance of the gray level
values in the image is given by Equation (11.13), which can be rewritten
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as two summations, one for the background pixels, and one for the object
pixels

N-1
o? = Y (z-p?P(z)

zz-;[) s

= D (z—mo+pm—p)P@)+ Y, (2—m+m—u?PQ)
z=0 z=z+1 .

= ) [z —po)® +2(z — po) (o — ) + (o — w)IP(2)
z=0N_1 .
+ 3 [z = )+ 20z = ) — ) + (1 — )1 P(2)

=z+1

‘We have not explicitly noted the dependence on z; here. In the remainder
of this section, to simplify notation, we will refer to the group probabilities
and conditional means and variances as g;, u;, and a?, without explicitly
noting the dependence on z. The final expression in the derivation above
can be further simplified by examining the cross-terms

Y (2= )i - w)P(2)
Y wwP(z) = Y zuP(2) - Y piP(2)+ Y pipP(z)
Wiy 2P(z)—py zP(2) =l Y P(2)+wip Y P(2)

= pilmg) — pue) — 12a + pipg;
-0

in which the summations are taken for z from 0 to z for the background
pixels (that is, i = 0) and 2 from 2 + 1 to N — 1 for the object pixels (that
is, 2 = 1). Therefore, we can simplify our expression for 02 to obtain

2 N-1
0! = z_;,[(z—#o)2+(ﬂo—#)2]1°(z)+ Y (2= m)+ (- w)IP(z)

z=zt+1
= g5 +wlpo — 1)° + q10% + qa(pr — p)’?
= {q0f +qoi} + {ao(io — ) + @ (p1 — 1)*}
= qu + Ug
in which
ot = golpo — 1)* + @1 (g — )? (11.15)
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Since o does not depend on the threshold value, minimizing o2 is equiv-
alent to maximizing o7. This is preferable because of is a function only of
the ¢; and g, and is thus simpler to compute than o2, which depends also
on the o?. In fact, by expanding the squares in Equation (11.15), using the
facts that g1 =1 — gy and p = g0 + g1 03, we obtain

o} = go(1 - qo) (o — )’ (11.16)

The simplest algorithm to maximize of is to iterate over all possible
threshold values, and select the cne that maximizes ag. However, as dis-
cussed above, such an algorithm performs many redundant calculations,
since most of the calculations required to compute of(z) are also required
to compute crf(z; +1). A more efficient algorithm would reuse the com-
putations needed for o7 (z;) when computing o7(z + 1). In particular, we
will derive expressions for the necessary terms at iteration z + 1 in terms
of expressions that were computed at iteration z. We begin with the group
probabilities, and determine the recursive expression for gy as

z41 Zt
w(z+1)=) P(z)=P(za+1)+Y . P(2) = Pla+1) +gq(z) (11.17)
z=0

z=0

In this expression, P(z + 1) can be obtained directly from the histogram
array, and go(z) is directly available because it was computed on the pre-
vious iteration of the algorithm. Thus, given the results from iteration z,
very little computation is required to compute the value for gy at iteration
Zf + 1:

For the conditional mean yg(z;) we have

()
po(z+1) = ;zqo(th)
_ (@+1)P(z+1) iz P(z)
qolz +1) = wla+])
(2+1)P(z+1) wlz) <~ P)
 platl) qo(z +1) ;z%(k&)
D ot iee (e

Again, all of the quantities in this expression are available either from the
histogram, or as the results of calculations performed at iteration z of the
algorithm.
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To compute fu(z; + 1), we use the relationship pu = qoup + q1441, which
can be easily obtained using Equations (11.11) and (11.14). Thus, we have

p— go(2 + L)po(z: + 1)
q(z+1)
B —golze + Doz +1)

3 e (11.19)

We can now construct an efficient algorithm to automatically select a
threshold that minimizes the within-group variance. This algorithm sim-
ply iterates from 0 to N — 1 (where N is the total number of gray level
values), computing go, po, p1 and o at each iteration using the recursive
formulations given in Equations (11.16), (11.17), (11.18), and (11.19). The
algorithm returns the value of z for which of is largest. Figure 11.2 shows
a gray level image and the binary thresholded image that results from the
application of this algorithm, along with the histogram and within-group
variance for the gray level image.

pr(z +1)

11.4 CONNECTED COMPONENTS

It is often the case that multiple objects will be present in a single image.
When this occurs, there will be multiple connected components with gray
level values that are above the threshold. In this section, we will first make
precise the notion of a connected component and then describe an algo-
rithm that assigns a unique label to each connected component, that is, all
pixels within a single connected component have the same label, but pixels
in different connected components have different labels.

In order to define what is meant by a connected component, it is first
necessary to define what is meant by connectivity. For our purposes, it is
sufficient to say that a pixel with image pixel coordinates (r, ¢) is adjacent to
four pixels, those with image pixel coordinates (r—1,¢), (r+1,¢), (r,c+1),
and (r,c - 1). In other words, each image pixel, except those at the edges
of the image, has four neighbors: the pixel directly above, directly below,
directly to the right and directly to the left of the pixel. This relationship
is sometimes referred to as 4-conmectivity. Two pixels are 4-connected if
they are adjacent by this definition. If we expand the definition of adjacency
to include those pixels that are diagonally adjacent, that is, the pixels with
coordinates (r—1,c—1), (r—1,¢+1), (r+1,c—1), and (r +1,¢+1), then
we say that adjacent pixels are 8-connected. In this text, we will consider
only the case of 4-connectivity.

A connected component is a set of pixels, S, such that for any two pixels,
say P and P’ in S, there is a 4-connected path between them and this path
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a = woE 3 =

(c) (d)

Figure 11.2: (a) An image with 256 gray levels. (b) Thresholded version of
the image. (c) Histogram for the image. (d) Within-group variance for the
image shown. ’

is contained in S. Intuitively, this definition means that it is possible to
move from P to P’ by “taking steps” only to adjacent pixels without ever
leaving the region S. The purpose of a component labeling algorithm is to
assign a unique label to each such S.

There are many component labeling algorithms that have been developed
over the years. Here, we describe a simple algorithm that requires two passes
over the image. This algorithm performs two raster scans of the image. A
raster scan visits each pixel in the image by traversing from left to right
and top to bottom, in the same way that one reads a page of text. On the
first raster scan, when an object pixel P, that is, a pixel whose gray level is
above the threshold value, is encountered, its previously visited neighbors,
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the pixel immediately above and the pixel immediately to the left of P, are
examined. If they have gray value that is below the threshold, so that they
are background pixels, a new label is given to P. This is done by using
a global counter that is initialized to zero and is incremented each time a
new label is needed. If either of these two neighbors have already received
labels, then P is given the smaller of these, and in the case when both of
the neighbors have received labels, an equivalence is noted between those
two labels. For example, in Figure 11.3, after the first raster scan labels
(2,3,4) are noted as equivalent. In the second raster scan, each pixel’s label
is replaced by the smallest label to which it is equivalent. Thus, in the
example of Figure 11.3, at the end of the second raster scan labels 3 and 4
have been replaced by the label 2. :

After this algorithm has assigned labels to the components in the image,
it is not necessarily the case that the labels will be the consecutive integers
(1,2,...). Therefore, a second stage of processing is sometimes used to
relabel the components to achieve this. In other cases, it is desirable to
give each component a label that is very different from the labels of the
other components. For example, if the component labeled image is to be
displayed, it is useful to increase the contrast, so that distinct components
will actually appear distinct in the image. A component with the label 2
will appear almost indistinguishable from a component with label 3 if the
component labels are used as pixel gray values in the displayed component
labeled image. The results of applying this process to the image in Figure
11.2 are shown in Figure 11.4.

When there are multiple connected object components, it is often useful
to process each component individually. For example, we might like to
compute the sizes of the various components. For this purpose, it is useful to
introduce the indicator function for a component. The indicator function
for component 4, denoted by Z;, is a function that takes on the value 1 for
pixels that are contained in component ¢ and the value 0 for all other pixels:

Ii(r,c) = 1 : pixel 7,c is contained in component
Y 0 : otherwise

We will make use of the indicator function below, when we discuss computing
statistics associated with the various objects in the image.

11.5 POSITION AND ORIENTATION

The ultimate goal of a robotic system is to manipulate objects in the world.
In order to achieve this, it is necessary to know the positions and orientations

11.5.  POSITION AND ORIENTATION 395

000 0 0 0 0 0 00 0O0O0O0OTO0TUD
XXX 000 0 0 11100000
XXX 000 00 11100000
XX X 000 0 0 111000 00
00 0 0 0 0 00O 0 00O0O0OUOTU OT
0 0 0 X 0 0 X X 000 200 3 3
000 X 00 X X 000200 3 3
0 0 0 X X X X X 08 222 23 2
X X X X XX X X 4 4 4 2 2 2 2 2
X X X X X X X X 4 4 4 2 2 2 2 2
00 0 0 0 0 0 0 000O0OO0OTOD0DTOT@0
(8) (b)
000 0 0O0O0O0 0 00O0OD0ODO0OTOD0DTOO
1 1 1.0 00 0 0 1 1100000
111 0 99 0 0 11100000
1 11 0 000 0 11100000
00O0O0O0DO0ODTO0O O 000 O0O0O0T OO OO
000 2 00 3 3 000 200 2 2
000 2 00 3 3 000 200 2 2
00D 0 2 2 2X 2 0 002 2 2 2 2
4.4 4 X 2 2 2 2 2 222 2 2 92 2
4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2
000 O0O0OO0DTUODODO 000O0O0CO0TO0OT O

—_
(£]
e
—_
o
~—

Figure 11.3: The image in (a) is a simple binary image. Background pixels
are denoted by 0 and object pixels are denoted by X. Image (b) shows the
assigned labels after the first raster scan. In image (c) an X denotes those
pixels at which an equivalence is noted during the first raster scan. Image
(d) shows the final component labeled image.
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Figure 11.4: The image of Figure 11.2 after connected components have
been labeled.

of the objects that are to be manipulated. In this section, we address the
problem of determining the position and orientation of objects in the image.
Once the camera has been calibrated, it is then possible to use these image
positions and orientations to infer the 3D positions and orientations of the
objects. In general, this problem of inferring the 3D position and orientation
from image measurements can be a difficult problem; however, for many
cases that are faced by industrial robots we can obtain adequate solutions.
For example, when grasping parts from a conveyor belt, the depth z is fixed
and the perspective projection equations can be inverted if 2 is known.

We begin the section with a general discussion of moments, which will
be used in the computation of both position and orientation of objects in
the image.

11.5.1 Moments

Moments are functions defined on the image that can be used to summarize
various aspects of the shape and size of objects in the image. The 7, j moment
for the k" object, denoted by m;(k), is defined by

mij (k) = E TiCiIk(T, C)
"e
From this definition, it is evident that mgy is merely the number of pixels
in the object. The order of a moment is defined to be the sum 7 4 j. The
first order moments are of particular interest when computing the centroid
of an object, and they are given by

muo(k) = ZrIk(r, e), mpulk)= Zcfk(r,c)
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Figure 11.5: The segmented component-labeled image of Figure 11.2 show-
ing the centroids and orientation of each component.

11.5.2 The Centroid of an Object and Central Moments

It is convenient to define the position of an object to be the ob ject’s center
of mass or centroid. By definition, the center of mass of an object is that
point (7, ) such that, if all of the object’s mass were concentrated at (7,2,
the first moments would not change. Thus, we have

o DT ml)
11: T-‘ = i ¢ $ = ‘ - <
;C:r (re) r!ZCTI, (re) = 7 Zr,c Ti(r,e)  mooli)

o _ Lrechilne)  mg(d)
. N _ Moy
thqL(r c) ; () = & Y Lilre)  mgg(i)

Figure 11.5 shows the centroids for the connected components of the image
of Figure 11.2.

It is often useful to compute moments with respect to the object center of
mass. By doing so, we obtain characteristics that are invariant with respect,

to t.ri_mslation of the object. These moments are called central moments.
The 1, j central moment for the k™ object is defined by

Cii(k) = (r - ) (c — &) Ti(r,) (11.20)

e

in which (7, &) are the coordinates for the centroid of the kth object.
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11.5.3 The Orientation of an Object

We will define the orientation of an object in the image to be the orientation
of an axis passing through the object such that the second moment of the
object about that axis is minimal. This axis is merely the two-dimensional

equivalent of the axis of least inertia.
For a given line in the image, the second moment of the object about

that line is given by

L= d*(r,oI(rc)
T
in which d(r,c) is the minimum distance from the pixel with coordinates
(r,c) to the line. Our task is to minimize L with respect to all possible lines
in the image plane. To do this, we will use the p, @ parameterization of lines
and compute the partial derivatives of £ with respect to p and 6. We find
the minimum by setting these partial derivatives to zero.
With the p,# parameterization, a line consists of all those points z,y

that satisfy '

reosf+ysinf—p=10

Thus, (cosf,sinf) gives the unit normal to the line and p gives the per-
pendicular distance to the line from the origin. This parameterization is
illustrated in Figure 11.6. Under this parameterization the distance from
the line to the point with coordinates (r, c) is given by

d(r,¢) = rcosf +csinf —p
Thus, the value £* that minimizes £ is given by

L= minZ(rcosH +esinf — p)*Z(r,c)

e
r,c

We compute the partial derivative of L with respect to p as
0

—£L = — (rcosd+csinf—p)*I(r,c)
dp ;

= —QCOSHZTI(T, ¢) — ZSmQZcI(T,C) +2pZI(r, c)

r.c rc

= —2mgp(Fcos@ + ésinfl — p) (11.21)
Now, setting this to zero we obtain

Feos + csinf—p=10
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Figure 11.6: The p, # parameterization of a line

But this is just the equation of a line that passes through the point (7,2),
and therefore we conclude that the inertia is minimized by a line that passes
through the center of mass. We can use this knowledge to simplify the
remaining computations. In particular, define the new coordinates (', ¢/) as

The line that minimizes £ passes through the point r' = 0,¢ = 0, and
therefore its equation can be written as

' cosf+¢'sin@ =0

Before computing the partial derivative of £ (expressed in the new coor-
dinate system) with respect to 6, it is useful to perform some simplifications.

L = Z(r' cosf + ¢ sin 0)*Z(r, c)

e

cos’ § Z(r’)QI(r, ¢) + 2cosfsind Z(r'c")l(r, ¢) +sin @ Z(c’)zf(r, c)

e e

= Chgcos* 8+ 20 cosfsinf + Cpasin®d

in which the Cj; are the central moments given in Equation (11.20). Note
that the central moments depend on neither p nor .

The final set of simplifications that we will make all rely on the double
angle identities:

1 I
cos’d = 3 + —cos 26
: 1 1
sin®0 = 373 cos 20
cosfsinfl = 1 sin 26

o
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Substituting these into our expression for £ we obtain
1 g
= é(Cga +Cpa) + E(Czo — Cp) cos 20 + Cy; sin 260

It is now easy to compute the partial derivative with respect to 8:
d

%f. = f(CQU — Clpg) sin 20 + 2C1; cos 20
and setting this to zero we obtain
201
tan2f = ———
= Cap — Co2

Figure 11.5 shows the orientations for the connected components of the
image of Figure 11.2.

11.6 SUMMARY

In this chapter we studied basic image formation and processing. We be-
gan with the geometry of the image formation process, which is typically
modeled using perspective projection. In this case, the projection onto the
image plane of a point with coordinates {z,y, z) is given by the perspective
projection equations " y
=XA= H=AS
z z

The actual discrete image array coordinates are related to the u,v coordi-
nates by
u=—sz(r—o;), v=-—sy(c—0)

in which the principal point has coordinates (o, 0.) and s; and s, are the
horizontal and vertical dimensions, respectively, of a pixel. The parameters
Or, Oc, Sy and sy, along with the focal length of the camera imaging system,
are known as intrinsic camera parameters. The position and orientation
of the camera frame with respect to the world coordinate frame comprise
the extrinsic parameters. All of these parameters can be estimated by the
process of camera calibration.

Segmentation is the process of partitioning an image into foreground
and background components. We described a threshold-based segmentation
method, in which the threshold is automatically selected by maximizing the
between-group variance given by

ot = qoll — qo) (o — 1)?
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in which gp is the fraction of background pixels, and jig and y; are the mean
gray level values of the background and foreground pixels, respectively. This
maximization can be achieved by an efficient recursive scheme.

Once the image has been segmented into foreground and background,
pixels can be grouped together using a connected components algorithm. If
the segmentation algorithm is effective, this gives an image in which each
individual object has a unique label. It is then possible to compute prop-
erties of the objects using moments. In this chapter, we demonstrated how
first and second order moments can be used to determine position and ori-
entation of a 2D object in an image. The moments for the k™ object are
given by

mi; (k) = Zrichk(r, c)
e

The centroid of an object has coordinates given by

__moi)  __ mo()
T T meold)

The i, j central moments for an object are defined with respect to the abject’s
centroid. For the k** object the central moments are defined by

Cy(k) =Y (r = )i — &) Tu(r,0)

e

The orientation of an object can be determined from its central moments as

201
tan2d = —————
Cy — Coa

PROBLEMS

11-1 For a camera with focal length A = 10, find the image plane coordi-
nates for the 3D points whose coordinates with respect to the camera
frame are given below. Indicate if any of these points will not be visible
to a physical camera.

1. (25,25,50)

2. (—25,-25,50)

3. (20,5,-50)

4. (15,10,25)

5. (0,0,50)
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6. (0,0,100)

11-2 Repeat problem 11-1 for the case when the coordinates of the points
are given with respect to the world frame. Suppose the optical axis of
the camera is aligned with the world x-axis, the camera x-axis is par-
allel to the world y-axis, and the center of projection has coordinates
(0,0, 100).

11-3 A stereo camera system consists of two cameras that share a common
field of view. By using two cameras, stereo vision methods can be used
to compute 3D properties of the scene. Consider stereo cameras with
coordinate frames 01219121 and 09293329 such that

100 B
0100
T
= 0010
0001
Here, B is called the baseline distance between the two cameras.
Suppose that a 3D point P projects onto these two images with image
plane coordinates (1, v;) in the first camera and (ug, v2) in the second
camera. Determine the depth of the point P.

11-4 Show that the projection of a 3D line is a line in the image.
11-5 Consider two parallel lines in 3D, given parametrically by

T
+ i

now B
Il
=

2

in which v € R, u; is a unit vector and (z;, 1, %) is a point on the
line. Show that if two lines are parallel, that is, if u; = ug, then the
projections of these two lines in an image intersect at a single point.
This point is called the vanishing point.

11-6 Show that the vanishing points for all 3D horizontal lines must lie on
the line v = 0 of the image plane.

11-7 Suppose the vanishing point for two parallel lines has the image co-
ordinates (s, ). Show that the direction vector for the 3D line is
given hy

1 o

——— i I}
VUi, + v + M2 ;G

uw=
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in which ) is the focal length of the imaging system.

11-8 Two parallel lines define a plane. Consider a set of pairs of parallel
lines such that the corresponding planes are all parallel. Show that
the vanishing points for the images of these lines are collinear. Hint:
let n be the normal vector for the parallel planes and exploit the fact
that u; - n = 0 for the direction vector u; associated to the % line.

11-9 A cube has twelve edges, each of which defines a line in three space.
We can group these lines into three groups, such that in each of the
groups there are four parallel lines. Let (a1, az,as), (bi,bs,b3), and
(e1,¢2,¢3) be the direction vectors for these three sets of paralle] lines.
Each set of parallel lines gives rise to a vanishing point in the image.
Let the three vanishing points be V; = (uq,va), V3 = (uy, ), and
Ve = (e, ¢c), respectively.

L. IfC is the optical center of the camera, show that the three angles
LVoCVs, £LV,CV, and LV, CV, are each equal to %. Hint: In the
world coordinate frame, the image plane is the plane z = \.

2. Let h, be the altitude from V; to the line defined by V; and V,.
Show that the plane containing both h, and the line through
points C and V;, is orthogonal to the line defined by V, and V.

3. Let h, be the altitude from V, to the line defined by V; and V,,
hy the altitude from Vj, to the line defined by V, and V,, and A,
the altitude from V, to the line defined by V, and V;. We define
the following three planes:

* F, is the plane containing both k, and the line through points
C and V.

e F, is the plane containing both fy, and the line through points
C and V.

o P is the plane containing both k. and the line through points
C and V..

Show that each of these planes is orthogonal to the image plane
(it is sufficient to show that P; is orthogonal to the image plane
for a specific value of 4).

4. The three vanishing points V;, Vs, V. define a triangle, and the
three altitudes hg, fuy, h. intersect at the orthocenter of this tri-
angle. For this special case, where the three direction vectors are
mutually orthogonal, what is the significance of this point?
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11-10 Use your results on vanishing points to draw a nice cartoon scene with
a road or two, some houses and maybe a roadrunner and coyote.

11-11 Suppose that a circle lies in a plane parallel to the image plane. Show
that the perspective projection of the circle is a circle in the image
plane and determine its radius.

11-12 Show that

N N ’
Y (X -wPP(X)=| Y X*P(X) ] -t
1=1 i=l

In other words, show that the variance of X is eqﬁa.l to the difference
between the expected value of X? and the square of the mean,

11-13 Verify Equation (11.21).

11-14 Suppose that an image consists of a light object on a dark background.
Purther, suppose that the image is hand segmented, giving histograms
for both the object and background. Thus, it is a simple matter to
compute Fy(z) (the probability that a pixel with intensity value z
belongs to the background) and Py(z) (the probability that a pixel
with intensity value z belongs to the object). Give an expression for
the probability that a pixel will be misclassified if the threshold value
of t is selected.

11-15 Suppose again that an image consists of a light object on a dark back-
ground and that the image has been hand segmented, giving Fy(z) and
Pi(z). Give an algorithm that determines ¢*, the optimal threshold
value, that is, the threshold value that minimizes the probability of
misclassification of an image pixel. Your algorithm should employ a
recursive formulation whenever possible.

NOTES AND REFERENCES

Computer vision research dates back to the early sixties. In the early eighties
several computer vision texts appeared. These books approached computer
vision from the perspective of cognitive modeling of human vision [87], image
processing [109], and applied robotic vision [54]. A comprehensive review
of computer vision techniques throngh the early nineties (including the seg-
mentation method deseribed in this chapter) can be found in [50], and an
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introductory treatment of methods in 3D vision can be found in [133]. De-
tailed treatments of the geometric aspects of computer vision can be found
in [33] and [83]. A comprehensive review of the state of the art in computer
vision at the turn of the century can be found in [38].



Chapter 12

VISION-BASED CONTROL

In Chapter 9 we described how feedback from a force sensor can be used
to control the forces and torques applied by the manipulator. In the case of
force control, the quantities to be controlled, that is, forces and torques, are
measured directly by a sensor. Indeed, the output of a typical force sensor
comprises six electric voltages that are proportional to the forces and torques
experienced by the sensor. Force control is very similar to state-feedback
control in this regard.

In this chapter we consider the problem of vision-based control. Unlike
force control, with vision-based control the quantities to be controlled canmot
always be measured directly from the sensor. For example, if the task is to
grasp an object, the quantities to be controlled are pose variables, while the
vision sensor, as we have seen in Chapter 11, provides a two-dimensional
array of intensity values. There is, of course, a relationship between this
array of intensity values and the geometry of the robot’s workspace, but
the task of inferring this geometry from an image is a difficult one that has
" been at the heart of computer vision research for many years. The problem
faced in vision-based control is that of extracting a relevant and robust set of
parameters from an image and using these parameters to control the motion
of the manipulator in real time,

Over the years, a variety of approaches have been developed for the
problem of vision-based control. These vary based on how the image data
are used, the relative configuration of camera and manipulator, choices of
coordinate systems, etc. Here, we focus primarily on one specific approach,
namely, image-based, visual servo control for eye-in-hand camera
systems. We begin the chapter with a brief description of this approach,
contrasting it with other options. Next, we develop the specific mathematj.
cal tools needed for this approach, both design and analysis.
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12.1 DESIGN CONSIDERATIONS

A number of questions confront the designer of a vision-based control.system.
What kind of camera should be used? Should a zoom lens or a lens with fixed
focal length be used? How many cameras should be used? Where should
the cameras be placed? What image features should be used? Should the
features be used to derive a three-dimensional description o.f the scene, or
should two-dimensional image data be used? For the questions of camera
and lens selection, in this chapter we will consider only systems that uge a
single camera with a fixed focal length lens. We briefly discuss the remaining

questions below.

12.1.1 Camera Configuration

Perhaps the first decision to be made when constructing a .vision-based _con—.
trol system is where to place the camera. There are essentially two opltlons.
the camera can be mounted in a fixed location in the workspace or it can
be attached to the robot. These are often referred to as fixed camera and
eye-in-hand configurations, respectively. B '

With a fixed camera configuration, the camera is positioned so that it
can observe the manipulator and any objects to be manipul.atned.' There
are several advantages to this approach. Since the camera position is ﬁxec.l,
the field of view does not change as the manipulator moves. The geometric
relationship between the camera and the workspace is fixed, a,nd_can be
calibrated offline. A disadvantage to this approach is that as the ma-mpu]atc_nr
moves through the workspace, it can occlude the camera’sf field of view. This
can be particularly important for tasks that require high.premsmn. For
example, if an insertion task is to be performed, it‘ may be filfﬁcult to .ﬁnd a
position from which the camera can view the entire insertion task without
occlusion from the end effector.

With an eye-in-hand system, the camera is often aticached to the ma-
nipulator above the wrist so that the motion of the wrist does pot affect
the camera motion. In this way, the camera can observe the motxoP of the
end effector at a fixed resolution and without occlusion as the mam_plﬂa.tor
moves through the workspace. One difficulty that confronts the eye-in-hand
configuration is that the geometric relationship between the camera and the
workspace changes as the manipulator moves. The field o_f view c§n char.lge
drastically for even small motion of the manipulator, partlculgr]y 1f. the link
to which the camera is attached experiences a change in orientation. For
example, a camera attached to link three of an elbow mampulatml- {such as
the one shown in Figure 3.1) will experience a significant change in field of
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view when joint 3 moves.

For either the fixed camera or eye-in-hand configuration, motion of the
manipulator will produce changes in the images obtained by the camera
(assuming that the manipulator is in the field of view of the fixed camera
system). The analysis of the relationships between manipulator motion and
changes in the image for the two cases are similar, and in this text we will
consider only the case of eye-in-hand systems.

12.1.2 Image-Based vs. Position-Based Approaches

There are two basic ways to approach the problem of vision-based control,
and these are distinguished by the way in which the data provided by the
vision system are used. These two approaches can also be combined in
various ways to yield what are known as partitioned control schemes.

The first approach to vision-based control is known as position-based ~
visual servo control. With this approach, the vision data are used to
build a partial 3D representation of the world. For example, if the task is to
grasp an object, the perspective projection equations from Chapter 11 can
be solved to determine the 3D coordinates of the grasp points relative to the
camera coordinate frame. If these 3D coordinates can be obtained in real
time, then they can be provided as set points to the robot controller. The
main difficulties with position-based methods are related to the difficulty of
building the 3D representation in real time. In particular, these methods
tend not to be robust with respect to errors in camera calibration. Further-
more, with position-based methods, there is no direct control over the image
itself. Therefore, a common problem with position-based methods is that
camera motion can cause the object of interest to leave the camera field of
view.

A second method known as image-based, visual servo control uses
the image data directly to control the robot motion. An error function is
defined in terms of quantities that can be directly measured in an image
(for example, image coordinates of points or the orientations of lines in an
image) and a control law is constructed that maps this error directly to
robot motion. To date, the most common approach has been to use easily
detected points on an object as feature points. The error function is then
the vector difference between the desired and measured locations of these
points in the image. Typically, relatively simple control laws are used to
map the image error to robot motion. We will describe image-based control
in some detail in this chapter.

It is possible to combine multiple approaches, using different control al-
gorithms to control different degrees of freedom of the robot motion. Such
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methods essentially partition the degrees of freedom into disjoint sets, agd
are thus known as partitioned methods. We briefly describe one partic-
ular partitioned method in Section 12.6.

122 CAMERA MOTION AND THE INTERACTION MA-
TRIX

As mentioned above, image-based methods map an image error function
directly to robot motion without solving the 3D reconstruction problem.
Recall the inverse velocity problem discussed in Chapter 4. Even though
the inverse kinematics problem is difficult to solve and often ill posed, the
inverse velocity problem is typically fairly easy to solve: ‘one merely inverts
the manipulator Jacobian matrix, assuming the Jacobian is nonsingular.
This can be understood mathematically by noting that while the inverse
kinematic equations represent a nonlinear mapping between possibly com-
plicated geometric spaces (for example, even for the simple two-link pla.'nar
arm the mapping is from R? to the torus), the mapping of velocities is &
linear map between linear subspaces (in the two-link example, a mapping
from R? to a plane that is tangent to the torus). Likewise, the relations.hip
between vectors defined in terms of image features and camera veIooitlzies isa
linear mapping between linear subspaces. We will now give a more rigorous
explanation of this basic idea. '

Let s(t) denote a vector of feature values that can be measured in an
image. [ts derivative 3(t) is referred to as an image feature velocity. For
example, if a single image point is used as a feature, we would have

In this case (t) would be the image plane velocity of the image po@'
The image feature velocity is linearly related to the camera velocity. Let
the camera velocity £ consist of linear velocity v and angular velocity w

¢ [ :’J] (12.1)

so that the origin of the camera frame is moving with linear velocity v and
the camera frame is rotating about the axis w, which passes through the
origin of the camera frame. There is no difference between £ as used here
and as used in Chapter 4; in each case, £ encodes the linear and angular
velocity of a moving frame. In Chapter 4 the frame was attached to the end
effector while here it is attached to the moving camera.
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The relationship between § and £ is given by
= L(s,q)¢ (12.2)

Here, the matrix L(s, ) is known as the interaction matrix. The interac-
tion matrix is a function of both the configuration of the robot, as was also
true for the manipulator Jacobian described in Chatper 4, and of the image
feature values s.

The interaction matrix L is also called the image Jacobian matrix.
This is due, at least in part, to the analogy that can be drawn between the
manipulator Jacobian discussed in Chapter 4 and the interaction matrix.
In each case, a velocity £ is related to the variation in a set of parameters,
either joint angles or image feature velocities, by a linear transformation.
Strictly speaking, the interaction matrix is not a Jacobian matrix, since
£ is not actually the derivative of some set of pose parameters. However,
using techniques analogous to those used to develop the analytic Jacobian
in Section 4.8, it is straightforward to construct an actual Jacobian matrix
that represents a linear transformation from the derivatives of a set of pose
parameters to the image feature velocities, which are derivatives of the i image
feature values.

The specific form of the interaction matrix depends on the features that
are used to define s. The simplest features are coordinates of points in the
image, and we will focus our attention on this case.

12.3 THE INTERACTION MATRIX FOR POINT FEATURES

In this section we derive the interaction matrix for the case of a moving
camera observing a point that is fixed in space. This scenario is useful for
postioning a camera relative to some object that is to be manipulated. For
example, a camera can be attached to a manipulator arm that is to grasp
a stationary object. Vision-based control can then be used to bring the
manipulator to a grasping configuration that may be defined in terms of
image features. In Section 12.3.4 we extend the development to the case of
multiple feature points.

At time {, the orientation of the camera frame is given by a rotation
matrix R} = R(t), which specifies the orientation of the camera frame rela-
tive to the fixed frame. We denote by o(t) the position of the origin of the
camera frame relative to the fixed frame. We denote by P the fixed point
in the workspace, and by s = [u, v]T the feature vector corresponding to the
projection of P in the image. This is illustrated in Figure 12.1.

Our goal is to derive the interaction matrix L that relates the velocity
of the camera € to the derivatives of the coordinates of Lhe projection of the
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Figure 12.1: The point P is fixed with respect to the world coordinate frame,
and the camera frame moves with angular velocity w and linear velocity v.

point in the image 5. We begin by finding an expression for the velocity
of the point P relative to the moving camera. We then use the perspective
projection equations to relate this velocity to the image velocity §. Finally,
after a bit of algebraic manipulation we arrive to the interaction matrix that
satisfies § = L€,

12.3.1 Velocity of a Fixed Point Relative to a Moving Cam-
" era

We denote by p” the coordinates of P relative to the world frame. Note that
1P does not vary with time, since P is fixed with respect to the world frame.
If we denote by p®(t) the coordinates of P relative to the moving camera
frame at time #, using Equation (2.51) we have

" = R()p°(t) +o(t)

Thus, at time ¢ we can solve for the coordinates of P relative to the
camera {rame by

P(t) = BT (1) [1° - oft)] (12.3)

Now, to find the velocity of the point P relative to the moving camera frame
we merely differentiate this equation, as was done in Chapter 4. We will
drop the explicit reference to time in these equations to simplify notation,
but the reader is advised to bear in mind that both the rotation matrix
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R and the location of the origin of the camera frame o are time varying
quantities. Using the product rule for differentiation we obtain

-;—tp“(f) = R'(p°-0) - R%o (12.4)

From Equation (4.19) we have R = S(w)R, and thus BT = RTS(w)T =
RTS(~w). This allows us to write Equation (12.4) as

Il

BT (p" -~ o) ~R%% RTS(—w) (pu —0) ~ RT6
RTS(~w)RRT (p° - 0) — RT6

~RTw x RT (pﬁ ~0) - RT%

Il

In this equation the rotation matrix RT is applied to three vectors, yield-
ing three new vectors whose coordinates are expressed with respect to the
camera frame. From Equation (12.3) we see that RT(p° — 0) = p°. The
vector w gives the angular velocity vector for the moving frame in coordi-
nates expressed with respect to the fixed frame, that is, w = w. Therefore,
RTw = RSw = w* gives the angular velocity vector for the moving frame in
coordinates expressed with respect to the moving frame. F inally, note that
RT6 = ¢°. Using these conventions we can immediately write the equation
for the velocity of P relative to the moving camera frame

~C

7%=~ x pf — 6° (12.5)

Relating this to the velocity ¢ we see that w® is the angular velocity of the
camera frame expressed relative to the moving camera frame, and ¢° is the
linear velocity v of the camera frame, also expressed relative to the moving
camera frame. It is interesting to note that the velocity of a fixed point

relative to a moving frame is merely —1 times the velocity of a moving point
relative to a fixed frame.

Example 12.1 Camera Motion in the Plane

Consider a camera whose optical azis is parallel and opposite to the world
z azis. If the camera motion is constrained to rotation about the optical aris
and translation parallel to the x-y plane, we have

cosfl —sind 0 Bs
R=|sinf cosf 0|, oft)=] w
0 0 1 29



414 CHAPTER 12. VISION-BASED CONTROL

in which zp s the fired height of the camera frame relative to the world
frame. This gives

0 Uy
whe= | 0], F=|1y
0 0
If the point P has coordinates (x,y, z) relative to the camera frame, we have
¥ — v,
ﬁc=*wCXpC40'C= —.'L'H‘Uy
0

&

12.3.2 Constructing the Interaction Matrix

Using Equation (12.5) and the equations of perspective projection, it is
not difficult to derive the interaction matrix for point features. To simplify
notation, we define the coordinates for P relative to the camera frame as p© =
2,1, 2|7. By this convention, the velocity of P relative to the moving camera
frame is merely the vector p¢ = 2,7, 2]”. We will denote the coordinates
for the angular velocity vector by w® = [wg,wy,w,|T = RTw. To further
simplify notation, we assign coordinates RT6 = [vx,vy,vz]T = ¢°. Using
these conventions, we can write Equation (12.5) as

T Wy i |- Uz
J1=— | | XY~ | W
z Wy z Uz

which can be written as the system of three equations

T = Py Wy — Uy (12'6)
y' - zwx == I‘:’-’z —_ T-’y (127)

Since u and v are the the image coordinates of the projection of P in the
image, using Equation (11.4), we can express T and y as

_uz vz
S LR
Substituting these into Equations (12.6)-(12.8) we obtain
g = %wz — 2y = Uy (12.9)
Y = zwg-— %w; — vy (12.10)
. uz vz
z = -S‘-wy s 'x'wx — Uz (1211)
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These equations express the velocity p° in terms of the image coordinates
u,, the depth z of the point P, and the angular and linear velocity of the
camera. We will now find expressions for % and # and then combine these
with Equations (12.9)-(12.11).

. Using the quotient rule for differentiation with the equations of perspec-
tive projection we obtain

d X 2k~ 3z
S Y e
dt z #*

Substituting Equations (12.9) and (12.11) into this expression gives

A vz Uz [uz v

b= g e ] - 5 [ - o))
A U uv 2242
= —;Uz’ + -z—l’z 2 wa = —A—wy + vw, (1212)

We can apply the same technique for ¥

d '_ .
o= 2N _ -y
dt z 22

and substituting Equations (12.10) and (12.11) into this expression gives

A Wz vz [uz vz

0= (e[ ~u] =5 [Fon— o]
A v Ao uy
= *;Uy # ;Uz + )‘ Wy — Tl’.d'y — U, (1213)

Equations (12.12) and (12.13) can be combined and written in matrix
form as

[
A u 1w A g? v
: -— 0 - — - 4
[ i J _ z z A ) v, 4
v 0 ﬁé v A 4ot u Wy (1214)
z 2 A Y o Wy
W

The matrix in this equation is the interaction matrix for a point. To
make explicit its dependence on v, v, and 2, this equation is often written
as

§=Lp(u,v,z)¢ (12.15)
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Example 12.2 Camera Motion in the Plane (cont.) .

Consider the situation described in Ezample 12.1. Suppose that the point
P has coordinates p° = [zp,v,, 0] relative to the world frame. Relative to
the camera frame, P has coordinates given by

[ cosf sinf 0 Tp Ze
p= RT(pO = o) = —sinfl cosé 0 |l —| %
0 0 1 0- ]

[ cos8(z, — zc) +sin By — ye)
= | —sinf(z, — z.) + cosO(yp — ¥e)

The image coordinates for P are thus given by

cos 9(:5,, — Ze) +sin 9(1};: )

o= =\
; 7
Aksinﬂ(mp~xc)+c059(yp-yc)
o= —
20

These can be substituted into Equation (12.15) to yield

U

A 0 u uv —/\2 +u? vy

i Tz z A A 0
T 0 A X2 402 . [ g
2z XA A 4

]

B g{ta+&m9wp—zd—mmﬂw—%M9
o

+ (cosb(zp — ) + sinB(yp — ye) )0

12.3.3 Properties of the Interaction Matrix for Points
Equation (12.15) can be decomposed as
§ = Ly(u, v, 2)v + Ly (u, v)w (12.16)

in which L, (u, v, z) contains the first three columns of the interaction matrix,
and is a function of both the image coordinates of the point and its depth,
while L, (u,v) contains the last three columns of the interaction matrix, and
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is a function of only the image coordinates of the point, that is, it does not
depend on depth. This can be particularly beneficial in real-world situations
when the exact value of z may not be known. In this case, errors in the value
of z merely cause a scaling of the matrix Ly(u,v, 2), and this kind of scaling
effect can be compensated for by using fairly simple control methods. This
kind of decomposition is at the heart of the partitioned method that we
discuss in Section 12.6.

The camera velocity ¢ has six degrees of freedom, while only the two
values u and v are observed in the image. Thus, one would expect that not
all camera motions cause observable changes in the image. More precisely,
L € R**® and therefore has a null space of dimension 4. Therefore, the
system

0=L{s,q)¢
has solution vectors ¢ that lie in a four-dimensional subspace of RS, For the
case of a single point, it can be shown that the null space of the interaction
matrix given in Equation (12.14) is spanned by the four vectors

u 0 wz Au? + 0% + A2z
v 0 ~(u? + A?)z 0

A 0 Avz —ufu? + 1% 4+ A%)z
0 i | 2 -2 ' uvA

0 v 0 —(u?+ %)z

0 A uA u2

The first two of these vectors have particularly intuitive interpretations. The
first corresponds to motion of the camera frame along the projection ray that
contains the point P, and the second corresponds to rotation of the camera
frame about a projection ray that contains P.

12.3.4 The Interaction Matrix for Multiple Points

It is straightforward to generalize the development above to the case in
which several points are used to define the image feature vector. Consider
the case for which the feature vector consists of the coordinates of n image
points. Here, the i* feature point has an associated depth z and we define
the feature vector s and the vector of depth values z by

(1 2]

£ = i " 2 —
Un Zn
Un
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For this case, the composite interaction matrix L, that relates camera
velocity to image feature velocity is a function of the image coordinates of
the n points and also of the n depth values,

§=L.(s,2)¢

This interaction matrix is obtained by stacking the n interaction matrices
for the individual feature points,

] Ll(ula v1, Zl)
LC(S, z) =
L Lin(tin, vn, Zn)
[ A Uy wn A2 4 uf I
EE 0 == Sl S U
2 2 A A
DA ¢ 324 v% U1
0 —— - —— — -u
21 Z1 A A
A U Wty 34 uﬁ
-0 = = - Un
i o A A
Now, M v,z,_ UpUn
0 -— — ——— Uy
L Zn  Zn A A B

Thus, we have L. € R?*® and therefore three points are sufficient to
solve for £ given the image measurements 3.

12.4 IMAGE-BASED CONTROL LAWS

With image-based control, the goal configuration is defined by a desire'd
configuration of image features, denoted by s%. The image error function is

then given by

e(t) = s(t) - s
The image-based control problem is to find a mapping from this error func-
tion to a commanded camera motion. As we have seen in previous chapters,
there are a number of control approaches that can be used to determine the
joint-level inputs to achieve a desired trajectory. Therefore, in. this cha_p—
ter we will treat the manipulator as a kinematic positioning device, that is,

g
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we will ignore manipulator dynamics and develop controllers that compute
desired end effector trajectories. The underlying assumption is that these
trajectories can then be tracked by a lower level manipulator controller.

The most common approach to image-based control is to compute a de-
sired camera velocity £ and use this as the control input. Relating image
feature velocities to the camera velocity ¢ is typically done by solving Equa-
tion (12.2), which gives the camera velocity that will produce a desired value
for 4. In some cases, this can be done simply by inverting the interaction
matrix, but in other cases the pseudoinverse must be used. Below we de-
scribe various pseudoinverses of the interaction matrix and then explain how
these can be used to construct an image-based control law.

12.4.1 Computing Camera Motion

For the case of k feature values and m components of the camera body
velocity £, we have L € R¥™. In general we will have m = 6, but in some
cases we may have m < 6, for example if the camera is attached to a SCARA
arm used to manipulate objects on a moving conveyor. When L is full rank
(rank(L) = min(k,m)), it can be used to compute ¢ from §. There are three
cases that must be considered: k =m, k > m, and k < m. We now discuss
each of these.

When k = m and L is full rank, we have £ = [ 713,

When k < m, L1 does not exist, and the system is underconstrained. In
the visual servo application, this implies that we are not observing enough
feature velocities to uniquely determine the camera motion &, that is, there
are certain components of the camera motion that cannot be observed. In
this case we can compute a solution given by

¢ =L+ + (In— L*L)b
where L7 is the pseudoinverse for L given by
L+ = LT(LLT)—I

I is the m x m identity matrix, and b € R™ is an arbitrary vector. Note
the similarity between this equation and Equation (4.113) which gives the
solution for the inverse velocity problem (that is, solving for joint velocities
to achieve a desired end-effector velocity) for redundant manipulators.

In general, for k < m, (I — LLY) # 0, and all vectors of the form
(I—LL*)b lie in the null space of L, which implies that those components
of the camera velocity that are unobservable lie in the null space of L. If we
let b =0, we obtain the value for ¢ that minimizes the norm
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l|§ — Lg]

When k > m and L is full rank, we will typically have an inconsistent
system, especially when the feature values s are obtained from measured
image data. In the visual servo application, this implies that we are ob-
serving more feature velocities than are required to uniquely determine the
camera motion &. In this case the rank of the null space of L is zero, since
the dimension of the column space of L equals rank(L): In this situation,
we can use the least squares solution

E=1L"% (12.17)
in which the pseudoinverse is given by

Lt =(fnyet (12.18)

12.4.2 Proportional Control Schemes

Lyapunov theory (see Appendix D) can be used to analyze the stability
of dynamic systems, but- it can also be used to aid in the design of stable
control systems. For the system given by Equation (12.2) with error defined
by Equation (12.1), consider the candidate Lyapunov function

V(e) = gl = 5eTe

The derivative of this function is

. dlqp o,
V—dt2€6_ee

Thus, if we could design a controller such that

with A > 0 we would have
V=-Xe<0

and this would ensure asymptotic stability of the closed-loop system. In
fact, if we could design such a controller, we would have exponential stability,
which ensures that the closed-loop system is asympotically stable even under
small perturbations, for example, small errors in camera calibration.
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For the case of visual servo control, it is often possible to design such a
controller. The derivative of the error functjon is given by

and substituting this into Equation (12.19) we obtain

—Ae(t) = L¢

If k= m and L has full rank, then L1 exists, and we have

§==AL"le(t)

and the system is exponentially stable,
When £ > m we obtain the control

§=-AL%e(t)

ith It = (17731 ;
with L7 = (L"L)™ L. Unfortunately, in this case we do not obtain expo-

nential stability. To see this, consider gy
again th T
above. We have ’ 5 e Lyapunov function given

V == ETé
= 5TL€
= —XeTLLte

g;g,nx‘}: thlsdca,}s]e, t?e matrix LL* is only positive semidefinite, not positive
ite, and t erefore we can not demonstrate asymptotic stability by Lya-
punov theory. This follows because Lt € Rmxk a4 since k > m 'tyh Y
nonzero nullspace. Therefore, eLLte = () for cer;;a,in valués of e an,dl oy
demonstrate only stability, not asymptotic stability. * o
In practice, we will not know the exact value of L or Lt since th
depend on knowledge of depth information that must be estimated b. telje
.computer vision system. In this case, we will have an es%imate foy the
interaction matrix Lt and we can use the control E= —E*e(t) It isr "
to show, by a proof analogous to the one above, that the resul'tin vi‘:lsa);
servo system will be stable when LL" is positive definite This hel g.;ex lai
the robustness of image-based control methods to ca]jb. tion e - o
computer vision system. o e the
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Figure 12.2: The required camera motion is a small rotation (approximately
30°) about the camera z-axis. As can be seen in (a), the feature points move
on straight-line trajectories in the image to the desired positions, while the
image error decreases exponentially to zero, as shown in part (b). Unfortu-
nately, the required camera motion includes a significant retreat along the
camera z-axis, as illustrated in parts (c) and (d).
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12.4.3 Performance of IBVS systems

While the image-based control law described above performs well with re-
spect to the image error, it can sometimes induce large camera motions
that cause task failure, for example, if the required camera motion exceeds
the physical range of the manipulator. Such a case is illustrated in Figure
12.2. In this example, the desired camera motion is a rotation about the
camera’s z-axis. Figure 12.2(a) shows the image feature trajectories for the
four feature points. As can be seen in the figure, the feature peints move on
straight lines to their goal positions in the image. Figure 12.2(b) shows the
image feature errors for the four points; the errors converge exponentially
to zero. Unfortunately, as can be seen in Figure 12.2(c), to achieve this
performance the camera retreats by a full one meter along its z-axis. Such
a large motion is not possible for most manipulators. Figure 12.2(d) shows
the corresponding camera velocities. The velocities along and about the
camera z- and y-axes are very small, but the linear velocity along camera
z-axis varies significantly.

The most extreme version of this problem occurs then the required cam-
era motion is a rotation by m about the camera's optical axis. This case is
shown in Figure 12.3. In Figure 12.3(a) the feature points again move on
straight line trajectories in the image. However, in this case, these trajecto-
ries pass through the image center. This occurs only when the camera has
retreated infinitely far along its z-axis. The corresponding camera position
is shown in Figure 12.3(d).

These two examples are special cases that illustrate one of the key prob-
lems that confront image-based visual servo systems. Such systems explicitly
control the error in the image, but exert no explicit control over the trajec-
tory of the camera. Thus, it is possible that the required camera motions
will exceed the capabilities of the robot manipulator. Partitioned methods
provide one way to cope with these problems, and we describe one such
method in Section 12.6.

12.5 END EFFECTOR AND CAMERA MOTIONS

The cutput of a visual servo controller is a camera velocity &, typically ex-
pressed in coordinates relative to the camera frame. If the camera frame were
coincident with the end-effector frame, we could use the manipulator Jaco-
bian to determine the joint velocities that would achieve the desired camera
motion as described in Section 4.11. In most applications, the camera frame
is not coincident with the end effector frame, but is rigidly attached to it.
Suppose the two frames are related by the constant homogeneous transfor-
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sof 3 2

Figure 12.3: The required camera motion is a rotation by 7 about the camera
z-axis. In (a) the feature points move along straight line trajectories in the
image, but in (b) this requires the camera to reatreat to z = —oo.

mation

¢=[gf] (12.20)

In this case, we can use Equation (4.82) to determine the required ve-
locity of the end effector to achieve the desired camera velocity. This gives

_[ B S@R],.
55’*[03,(3 R ]fc

If we wish to express the end effector velocity with respect to the base
frame, we merely apply a rotational transformation to the two free vectors
vg and wg, and this can be written as the matrix equation

52{ . "3"“]58

03x3 Rg

Example 12.3 Eye-in-hand System with SCARA Arm

Consider the camera system described in Ezample 12.2. Recall that in
this example the camera motion was restricted to three degrees of freedom
& = [v4,7,,0,0,0,0]T. Suppose that this camera is attached to the en.d
effector of a SCARA manipulator, such that the optical azis of the camera is
aligned with the z-azis of the end effector frame. In this case, we can ezpress

T—
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the orientation of the camera frame relative to the end effector frame by

cosa —sing 0
Ré=| sina cosa 0
0 0 1

n which a gives the angle from tg to z.. Let the origin of the camera
frame relative to the end effector frame be given by df = (10,5,01T. The
relationship between end effector and camera velocitics is then given by

(cosa —sina 0 0 0 5 Uz

sina cosae 0 O 0 =1 vy

6 _ 0 0 1 -5 10 0 0
& = 0 0 0 cosa —sina 0 0
0 0 0 sine cosa 0 0

|0 0 0 0 0 1 f

[ v, cosq — Uy sina + 50
Uz Sina + vy cos o — 100
0

0
0
L ]

This can be used with the Jacobian matriz of the SCARA arm (derived
in Chapter 4) to solve for the joint velocities required to achieve the desired

camera motion.
<

12.6 PARTITIONED APPROACHES

Although image-based methods are versatile and robust to calibration and
sensing errors, they sometimes fail when the required camera motion is large.
Consider, for example, the case when the required camera motion is a large
rotation about the optical axis. If point features are used, a pure rotation
of the camera about the optical axis would cause each feature point to trace
a trajectory in the image that lies on a circle. Image-based methods, in
contrast, would cause each feature point to move in a straight line from its
current image position to its desired position. The induced camera motion
would be a retreat along the optical axis, and for a required rotation of 7
the camera would retreat to » = —00, at which point det L = 0 and the
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controller would fail. This problem is a consequence of the fact that image-
based control does not explicitly take camera motion into account. Instead,
image-based control determines a desired trajectory in the image feature
space, and maps this trajectory, using the interaction matrix, to a camera
velocity.

One way to combat this problem is to use a partitioned method.
Partitioned methods use the interaction matrix to control only a subset
of the camera degrees of freedom, and use other methods to control the
remaining degrees of freedom. Consider Equation (12.14). We can write
this equation as

§ = [ By, L'ug e T, ng Ly, ]£
Up
v, v
= [ Lux L‘t’y Lwa: L‘”u } ui +[ Lv‘ sz ] |:Lu‘z ]
Wy
= Loybay + L:€; (12.21)

Here, 8, = L., gives the component of § due to the camera motion along
and rotation about the optical axis, while §; = L€ gives the component
of § due to velocity along and rotation about the camera z and y axes. -

Equation (12.21) allows us to partition the control into two componen'ts,
£zy and &;. Suppose that we have established a control scheme to determine
the value £, = u.. Using an image-based method to find &, we would solve
Equation (12.21) as

55531‘ = Li-y {S - szz} (12.22)

This equation has an intuitive explanation. ijyLzEz is the required value
of £, to cancel the feature motion §,. The control .y = &y = Ljyé gives
the velocity along and rotation about the camera = and y axes that produce
the desired § once image feature motion due to £, has been accounted for.

If we use the Lyapunov design method described above, we set é = —Je,
and obtain

—Ae=g=4§= L:cy‘f::y + L,
which leads to
€oy = —Lf, (Ne(t) + Luts)

We can consider (Ae(t) + L.£,) as a modified error that incorporates the
original image feature error while taking into account the feature error that

will be induced by the translation along and rotation about the optical axis
due to &..

_—
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The only remaining task is to construct a control law to determine the
value of £;. To determine w,, we can use the angle 8;; from the horizon-
tal axis of the image plane to the directed line segment joining two fea-
ture points. For numerical conditioning it is advantageous to select the
longest line segment that can be constructed from the feature points, allow-
ing this choice to change during the motion as the feature point configuration
changes. The value for w, is given by

Wr = 7, (8, — 0;5)

in which ij is the desired value, and v,, is a scalar gain coefficient.
We can use the apparent size of an object in the image to determine v,.
Let o2 denote the area of some polygon in the image. We define v, as

%)
Uy =Y, In| —
a

The advantages to using the apparent size as a feature are that (1) it is
a scalar; (2) it is rotation invariant, thus decoupling camera rotation from
z-axis translation; (3) it can be easily computed.

Figure 12.4 illustrates the performance of this partitioned controller for
the case of desired rotation by 7 about the optical axis. Note that the camera
does not retreat (o is constant), the angle § monotonically decreases, and
the feature points move in a circle. The feature coordinate error is initially
increasing, unlike the classical image-based methods, in which feature error
is monotonically decreasing.

12.7 MOTION PERCEPTIBILITY

Recall the that notion of manipulability described in Section 4.12 gave a
quantitative measure of the scaling from joint velocities to end-effector ve-
locities. Motion perceptibility is an analogous concept that relates cam-
era velocity to the velocity of features in the image. Intuitively, motion
perceptibility quantifies the magnitude of changes to image features that
result from motion of the camera.

Consider the set of all robot taol velocities £ such that

lel? = (& + & +...62) < 1.

Suppose that there are redundant image features, that is, k > m. We may
use Equation (12.17) to obtain
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Figure 12.4: Partitioned method for pure target rotation (rrad). (a) Image-
plane feature motion with initial location denoted by ¢ and desired location
denoted by e. (b) Cartesian translation trajectory. (c) Feature error trajec-

tory.
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le* = ¢
= (L*5)7(L%3)
= T IHi<1 (12.23)

Now, consider the singular value decomposition of L (see Appendix B) given
by

L=UxvT. (12.24)
in which
U=luuy...u), V= [v1v.. . v
are orthogonal matrices and ¥ € R¥*™ with

and the o; are the singular values of L and a7 > g5... > )
For this case, the pseudoinverse of the interaction matrix L* is given by
Equation (12.18). Using this with Equations (12.23) and (12.24) we ohtain

U ) UTs <1 (12.25)

Consider the orthogonal transformation of given by
§=UTs

Substituting this into Equation (12.25) we obtain

Y =si<l (12.26)
e O

Equation (12.26) defines an ellipsoid in an m-dimensional space. We shall
refer to this ellipsoid as the motion perceptibility ellipsoid. We may
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use the volume of the m-dimensional ellipsoid given in Equation (12.26) as
a quantitative measure of the perceptibility of motion. The volume of the
motion perceptibility ellipsoid is given by

K+/det(LTL)

in which K is a scaling constant that depends on the dimension of the
ellipsoid m. Because the constant K depends only on m; it is not relevant
for the purpose of evaluating motion perceptibility, since m will be fixed
for any particular problem. Therefore, we define the motion perceptibility,
which we shall denote by p, as

p=/det(LTL) = 0102+ Om

The motion perceptibility measure p has the following properties, which
are direct analogs of properties derived for manipulability:

« In general, p = 0 holds if and only if rank(L) < min(k,m), that is,
when L is not full rank.

o Suppose that there is some error in the measured visual feature velocity
Aé. We can bound the corresponding error in the computed camera
velocity A€ by

llAg]]

[ As]]

(o)™ < i < (om) ™

There are other quantitative methods that could be used to evaluate the
perceptibility of motion. For example, in the context of feature selection the
condition number for the interaction matrix, given by IILIIL 1Y, could be
used to select image features.

12.8 SUMMARY

Image-based visual servo control is a method for using an error measured
in the image to directly control the motion of a robot. The key relationship
exploited by all image-based methods is given by

§= L(s,9)¢

in which L(s,q) is the interaction matrix and s is a vector of measured
image feature values. When a single image point is used as the feature, this

128, SUMMARY 51

relationship is given by

Uz
A U uy Pa4u? v
. =7 0 = — —_ v 17
[ u ] _ z A A Uy
¥ 0 A v A4t Uy Wy
== = T —U
z oz A A wy
Wy

In image-based control the image error is defined by
e(t) = s(t) — s*

and by using the square of the error norm as a candidate Lyapunov function,
we derive the control law

£ =-AL7le(t)

when the interation matrix is square and nonsingular or
£ = —ALTe(t)

with L* = (LTL)7'LT when L € R**™ and k > m.

In general, the camera coordinate frame and the end effector frame of
the robot are not coincident, In this case, it is necessary to relate the camera
velocity to the end effector velocity. This relationship is given by

RS S(dRE] ..
Eg:[ﬂaxs (Pc.,%RCJEC

in which RS and d® specify the fixed relative orientation and position of the
camera frame with respect to the end effector frame, and & and & denote
the end effector and camera velocities, respectively.

In some cases, it is advantageous to use different control laws for the dif-
ferent degrees of freedom. In this chapter, we described one way to partition
the control system using the relationship

§= L:ryfzy + Lz&z

After defining two new image features, we controlled the z-axis translation
and rotation using

It

Yo (Bil - 61_‘,‘)

O.a'.
vy = Yy, In ()
o

Wy
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in which #;; is the angle between the horizontal axis of the image plane
and the directed line segment joining two feature points, o is the area of a
polygon in the image, and 1, and -, are scalar gain coefficients.

Finally, we defined motion perceptibility as a property of visual servo
systems that is analogous to the manipulability measure for manipulators.
For k£ > m motion percpetibility is defined by

p=+/det(LTL) = o100+~ oy

in which o; are the singular values of the interaction matrix.

PROBLEMS

12-1 Give an expression for the interaction matrix for two points p; and ps
that satisfies

U1

L1

Uz

v

=L

in which (u;, ) and (ug,v2) are the image coordinates of the pro-
jection of p; and pa, respectively, and £ is the velocity of the moving
camera.

12-2 What is the dimension of the null space for the interaction matrix for
two points? Give a basis for this null space.

12-3 Consider a stereo camera system attached to a robot manipulator.
Derive the interaction matrix L that satisfies

Uy
U
Uy
Ur

=L

in which (ug, v;) and (u,, v.) are the image coordinates of the projection
of p in the left and right images, respectively, and ¢ is the velocity of
the moving stereo camera system.

12-4 Consider a stereo camera system mounted to a fixed tripod observing
the manipulator end effector. If the end effector velocity is given by
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€, derive the interaction matrix [ that satisfies

W
U
Ur
Uy

=L

in which (w;, ) and (u-, v,) are the image coordinates of the projection
of p in the left and right images, respectively.

12-5 Consider a fixed camera that observes the motion of a robot arm. De-
rive the interaction matrix that relates the velocity of the end effector
frame to the image coordinates of the projection of the origin of the
end effector frame.

12-6 Consider a camera mounted above a conveyor belt such that the optica)
axis is parallel to the world » axis. The camera can translate and
rotate about its optical axis, so in this case we have § = [vz, vy, 0s, é]T.
Suppose the camera observes a planar object whose moments are given
by

mij = Zrich(r, e).

re
Derive the interaction matrix that satisfies
oo
my | = LE
T

12-7 Write a simulator for an image-based visual servo controller that uses
the coordinates of four image points as features. Find initial and goal
images for which the classical image-based control scheme will stop
in a local minimum, that is, where the error lies in null space of the
interaction matrix. Find initial and goal images for which the system
diverges.

12-8 Use the simulator you implemented for Problem 12-7 to demonstrate
the robustness of image-based methods to errors in depth estimation.

12-9 Use the simulator you implemented for Problem 12-7 to demonstrate
the robustness of image-based methods to errors in the estimation
of camera orientation. For example, use Euler angles to construct a
rotation matrix that can be used to perturb the world coordinates of
the four points used as features.
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12-10 It is often acceptible to use a fixed value of depth z = z¢ when con-
structing the interaction matrix. Here, 2% denotes the depth when
the camera is in its goal position. Use the simulator you implemented
for Problem 12-7 to compare the performance of image-based control
using the true value of depth vs. using the fixed value 2.

12-11 Write a simulator for a partitioned controller that uses the coordinates
of four image points as features. Find initial and goal images for which
the controller fails, Compare the performance of this controller to the
one you implemented for Problem 12-7.

NOTES AND REFERENCES

Vision-based control of robotic systems dates back to the 1960’s and the
robot known as Shakey that was built at SRI. However, the vision system
for Shakey was much too slow for real-time control applications. Some of
the earliest results of real-time, vision-based control were reported in (4] and
5], which described a robot that played ping pong.

The interaction matrix was first introduced in [111], where it was referred
to as the feature sensitivity matriz. In [35] it was refered to as a Jacobian
matrix, subsequently referred to in the literature as the image Jacobian, and
in [31] it was given the name interaction matrix, the term we use in this text.

The performance problems associated with image-based methods were
first rigorously investigated in [17]. This paper charted a course for the next
several years of research in visual servo control.

The first partitioned method for visual servo was introduced in [84],
which describes a system in which the three rotational degrees of freedom are
controlled using position-based methods and the three translational degrees
of freedom are controlled using image-based methods. Other partitioned
methods have been reported in [26] and [92]. The method described in this
chapter was reported in [20].

Motion perceptibility was introduced in [115] and [114]. The notion of
resolvability, introduced in [94] and [95], is similar. In [34] the condition
number of the interaction matrix is used for the purpose of feature selection.

Appendix A

TRIGONOMETRY

A.1 THE TWO-ARGUMENT ARCTANGENT FUNCTION

The usual inverse tangent function returns an angle in the range (—n/2, 7/2).
In order to express the full range of angles we will find it useful to define
the so-called two-argument arctangent function, Atan2(z,y), which is
defined for all (z,y) # (0,0) and equals the unique angle 6 such that

. . y

cost = , Snf=—"—+
(@% +17%) (z? +17%)2

(A1)

1
2

This function uses the signs of z and y to select the appropriate quadrant for
the angle §. For example, Atan2(1,-1) = —%, while Atan2(-1,1) = +%".
Note that if both z and y are zero, then Atan2 is undefined.

A.2 USEFUL TRIGONOMETRIC FORMULAS

Reduction Formulas
sin(—f) = —sinf  sin(F -+ @) = cosd
cos{—8) = cosd tan(F +6) = —cot

tan(—f) = —tanf tan(f —7) =tanf

:Gr'a?

)

, AP eI



436 APPENDIX A. TRIGONOMETRY

Double Angle Identities

sinffzty) = sinrcosy+coszsiny

cos(zty) = coszcosy Fsinzsiny

ilp bl = tan(z) + tan(y)
1Ftanztany

Law of Cosines

If a triangle has sides of length a, b, and ¢, and @ is the angle opposite the
side of length ¢, then

¢ =a® +cb? — 2abcos

Appendix B

LINEAR ALGEBRA

In this book we assume that the reader has some familiarity with basic prop-
erties of vectors and matrices, such as matrix addition, subtraction, multi-
plication, matrix transpose, and determinants. For additional background
see [8].

B.1 VECTORS

The symbol R will denote the set of real numbers and R™ will denote the
usual vector space of n-tuples over . We use lower case letters a, b, ¢, z, 4,
etc., to denote scalars in R and vectors in R®, Uppercase letters A, B, O,
R, etc., denote matrices. Unless otherwise stated, vectors will be defined as
column vectors. Thus, the statement = € R" means that

|
& = D |y withzeRi=1,...,n (B.1)

Tn

The vector T is thus an n-tuple, arranged in a column with real-valued
components Iy,...,T,. We will frequently denote this as

z=[21,...,2n)" (B.2)
where the superscript T denotes transpose.
The scalar product of vectors z and y belonging to R*, denoted (z,y)
or 27y, is a real number defined by

(2,0) = 2Ty=zm1+ -+ Tntn (B.3)
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The scalar product of vectors is commutative, that is,
2Ty =yTx (B.4)
The length or norm of a vector z € B" is
lell = (z,2)% = (2 ++- +22)F (B.5)
We also have the useful inequalities,

|3:Ty| < ||| [fwll (Cauchy-Schwartz inequality) (B.6)
lz+yll < llzll +lul  (triangle inequality) (B.7)

For vectors in R? or R® the scalar product can be expressed as
2y = ||| [lyll cos(6) (B.8)

where 0 is the angle between.the vectors z and y.
The outer product of two vectors x and y belonging to B™ is an n x n
matrix defined by

iy - Nile
l'yT - 932.!,'1 1'2-91: (Bg)
TnY1 - - Inln

From Equation (B.9) we can see that the scalar product and the outer
product are related by

2Ty = Tr(zy") (B.10)

where the function T'(-) denotes the trace of a matrix, that is, the sum of
the diagonal elements of the matrix.

We will sometimes use i, §, and k to denote the standard unit vectors in
B3

1 0
i={0]|, j=|1|, k=]|0 (B.11)
0 1

Using this notation a vector = = [z}, 3, z3]7 may be written as

T = z1t+zT9)+usk (B.12)
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TXY

Figure B.1: The right hand rule.

The vector product or cross product z x y of two vectors z and y
belonging to R? is a vector ¢ defined by

i Gk
exy=det | z; zo I3 (B.13)
n onw
= (zay3 — zaya)i + (z3y1 — 2ays)j + (212 — 22p1 )k

o
Il

The cross product is a vector whose magnitude is

llell =l Iyl - | sin(@)] (B.14)

where # is the angle between z and y and whose direction is given by the
right hand rule shown in Figure B.1.

A right-handed coordinate frame z-y-z is a coordinate frame with axes
mutually perpendicular and that also satisfies the right hand rule in the
sense that k = i x 7, where 4, j, and k are unit vectors along the z, y, and
z axes, respectively.

We can remember the right hand rule as being the direction of advance-
ment of a right-handed screw rotated from the positive z axis into the posi-
tive y axis through the smallest angle between the axes. The cross product
has the properties

TXY = —yxz
rx(y+z) = zxytoxz (B.15)
alzxy) = (az)xy=1x(ay) (B.16)
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B.2 DIFFERENTIATION OF VECTORS

Suppose that the vector z(t) = [1(t),. .., 2x(t)]T is a function of time. Then
the time derivative £ of z is the vector

& = [E1(t),...,Ea(t)]T (B.17)

Similarly, the derivative dA/dt of a matrix A = (ay;) is the matrix (ai;).
Similar statements hold for integration of vectors and matrices. The scalar
and vector products satisfy the following product rules for differentiation
similar to the product rule for differentiation of ordinary functions.

d dz dy :

Zag) = (2 +e, D) (B.15)
d dz dy
= w0 A 1
dt(:cxy) dtxy+xxdt (B.19)

B.3 LINEAR INDEPENDENCE

A set of vectors {zy,...,,} is said to be linearly independent if and
only if

n
Zai;ci =0 implies a; = 0 for all (B.20)
i=1 :

A basis of a vector space X is a linearly independent set of vectors
(e1,...,en) such that every vector z € X can be written as a linear combi-
nation

T = 181+ i TrEn

The representation z = [z1,..., )T is uniquely determined by the partic-
ular basis (e1,...,e,). The dimension of the vector space X is the number
of basis vectors.

B.4 MATRICES

An n x m matrix A = (a;;) is an ordered array of real numbers with
n row vectors (@i,..., ;) for i = 1,...,n (likewise m column vectors
[alj,...,aﬂj]T,j = Lo i),

The rank of a matrix A is the largest number of linearly independent
rows (or columns) of A. Thus, the rank of an n x m matrix can be no greater
than the minimum of n and m.

B4 MATRICES 441

The Transpose of a matrix A is denoted AT and is formed by inter-
changing rows and columns of A. Some properties of the matrix transpose
are

(ANT = A
(AB)T = BTA”, where A and B have compatible dimensions
(A+BT = AT+ BT
A square n x n matrix A is said to be
e symmetric if and only if AT = A
e skew symmetric if and only if AT = —A
» orthogonal if and only if ATA = AAT =T
The inverse of a square matrix 4 € R™™ is a matrix B € R™" satis-
fying
AB=BA=1]

where I is the n X n identity matrix. We denote the inverse of A by A~1.
The inverse of a matrix A exists and is unique if and only if A has rank n,
equivalently if and only if the determinant det(4) is nonzero. The inverse
of a square matrix satisfies

L= =4
2. (AB)"! = B1A"!, where B is square of the same dimension as A.

If A is an orthogonal matrix, AT = A~!, the inverse of A.
The Null Space A of a matrix A is defined as

N(A)={zeR": Az =0}

The null space of a matrix is a subspace of R™, that is, a subset of R™ that
is also a vector space in its own right. An important property of the null
space is that, if A is an n x n matrix, then

rank(A4) + dimN(A4) =n

Thus, a matrix is invertible if and only if the nullspace consists of only the
zero vector, that is,

Az =0 implies =0
The norm of a matrix A € R**" is defined as

Az
A1) = sup 221
|lz||#0 1]
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B.5 CHANGE OF COORDINATES

An n x n matrix A represents a linear transformation from R” to R™ in the
sense that it takes a vector z to a new vector y according to

y = Az (B.21)

The vector y is called the image of = under the transformation A. The
numerical values of the entries of A are determined by the particular basis
used to represent vectors in R™. If the vectors z and y are represented in
terms of the standard unit vectors

o1 =0, 0T 8 = (0005 2T ° (B.22)

then the column vectors of A represent the images of the basis vectors
€l,--.,en. Often it is desired to represent vectors with respect to a sec-
ond coordinate frame with different basis vectors fi,..., fu. In this case the
matrix representing the same linear transformation as A, but relative to this
new basis, is given by

Al = TAT (B.23)

where 1" is a nonsingular matrix with column vectors fiye- <y fn. The trans-
formation T~ AT is called a similarity transformation of the matrix A.

B.6 EIGENVALUES AND EIGENVECTORS
The eigenvalues of a matrix A are the solutions in s of the equation
det(sT—A4) = 0 (B.24)

The function det(sI — A) is a polynomial in s called the characteristic
polynomial of A. If 5, is an eigenvalue of A, an eigenvector of A corre-
sponding to s is a nonzero vector r satisfying the system of linear equations

(sl — A)z = 0 (B.25)

If the eigenvalues sy,...,s, of A are distinct, then there exists a simi-
larity transformation A" = T~YAT, such that A’ is a diagonal matrix with
the eigenvalues sy,...,s, on the main diagonal, that is,

A" = diagls,..., Sn] (B.26)
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B.7 SINGULAR VALUE DECOMPOSITION (SVD)

For square matrices, we can use tools such as the determinant, eigenvalues,
and eigenvectors to analyze their properties. However, for nonsquare matri-
ces these tools simply do not apply. Their generalizations are captured by
the singular value decomposition (SVD) .

As we described above, for A € R™*" we have AAT € R™™ This
square matrix has eigenvalues and eigenvectors that satisfy

(AAT - \Dw; = 0 (B.27)

which implies that the matrix (44T — );1 ) is singular, and we can express
this in terms of its determinant as

det(AAT - \1) =0 (B.28)

We can use Equation (B.28) to find the eigenvalues Ay > dg--- > A, 2> 0
for AAT. The singular values for the matrix A are given by the square
roots of the eigenvalues of 44T,

o= v (B.29)

The singular value decomposition (SVD) of the matrix A is then
given by

A=UzvT (B.30)

in which

U= [ug,ug,... 0y, V= [u,vg,...,0) (B.31)

are orthogonal matrices, and £ € R™*" is given by

B _ 0 (B.32)

Om

We can compute the SVD of 4 as follows. We begin by finding the
singular values o; of A using Equations (B.28) and (B.29). These singular
values can then be used to find eigenvectors U1, , Uy that satisfy

AATy; = Py (B.33)



44 APPENDIX B. LINEAR ALGEBRA

These eigenvectors comprise the matrix U = [uy,us, . .., ty]. The system of
equations (B.33) can be written as

AATU =UTE (B.34)
where the matrix ¥, is defined as

01
a2

Tm

Now, define
Vi = ATUL! (B.35)

and let V' be any orthogonal matrix that satisfies V' = [Vip | Vo] (note
that here Vi, contains just enough columns so that the matrix V' is an
nxn matrix). It is a simple matter to combine the above equations to verify
Equation (B.30):

VT
Uyt = U[Bm|0][vr}_" ] (B.36)
= UE, V2 (B.37)
= US, (A7vz;)’ (B.38)
= UiBh 0% (B.39)
= UZ,Z;lU0TA (B.40)
= UUTA (B.41)
s A (B.42)

Here, Equation (B.36) follows immediately from our construction of the ma-
trices U, V, and E,,. Equation (B.38) is obtained by substituting Equation
(B.35) into Equation (B.37). Equation (B.40) follows because %, is a di-
agonal matrix, and thus symmetric. Finally, Equation (B.42) is obtained
using the fact that U7 = U™, since U is orthogonal.

-

Appendix C

DYNAMICAL SYSTEMS

Here we give a brief introduction to some concepts in the state space theory
of linear and nonlinear systems.

Definition C.1 A vector field f is a continuous function f : R® — R™,
We can think of a differential equation

#t) = fl=(t) (C.1)

as being defined by a vector field f on R™. ‘A solution t — x(t) of Equa-
tion (C.1) with z(t)) = 2o is then a curve C' in R", beginning at g
parametrized by ¢, such that at each point of C, the vector field f(z(t))
is tangent to C. R" is then called the state space of the system given by
Equation (C.1). For two-dimensional systems, we can represent

z1(t) -
t — C2
[ 23(t) ] - -
by a curve C in the plane.
Example C.1
Consider the two-dimensional system
.'fl =T3 Z](D) = T10 (03)
fg=-z1 22(0) =720 (C4)

In the plane the solutions of this eguation are circles of radius

ro= o+ (C.5)
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Z2

L1

Figure C.1: Phase portrait for Example C.1.

To see this consider the equation
oit) +za(t) = r (C.6)

Clearly the initial conditions satisfy this equation. If we differentiate Equa-
tion (C.6) in the direction of the vector field f = [zo,—z1]T that defines
Equations (C.8) and (C.4) we obtain

2218 + 220%y = 2mzp— 21911 = 0 (C.7)

Thus, f is tangent to the circle. The graph of such curves C in the )y — 13
plane for different initial conditions are shown in Figure C.1.
o

The z7 - 72 plane is called the phase plane and the trajectories of the
system given by Equations (C.3) and (C.4) form what is called the phase
portrait. For linear systems of the form

& = Az (C.8)
in R?, the phase portrait is determined by the eigenvalues and eigenvectors
of A . For example, consider the system

.i'l = 2 (Cg)

i‘g = I (C].UJ

In this case

d = [2 é] (c.11)

e A AT B T Ak A 4T

T
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Figure C.2: Phase portrait for Example C.2.

The phase portrait is shown in Figure C.2. The lines £, and ¢, are in the
direction of the eigenvectors of A and are called eigensubspaces of A.

State Space Representation of Linear Systems

Consider a single-input /single-output linear control system with input u and
output y of the form

_1 d
*+an-1—,ij+---+a1£+aoy = u (C12)

The characteristic polynomial, whose roots are the open-loop poles, is given
as

1

ps) = ans"+a 8"+ +ag (C.13)

For simplicity we suppose that p(s) is monic, that is, a, = 1. The
standard way of representing Equation (C.12) in state space is to define n
state variables x;,29,..., 2, as

ry =y
Ty = y=i
T3 = =1y
(C.14)
4 §
In = F_i’,—_g;n_l
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and express Equation (C.12) as the system of first order differential equations

J"Jl = I3 (015)
i‘z = T3
Tn-1 = Tn
: d™y dy d*ly
Tp = -(ﬁ—n:—aoy—ﬂ,ja—t——“-—ﬂn_1m+u
= —@Ty —a1Ty = —0p1Tp T U

In matrix form this system of equations is written as

o 1 - - 0 0

T1 0 01 - 0 Z1 1]
- i |4 (C.16)

In 1 In 0

—-ag -+ + ¢ —Qp_1 1

or
t=Az+bu, zeR”

The output y can be expressed as

i = [0 0 (C.17)
= 5
It is easy to show that
det(sT-4) = s"+ap15" 4+ +ars+ag (C.18)

and so the last row of the matrix A consists of precisely the negative of the
coefficients of the characteristic polynomial of the system. Furthermore the
eigenvalues of A are the open-loop poles of the system.

In the Laplace domain, the transfer function }F((% is equivalent to

Yi) _ apap—ayt
bl = CEI-A (C.19)

[=

Appendix D

LYAPUNOV STABILITY

We give here some basic definitions of stability and Lyapunov functions and
present a sufficient condition for showing stability of a class of nonlinear
systems. For simplicity we treat only time-invariant systems. For a more
general treatment of the subject the reader is referred to [137].

Definition D.1 Consider a nonlinear system on R™

i = f() (D.1)

where f(z) is a vector field on R™, and suppose that f(0) = 0. Then the
origin in R" is said to be an equilibrium point for Equation (D.1).

If initially the system given by Equation (D.1) satisfies z(ty) = 0, then the
function z(t) = 0 for ¢ > ¢ is a solution of Equation (D.1), called the
null or equilibrium solution. In other words, if the system represented
by Equation (D.1) starts initially at the equilibrium, then it remains at the
equilibrium thereafter. The question of stability deals with the solutions
of Equation (D.1) for initial conditions away from the equilibrium point.
Intuitively, the null solution should be called stable if, for initial conditions
close to the equilibrium, the solution remains close thereafter in some sense.
We can formalize this notion into the following.

Definition D.2 The null solution z(t) = 0 is stable if and only if, for any
€ > 0 there erist 6(¢) > 0 such that

lz(to)| < & implies |z(t)|| < € for allt > 1y (D.2)

The null solution (t) = 0 is unstable if it is not stable.
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Figure D.1: Tllustrating the definition of stability.

This situation is illustrated by Figure D.1 and says that the system is
stable if the solution remains within a ball of radius e around the equilib-
rium, so long as the initial condition lies in a ball of radius § around the
equilibrium. Notice that the required § will depend on the given e. To
put it another way, a system is stable if “small” perturbations in the initial
conditions result in “small” perturbations from the null solution.

If the equilibrium is unstable, then, for any neighborhood of the equi-
librium point, no matter how small, there always exists at least one initial
condition, z(ty) = Z in this neighborhood such that the trajectory of (D.1)
eventually leaves this neighborhood as t — co. '

Definition D.3 The null solution z(t) = 0 is asymptotically stable if and
only if,

1. it is stable, and

2. there exists § > O such that

llz(to)ll < & implies |z(t)]| — 0 ast — oo. (D.3)

In other words, asymptotic stability means that if the system is perturbed
away from the equilibrium it will return asymptotically to the equilibrium.
The above notions of stability are local in nature, that is, they may hold for
initial conditions “sufficiently near” the equilibrium point but may fail for
initial conditions farther away from the equilibrium. Stability (respectively,
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asymptotic stability) is said to be global if it holds for arbitrary initial
conditions.
For a linear system

& = A= (D.4)

the null solution is globally asymptotically stable if and only if all eigenvalues
of the matrix A lie in the open left half of the complex plane. Such a matrix
is called a Hurwitz matrix. For nonlinear systems global stability cannot
be so easily determined. However, local stability of the null solution of a
nonlinear system & = f(z) can sometimes be determined by examining the
eigenvalues of the Jacobian of the vector field f(z).

Given the system (D.1) and suppose z = 0 is an equilibrium point. Let
A be the n x n Jacobian matrix of f(z), evaluated at = = 0. In other words

af;
A = (aij), where a;; = %Ix:ﬂ (D.5)
J

The system
T=Ag (D.6)

is called the linear approximation about the equilibrium of the nonlinear
system (D.1).

Theorem 8

1. Suppose A in (D.6) 1s a Hurwitz matriz so that = = 0 is a globally
asymptotically stable equilibrium point. Then z = 0 is locally asymp-
totically stable for the nonlinear system (D.1).

2. Suppose A has one or more unstable -eigenvalues, that is, one or more
eigenvalues in the open right half plane so that x = 0 is an unstable
equilibrium point for the linear system (D.6). Then z =0 is unstable
for the nonlinear system (D.6).

3. Suppose A has no eigenvalues in the open right half plane but one or
more eigenvalues on the jw-axis. Then the stability propertics of the
equilibrium x = 0 for the nonlinear system (D.1) cannot be determined.

Eigenvalues on the jw-axis are called critical eigenvalues. Examining the
eigenvalues of the linear approximation of a nonlinear system in order to de-
termine its stability properties is referred to as Lyapunov’s first method.
We see that local stability of the equilibrium of the nonlinear system (D.1)
can be determined provided the matrix A of the linear approximation has
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no critical eigenvalues. If A has eritical eigenvalues, or if one desires to de-
termine the global stability properties of the nonlinear system (D.1) then
Lyapunov’s first method is inconclusive and other methods must be used.
Lyapunov’s second method, introduced below, addresses these latter is-
sues.

Another important notion related to stability is the notion of uniform
ultimate boundedness of solutions.

Definition D.4 A solution x(t) : [to,00) — R™ for Eqiation (D.1) with
initial condition x(tg) = xg is said to be uniformly ultimately bounded
(w.u.b.) with respect to a set § if there is a nonnegative constant T(zg, S)
such that

z(t) €S forallt > tg+ T.

Uniform ultimate boundedness says that the solution trajectory of Equa-
tion (D.1) beginning at zy at time £y will ultimately enter and remain within
the set §. If the set S is a small region about the equilibrium, then uni-
form ultimate boundedness is a practical notion of stability that is useful in
control system design.

D.1 QUADRATIC FORMS AND LYAPUNOV FUNCTIONS

We next discuss the so-called second method of Lyapunov or Lyapunov’s
second method.

Definition D.5 Given a symmetric matriz P = (p;;) the scalar function
n
Vi) = zTPz= Z Dy Zi i (D.7)
ij=1

ts said to be a quadratic form. V(z), equivalently the quadratic form, is
said to be positive definite if and only if

V(z) > 0 (D.8)

forx#0.

Note that V(0) = 0. V(z) will be positive definite if and only if the sym-
metric matrix P is a positive definite matrix, that is, has all eigenvalues
positive,
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The level surfaces of V, given as solutions of V(z) = constant, are
ellipsoids in R™. A positive definite quadratic form defines a norm on R",
In fact, given the usual norm ||z|| on R, the function V given as

V@) = o= [of? (D9)

is a positive definite quadratic form corresponding to the choice P = I , the
n X n identity matrix.

Definition D.6 Let V(z) : R® — R be a continuous function with continu-
ous first partial derivatives in a neighborhood of the origin in R™. Further-
more, suppose that V' is positive definite, that is, V(0) = 0 and V > 0 for
z#0. Then V is called a Lyapunov function candidate for the system
given by Equation (D.1.

For the most part we will be utilizing Lyapunov function candidates that
are quadratic forms, but the power of Lyapunov stability theory comes from
the fact that any function may be used in an attempt to show stability of a
given system provided it is a Lyapunov function candidate according to the
above definition.

By the derivative of V' along trajectories of Equation (D.1), or the deriva-
tive of V in the direction of the vector field defining Equation (D.1), we mean

av v av

V(t) = e (&)= a—zlfl(a:} Ao Efn(:v} (D.10)

where

v [av a_vJ i)

8x  |9n" " By
denotes the gradient of V(z).

Suppose that we evaluate the Lyapunov function candidate V at points
along a solution trajectory z(t) of Equation (D.1) and find that V(t) is de-
creasing for increasing ¢. Intuitively, since V acts like a norm, this must
mean that the given solution trajectory must be converging toward the ori-
gin. This is the idea of Lyapunov stability theory.

D.2 LYAPUNOV STABILITY

Theorem 9 The null solution of Equation (D.1) is stable if there exists a
Lyapunov function candidate V such that V is negative semi-definite along
solution trajectories of Equation (D.1), that is, if

. av
Vo= i@ <o (D.12)
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The inequality (D.12) says that the derivative of V' computed along solutions
of Equation (D.1) is nonpositive, which says that V itself is nonincreasing
along solutions. Since V' is a measure of how far the solution is from the
origin, (D.12) says that the solution must remain near the origin. I-f a Lya-
punov function candidate V' can be found satisfying (D.12) then V is called
a Lyapunov function for the system given by Equation (D.1). Note that
Theorem 9 gives only a sufficient condition for stability of Equation (D.1).
If one is unable to find a Lyapunov function satisfying the inequality (D.12)
it does not mean that the system is unstable. However, an easy sufficient
condition for instability of Equation (D.1) is for there to exist a Lyapunov
function candidate V such that V' > 0 along at least one solution of the
system.

Theorem 10 The null solution of Equation (D.1) is asymptotically stable_ if
there exists a Lyapunov function candidate V such that V is strictly negative
definite along solutions of Equation (D.1), that is,

Vi <0 (D.13)

The striet inequality in Equation (D.13) means that V' is actually decreasing
along solution trajectories of Equation (D.1) and hence, the trajectories must
be converging to the equilibrium point.

Corollary D.1 Let V' be a Lyapunov function candidaie and let S be any
level surface of V', that is,

S(e) = {zeRV(z)= e} (D.14)

for some constant ¢y > 0. Then a solution z(t) of Equation (D.1) is uni-
formly ultimately bounded with respect to S if

vV = g—z (z) <0 (D.15)

for z outside of S.

If V is negative outside of § then the solution trajectory outside of S must
be pointing toward 5. Once the trajectory reaches S we may or may not be
able to draw further conclusions about the system, except that the trajectory
is trapped inside S.
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D.3 GLOBAL AND EXPONENTIAL STABILITY

The condition V < 0 along solution trajectories of a given system guarantees
only local asymptotic stability even if the condition holds globally. In order
to show global (asymptotic) stability the Lyapunov function V must satisfy
an additional condition, known as radial unboundedness.

Definition D.7 Suppose V : R" — R be continuously differentiable func-
tion. V(z) is said to be radially unbounded if

V(@) =00 as |zf = o0
With this additional property for V we can state

Theorem 11 Let V : R® — R pe Lyapunov function candidate for the
system given by Equation (D.1) and suppose that V. is radially unbounded,
Then V < 0 implies that 2 = 0 s globally asympiotically stable.

A stronger notion than asymptotic stability is that of exponential sta-
bility.

Definition D.8 The equilibriumz = 0 of the system given by Equation (D.1)

is exponentially stable if there are positive, real constants o and v such
that

z®)] < allz(0)]le™™  forallt>0 (D.16)

The exponential stability is local or global depending on whether or not the
inequality (D.16) holds for all initial conditions z(0) eR™.

A sufficient condition for exponential stability is the following

Theorem 12 Suppose that V is o Lyapunov function candidate for the sys-
tem given by Equation (D.1) such that

K2l < Vi(z) < Kollal
V < Kyl (B17)

where Ky, Ky, K3, and p are positive constants. Then the origin t = 0 is
exponentially stable. Moreover, if the inequalities (D.17) hold globally, then
* = 0 is globally exponentially stable.
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D.4 LYAPUNOV STABILITY FOR LINEAR SYSTEMS
Consider the linear system given by Equation (D.4) and let
V(z) = z%Ps (D.18)

be a Lyapunov fux}ction candidate, where P is symmetric and positive defi-
nite. Computing V' along solutions of Equation (D.4) yields

V = i'Px+2"Pt ’ (D.19)
= 27 (ATP+ PA)z
= ﬁxTQ:c
where we have defined () as
ATP+PA = -Q (D.20)

Theorem 9 says that if @ given by Equation (D.20) is positive definite
(it is automatically symmetric since P is), then the linear system given by
Equation (D.4) is stable. One approach that we can take is to first fix Q to
be symmetric, positive definite and solve Equation (D.20), which is called
the matrix Lyapunov equation, for P. If a symmetric positive definite
solution P can be found to this equation, then Equation (D.4) is stable and
¢! Pz is a Lyapunov function for the linear system (D.4). The converse to
this statement also holds. In fact, we can summarize these statements as

Theorem 13 Given an n X n malriz A, then all eigenvalues of A have
negative real part if and only if for every symmetric positive definite n x n
matriz @, Equation (D.20) has a unique positive definite solution P.

Thus, we can reduce the determination of stability of a linear system to the
solution of a system of linear equations.

D.5 LASALLE’'S THEOREM

The strict inequality in (D.13) showing asymptotic stability may be difficult
to obtain for a given system and Lyapunov function candidate. We therefore
discuss LaSalle’s invariance principle in this section, which can be used
to prove asymptotic stability even when V' is only negative semi-definite.
The main difficulty in the use of Lyapunov stability theory is finding
suitable Lyapunov functions satisfying V < 0 in order to prove asymptotic
stability. LaSalle’s invariance principle), or LaSalle’s theorem gives us a tool
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to determine the asymptotic properties of a system in the weaker case that
V' is only negative semidefinite, that is, when <0.

The version of LaSalle’s Theorem here follows closely the development
in [63]. Consider the nonlinear system

t=f(r) zeR" (D.21)
where f is a smooth vector field on R” with f(0)=0.

Definition D.9 Positively Invariant Set
A set M is positively invariant with respect to the system (D.21) if

z0)EM = z(t)e M, forallt >0

Theorem 14 LaSalle’s Theorem

Let D be a region in R™ and let Q C D be a compact set that is positively
invariant with respect to the nonlinear system (D.21). LetV :— R be a
continuously diﬁerentiable‘ function such that V < 0 in Q. Let E be the set
of all points in Q where V = 0. Let M be the largest invariant set in E.
Then every solution starting in €0 approaches M as t — oc.

As a corollary to LaSalle’s Theorem it follows that the equilibrium solu-
tion x = 0 of Equation (D.21) is asymptotically stable if V does not vanish
identically along any solution of Equation (D.21) other than the null solu-
tion, that is, if the only solution of Equation (D.21) satisfying

V=@ _ (D.22)

is the null solution.



