Course Syllabus:

Linear algebra:

Linear spaces and linear operators, Eigenvalues, Matrix functions

Norms and inner products, Singular value decomposition, ...

System description:

State variable description, Linearization

Linear systems:

Time domain solutions, Impulse response matrices, Equivalence

Stability:

Internal and BIBO stability, Lyapunov methods

Controllability and observability of LTI and LTV systems

Definitions, and subspaces,

Canonical decomposition

System realizations

Minimal realizations,

State feedback and state observers:

Stabilization of LTI systems

Full and reduced order observers

Output feedback and pole placement, disturbance rejection

Stabilization and state estimation of LTV systems

Miscellaneous topics (if time allows*)

________________________________________________________________

Grading:

1. Quizzes: 10%

2. Mid-term exam: 40%

3. Final exam: 50%

_______________________________________________________________

References:

1. C.T. Chen, Linear system theory and design, Oxford university press, 1999 (SEE)

2. N. Sadati, Modern control, Sharif University press, 2001

3.  J. Doyle, Francis, and Tannenbaum, Feedback Control Theory, Macmillan in, 1992 (SEE)

4. K. Zhou and J. Doyle, Essentials of robust control, Prentice Hall, 1998

5. K.J. Astrom and R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, 2007, (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)

6. H. Kwakernaak, R. Sivan, Linear optimal control systems, John Wiley & sons, (CP, C0, C1, C2, C3, C4, C5, C6)

7. H. Golub and C. Van Loan, Matrix computations, John Hopkins University press

Control systems are ubiquitous

Sharif university of technology

Department of electrical engineering

Digital systems group/Robotics

 

 

Modern Control

25-792, Fall 2013

Credits: 3

Level: Undergraduate, required

Prerequisite: Linear control systems

Hours: Sat, Mon, 10:30am-12:00

Location: B316