
EE364a: Convex Optimization I S. Boyd
March 13–14 or March 14–15, 2015

Final Exam Solutions

1. Optimal evacuation planning. We consider the problem of evacuating people from
a dangerous area in a way that minimizes risk exposure. We model the area as a
connected graph with n nodes andm edges; people can assemble or collect at the nodes,
and travel between nodes (in either direction) over the edges. We let qt ∈ Rn

+ denote
the vector of the numbers of people at the nodes, in time period t, for t = 1, . . . , T ,
where T is the number of periods we consider. (We will consider the entries of qt as real
numbers, not integers.) The initial population distribution q1 is given. The nodes have
capacity constraints, given by qt � Q, where Q ∈ Rn

+ is the vector of node capacities.

We use the incidence matrix A ∈ Rn×m to describe the graph. We assign an arbitrary
reference direction to each edge, and take

Aij =











+1 if edge j enters node i

−1 if edge j exits node i

0 otherwise.

The population dynamics are given by qt+1 = Aft+ qt, t = 1, . . . , T − 1 where ft ∈ Rm

is the vector of population movement (flow) across the edges, for t = 1, . . . , T − 1.
A positive flow denotes movement in the direction of the edge; negative flow denotes
population flow in the reverse direction. Each edge has a capacity, i.e., |ft| � F , where
F ∈ Rm

+ is the vector of edge capacities, and |ft| denotes the elementwise absolute
value of ft.

An evacuation plan is a sequence q1, q2, . . . , qT and f1, f2, . . . , fT−1 obeying the con-
straints above. The goal is to find an evacuation plan that minimizes the total risk
exposure, defined as

Rtot =
∑T

t=1

(

rT qt + sT q2t
)

+
∑T−1

t=1

(

r̃T |ft|+ s̃Tf 2
t

)

,

where r, s ∈ Rn
+ are given vectors of risk exposure coefficients associated with the

nodes, and r̃, s̃ ∈ Rm
+ are given vectors of risk exposure coefficients associated with the

edges. The notation q2t and f 2
t refers to elementwise squares of the vectors. Roughly

speaking, the risk exposure is a quadratic function of the occupancy of a node, or
the (absolute value of the) flow of people along an edge. The linear terms can be
interpreted as the risk exposure per person; the quadratic terms can be interpreted as
the additional risk associated with crowding.
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A subset of nodes have zero risk (ri = si = 0), and are designated as safe nodes. The
population is considered evacuated at time t if rT qt + sT q2t = 0. The evacuation time
tevac of an evacuation plan is the smallest such t. We will assume that T is sufficiently
large and that the total capacity of the safe nodes exceeds the total initial population,
so evacuation is possible.

Use CVX* to find an optimal evacuation plan for the problem instance with data
given in opt_evac_data.*. (We display the graph below, with safe nodes denoted as
squares.)
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Report the associated optimal risk exposure R⋆
tot. Plot the time period risk

Rt = rT qt + sT q2t + r̃T |ft|+ s̃Tf 2
t

versus time. (For t = T , you can take the edge risk to be zero.) Plot the node
occupancies qt, and edge flows ft versus time. Briefly comment on the results you see.
Give the evacuation time tevac (considering any rT qt + sT q2t ≤ 10−4 to be zero).

Hint. With CVXPY, use the ECOS solver with p.solve(solver=cvxpy.ECOS).

Solution. The optimization problem is given by

minimize
∑T

t=1

(

rT qt + sT q2t
)

+
∑T−1

t=1

(

r̃T |ft|+ s̃Tf 2
t

)

subject to qt+1 = Aft + qt, t = 1, . . . , T − 1
0 � qt � Q, t = 2, . . . , T
|ft| � F, t = 1, . . . , T − 1,

with variables q2, . . . , qT and f1, . . . , fT−1. This is evidently a convex optimization
problem, since the objective is convex and the constraints are all linear.

The optimal evacuation time is tevac = 17, with total risk exposure R⋆
tot = 6.59.

Note that two of the edge flows reverse direction during the evacuation. This is because
the entire population starts at node 1, but not everyone can move to the safe nodes
immediately, due to the edge capacity constraints. To avoid accumulating risk, some
people move to the safer nodes 2 and 3. Once the bottleneck clears, people flow back
in the reverse direction, past node 1, and towards the safe nodes.
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The following Python code solves the problem.

# solution to optimal evacuation problem

import numpy as np

import cvxpy as cvx

import matplotlib.pyplot as plt

import matplotlib

from opt_evac_data import *

def opt_evac(A, Q, F, q1, r, s, rtild, stild, T):

n,m = A.shape

q = cvx.Variable(n,T)

f = cvx.Variable(m,T-1)

node_risk = q.T*r + cvx.square(q).T*s

edge_risk = cvx.vstack(cvx.abs(f).T*rtild + cvx.square(f).T*stild,0)

risk = node_risk + edge_risk

constr = [q[:,0] == q1,

q[:,1:] == A*f + q[:,:-1],

0 <= q, q <= np.tile(Q,(T,1)).T,

cvx.abs(f) <= np.tile(F,(T-1,1)).T]

p = cvx.Problem(cvx.Minimize(sum(risk)), constr)

p.solve(verbose=True, solver=cvx.ECOS)

arr = lambda _: np.array(_.value)

q, f, risk, node_risk = map(arr, (q, f, risk, node_risk))

print "Total risk: ", p.value
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print "Evacuated at t =", (node_risk <= 1e-4).nonzero()[0][0] + 1

return q, f, risk, node_risk

# solve

q, f, risk, node_risk = opt_evac(A, Q, F, q1, r, s, rtild, stild, T)

# plot

plt.rc(’text’, usetex=True)

plt.rcParams.update({’font.size’: 20})

fig, axs = plt.subplots(1,3,figsize=(15,5))

axs[0].plot(np.arange(1,T+1), risk)

axs[0].set_ylabel(’$R_t$’)

axs[1].plot(np.arange(1,T+1), q.T)

axs[1].set_ylabel(’$q_t$’)

axs[2].plot(np.arange(1,T), f.T)

axs[2].set_ylabel(’$f_t$’)

for ax in axs:

ax.set_xlabel(’$t$’)

if matplotlib.get_backend().lower() in [’agg’, ’macosx’]:

fig.set_tight_layout(True)

else:

fig.tight_layout()

#plt.tight_layout()

fig.savefig(’opt_evac.pdf’)

fig.savefig(’opt_evac.eps’)

The following MATLAB code solves the problem.

% solution to optimal evacuation problem

opt_evac_data

[n, m] = size(A);

cvx_begin

variable q(n,T)

variable f(m,T-1)

risk = q’*r + square(q)’*s + [abs(f)’*rtild + square(f)’*stild; 0]
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minimize( sum(risk) )

subject to

q(:,2:end) == A*f + q(:,1:end-1)

q(:,1) == q1

0 <= q

q <= repmat(Q,1,T)

abs(f) <= repmat(F,1,T-1)

cvx_end

fprintf(’Total risk: %f\n’, sum(risk))

fprintf(’Evacuated at t = %d\n’, find(q’*r + (q.^2)’*s < 1e-4,1))

subplot(1,3,1)

plot(risk)

ylabel(’R_t’)

xlabel(’t’)

subplot(1,3,2)

plot(q’)

ylabel(’q_t’)

xlabel(’t’)

subplot(1,3,3)

plot(f’)

ylabel(’f_t’)

xlabel(’t’)

print(gcf,’-deps’,’opt_evac.eps’)

The following Julia code solves the problem.

# solution to optimal evacuation problem

using Convex, ECOS, PyPlot

include("opt_evac_data.jl");

n,m = size(A)

q = Variable(n,T)

f = Variable(m,T-1)

risk = q’*r + square(q)’*s + [abs(f)’*rtild + square(f)’*stild,0]

p = minimize(sum(risk))

p.constraints += [q[:,1] == q1,

q[:,2:end] == A*f + q[:,1:end-1],

0 <= q, q <= repmat(Q,1,T),

abs(f) <= repmat(F,1,T-1)]

solve!(p, ECOSSolver(verbose=1))
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risk = evaluate(risk)

q = q.value

f = f.value

println("Total risk: $(round(sum(risk),2))")

println("Evacuated at t = $(findfirst(q’*r + (q.*q)’*s .<= 1e-4))")

fig = figure("stuff",figsize=(22,5))

subplot(131)

plot(risk)

ylabel(L"R_t")

xlabel(L"t")

subplot(132)

plot(q’)

ylabel(L"q_t")

xlabel(L"t")

subplot(133)

plot(f’)

ylabel(L"f_t")

xlabel(L"t")

savefig("opt_evac.eps")
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2. Convexity of products of powers. This problem concerns the product of powers function
f : Rn

++ → R given by f(x) = xθ11 · · · xθnn , where θ ∈ Rn is a vector of powers. We are
interested in finding values of θ for which f is convex or concave. You already know
a few, for example when n = 2 and θ = (2,−1), f is convex (the quadratic-over-linear
function), and when θ = (1/n)1, f is concave (geometric mean). Of course, if n = 1,
f is convex when θ ≥ 1 or θ ≤ 0, and concave when 0 ≤ θ ≤ 1.

Show each of the statements below. We will not read long or complicated proofs,
or ones that involve Hessians. We are looking for short, snappy ones, that (where
possible) use composition rules, perspective, partial minimization, or other operations,
together with known convex or concave functions, such as the ones listed in the previous
paragraph. Feel free to use the results of earlier statements in later ones.

(a) When n = 2, θ � 0, and 1T θ = 1, f is concave.

(b) When θ � 0 and 1T θ = 1, f is concave. (This is the same as part (a), but here it
is for general n.)

(c) When θ � 0 and 1T θ ≤ 1, f is concave.

(d) When θ � 0, f is convex.

(e) When 1T θ = 1 and exactly one of the elements of θ is positive, f is convex.

(f) When 1T θ ≥ 1 and exactly one of the elements of θ is positive, f is convex.

Remark. Parts (c), (d), and (f) exactly characterize the cases when f is either convex
or concave. That is, if none of these conditions on θ hold, f is neither convex nor
concave. Your teaching staff has, however, kindly refrained from asking you to show
this.

Solution. To shorten our proofs, when both x and θ are vectors, we overload notation
so that

f(x) = xθ11 · · · xθnn = xθ.

(a) Since xθ11 is concave for 0 ≤ θ1 ≤ 1, applying the perspective transformation gives
that

x2(x1/x2)
θ1 = xθ11 x

1−θ1
2

is concave, which is what we wanted.

(b) The proof is by induction on n. We know the base case with n = 1 holds. For
the induction step, if θ ∈ Rn+1

+ , θ̃ = (θ1, . . . , θn), x̃ = (x1, . . . , xn), and 1T θ = 1,

then x̃θ̃/1
T θ̃ is concave by the induction assumption. The function y1

T θ̃z1−1
T θ̃ is

concave by (a) and nondecreasing. The composition rules give that

(x̃θ̃/1
T θ)1

T θ̃x1−1
T θ̃

n+1 = x̃θ̃x
θn+1

n+1 = xθ

is concave.
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(c) If 1T θ ≤ 1, then xθ/1
T θ is concave by (b). The function y1

T θ is concave and
nondecreasing. Composition gives that

(xθ/1
T θ)1

T θ = xθ

is concave.

(d) If θ � 0, then xθ/1
T θ is concave by part (b). (We can assume 1T θ 6= 0.) The

function y1
T θ is convex and nonincreasing, since 1T θ < 0. Composition gives that

(xθ/1
T θ)1

T θ = xθ

is convex.

Here’s another proof, that several people used, and which is arguably simpler than
the one above. Since θi ≤ 0, θi log xi is a convex function of xi, and therefore the
sum

∑

i θi log xi is convex in x. By the composition rules, the exponential of a
convex function is convex, so

exp(
∑

i

θi log xi) = xθ

is convex.

(e) If θ ∈ Rn+1 and 1T θ = 1, we can assume that the single positive element is

θn+1 > 0, so that θ̃ = (θ1, . . . , θn) � 0. If x̃ = (x1, . . . , xn), then x̃
θ̃ is convex by

part (d). Applying the perspective transformation gives that

xn+1 (x̃/xn+1)
θ̃ = x̃θ̃x1−1

T θ̃
n+1 = x̃θ̃x

θn+1

n+1 = xθ

is convex.

(f) If 1T θ ≥ 1 and exactly one element of θ is positive, then xθ/1
T θ is convex by

part (e). The function y1
T θ is convex and nondecreasing. Composition gives us

that
(xθ/1

T θ)1
T θ = xθ

is convex.

Remark. The proofs for (c), (d), and (f) are syntactically identical.

Remark. We can also prove (c) with the following self-contained argument. A syntac-
tically identical self-contained argument also works for (f) by substituting “convex” for
“concave”.

The proof is by induction on n. We know the base case: xθ11 is concave for 0 ≤
θ1 ≤ 1. For the inductive step, if θ ∈ Rn+1

+ and 1T θ ≤ 1, let θ̃ = (θ1, . . . , θn) and

x̃ = (x1, . . . , xn). Note that x̃θ̃/1
T θ is concave by the induction assumption. Applying

the perspective transformation gives that

xn+1(x̃/xn+1)
θ̃/1T θ = x̃θ̃/1

T θx
1−1

T θ̃/1T θ
n+1
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is concave. The function y1
T θ is concave and nondecreasing, and composing it with

the previous function shows that

(x̃θ̃/1
T θx

1−1
T θ̃/1T θ

n+1 )1
T θ = x̃θ̃x1

T θ−1
T θ̃

n+1 = x̃θ̃x
θn+1

n+1 = xθ

is concave, completing the proof.
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3. Minimum time maneuver for a crane. A crane manipulates a load with mass m > 0
in two dimensions using two cables attached to the load. The cables maintain angles
±θ with respect to vertical, as shown below.

load

θ θ

The (scalar) tensions T left and T right in the two cables are independently controllable,
from 0 up to a given maximum tension Tmax. The total force on the load is

F = T left

[

− sin θ
cos θ

]

+ T right

[

sin θ
cos θ

]

+mg,

where g = (0,−9.8) is the acceleration due to gravity. The acceleration of the load is
then F/m.

We approximate the motion of the load using

pi+1 = pi + hvi, vi+1 = vi + (h/m)Fi, i = 1, 2, . . . ,

where pi ∈ R2 is the position of the load, vi ∈ R2 is the velocity of the load, and
Fi ∈ R2 is the force on the load, at time t = ih. Here h > 0 is a small (given) time
step.

The goal is to move the load, which is initially at rest at position pinit to the position
pdes, also at rest, in minimum time. In other words, we seek the smallest k for which

p1 = pinit, pk = pdes, v1 = vk = (0, 0)

is possible, subject to the constraints described above.

(a) Explain how to solve this problem using convex (or quasiconvex) optimization.

(b) Carry out the method of part (a) for the problem instance with

m = 0.1, θ = 15◦, Tmax = 2, pinit = (0, 0), pdes = (10, 2),

with time step h = 0.1. Report the minimum time k⋆. Plot the tensions versus
time, and the load trajectory, i.e., the points p1, . . . , pk in R2. Does the load move
along the line segment between pinit and pdes (i.e., the shortest path from pinit and
pdes)? Comment briefly.
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Solution.

(a) The problem as stated is quasiconvex: To see if k⋆ ≤ k, we simply check if there
exists a set of variables that satisfy the constraints, together with pk = pdes,
vk = 0.

For a given value for k, we can solve a convex feasibility problem (in fact, an
LP) to determine if such a trajectory exists. Let T ∈ R2×k−1 be a matrix of the
tensions, so that T1i, T2i are T

left, T right at time ih, respectively. Then the force
applied to the load at time ih be Fi =MTi +mg where

M =

[

− sin θ sin θ
cos θ cos θ

]

.

To find a feasible trajectory, we solve the LP

minimize 0
subject to 0 � T � Tmax,

vi+1 = vi + (h/m)Fi, i = 1, . . . , k − 1,
pi+1 = pi + hvi, i = 1, . . . , k − 1,
p1 = pinit, pk = pdes, v1 = vk = 0.

We can then find the minimum time by finding the smallest k for which the above
problem is feasible. This can be done by bisection, or by simply increasing k until
the problem becomes feasible.

(b) We find that k⋆ = 34, corresponding to t = 3.4 seconds. From the trajectory plot,
we see that the load does not travel along the line between the initial and final
positions. Since the load must cross a large horizontal distance, we maximize the
horizontal force which is accomplished by setting the tension in the right cable to
Tmax. As the tension produces a force along the line of the cable, the load rises
up in addition to accelerating in the horizontal direction.

The code is shown below in Matlab.
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clear;

% Angle of cables with respect to vertical

% For convenience, we put the coefficients in a matrix

theta = 15*pi/180;

M = [-sin(theta), sin(theta); cos(theta), cos(theta)];

T_max = 2; % Max tension that each cable can apply (kNewtons)

m = 0.1; % Mass of the load (metric tons)

g = [0;-9.8]; % Gravity (m/s^2)

p_init = [0;0]; % Init position (m)

p_des = [10;2]; % Desired position (m)

h = 0.1; % Simulation timestep (s)

T_feasible = 0;

p_feasible = 0;

%% Run the problem

lower = 10; % A lowerbound obtained by rough check (infeasible)

upper = 50; % A upperbound obtained by rough check (feasible)

while lower + 1 ~= upper

k = floor((lower+upper)/2);

disp([’checking: k=’ num2str(k) ...

’, lower=’ num2str(lower) ...

’, upper=’ num2str(upper)]);

cvx_begin quiet

variables T(2,k-1) p(2,k) v(2,k)

F = M*T + m*repmat(g,1,k-1);
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minimize 0

subject to

p(:,1) == p_init; p(:,end) == p_des;

v(:,1) == 0; v(:,end) == 0;

0 <= T <= T_max;

v(:,2:end) == v(:,1:end-1) + h/m*F;

p(:,2:end) == p(:,1:end-1) + h*v(:,1:end-1);

cvx_end

if cvx_optval == 0

upper = k;

T_feasible = T;

p_feasible = p;

else

lower = k;

end

end

k = upper

%% Plotting

figure(1); clf;

subplot(2,1,1); plot(p(1,:),p(2,:)); axis equal;

title(’trajectory’);

subplot(2,1,2); plot(T_feasible(1,:)); hold on; plot(T_feasible(2,:),’r’);

title(’tensions’);

print -depsc crane_no_constraint

For Python, the code is given below.
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import numpy as np

import cvxpy as cvx

import matplotlib.pyplot as plt

theta = 15*3.141592/180.0

M = np.matrix([[-np.sin(theta), np.sin(theta)],

[np.cos(theta), np.cos(theta)]])

T_max = 2.0 # Max tension that each cable can apply (kNewtons)

m = 0.1 # Mass of the load (Metric tons)

g = np.matrix(’0;-9.8’) # Gravity (m/s^2)

p_init = np.matrix(’0.0;0.0’) # Init position (m)

p_des = np.matrix(’10.0;2.0’) # Desired position (m)

h = 0.1 # Simulation timestep (s)

T_feasible = 0

p_feasible = 0

# Run bisection

lower = 10 # Determined by rough check, infeasible

upper = 50 # Determined by rough check, feasible

while not lower + 1 == upper:

k = int((upper+lower)/2)

print(’checking k=’ + str(k) +

’, lower=’ + str(lower) +

’, upper=’ + str(upper))

T = cvx.Variable(2,k-1)

v = cvx.Variable(2,k)

p = cvx.Variable(2,k)

F = M*T + m*np.tile(g,(1,k-1))

constraints = [0 <= T, T <= T_max]

constraints += [p[:,0] == p_init, p[:,k-1] == p_des]

constraints += [v[:,0] == 0, v[:,k-1] == 0]

constraints += [v[:,1:k] == v[:,0:k-1] + (h/m)*F]

constraints += [p[:,1:k] == p[:,0:k-1] + h*v[:,0:k-1]]

prob = cvx.Problem(cvx.Minimize(0),constraints)

opt_val = prob.solve(solver=cvx.ECOS,verbose=False)
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if opt_val == 0:

upper = k

T_feasible = T.value

p_feasible = p.value

else: lower = k

k = upper;

print(’minimum is ’ + str(k))

plt.subplot(2,1,1)

plt.plot(p_feasible[0,:].T,p_feasible[1,:].T)

plt.title(’trajectory’)

plt.subplot(2,1,2)

plt.plot(T_feasible.T)

plt.title(’tensions’)

plt.savefig(’crane_no_constraint.eps’,format=’ps’)

The Julia code follows.
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using Convex, SCS, PyPlot;

using ECOS;

theta = 15*3.141592/180;

M = [-sin(theta) sin(theta); cos(theta) cos(theta)];

T_max = 2.0; # Max tension that each cable can apply (kNewtons)

m = 0.1; # Mass of the load (Metric tons)

g = [0; -9.8]; # Gravity (m/s^2)

p_init = zeros(2,1); # Init position (m)

p_des = [10.0; 2]; # Desired position (m)

h = 0.1; # Simulation timestep (s)
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T_feasible = 0;

p_feasible = 0;

lower = 10; # Determined by rough check (infeasible)

upper = 50; # Determined by rough check (feasible)

while lower + 1 != upper

k = int((lower+upper)/2);

println(string("checking k=",k,", lower=",lower, ", upper=", upper));

T = Variable(2,k-1);

v = Variable(2,k);

p = Variable(2,k);

F = M*T + m*repmat(g,1,k-1);

constraints = [0 <= T, T <= T_max];

constraints += [p[:,1] == p_init, p[:,end] == p_des];

constraints += [v[:,1] == 0, v[:,end] == 0];

constraints += v[:,2:end] == v[:,1:end-1] + (h/m)*F;

constraints += p[:,2:end] == p[:,1:end-1] + h*v[:,1:end-1];

prob = satisfy(constraints);

#solve!(prob,SCSSolver(verbose=false));

solve!(prob,ECOSSolver(maxit=20000,eps=1e-4,verbose=false));

println(prob.status);

if prob.status == :Optimal

upper = k;

T_feasible = T.value;

p_feasible = p.value;

elseif prob.status == :Infeasible

lower = k;

else

println("solve failed!!!");

end

end

k = upper;

println(string("minimum is ",k));

fig = figure("fig1",figsize=(12,8));

subplot(211);

plot(p_feasible[1,:]’,p_feasible[2,:]’);
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title("trajectory")

subplot(212);

plot(T_feasible’);

title("tensions")

savefig("crane_no_constraint.eps",format="ps");
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4. Portfolio rebalancing. We consider the problem of rebalancing a portfolio of assets over
multiple periods. We let ht ∈ Rn denote the vector of our dollar value holdings in n
assets, at the beginning of period t, for t = 1, . . . , T , with negative entries meaning short
positions. We will work with the portfolio weight vector, defined as wt = ht/(1

Tht),
where we assume that 1Tht > 0, i.e., the total portfolio value is positive.

The target portfolio weight vector w⋆ is defined as the solution of the problem

maximize µTw − γ
2
wTΣw

subject to 1Tw = 1,

where w ∈ Rn is the variable, µ is the mean return, Σ ∈ Sn
++ is the return covariance,

and γ > 0 is the risk aversion parameter. The data µ, Σ, and γ are given. In words,
the target weights maximize the risk-adjusted expected return.

At the beginning of each period t we are allowed to rebalance the portfolio by buying
and selling assets. We call the post-trade portfolio weights w̃t. They are found by
solving the (rebalancing) problem

maximize µTw − γ
2
wTΣw − κT |w − wt|

subject to 1Tw = 1,

with variable w ∈ Rn, where κ ∈ Rn
+ is the vector of (so-called linear) transaction

costs for the assets. (For example, these could model bid/ask spread.) Thus, we
choose the post-trade weights to maximize the risk-adjusted expected return, minus
the transactions costs associated with rebalancing the portfolio. Note that the pre-
trade weight vector wt is known at the time we solve the problem. If we have w̃t = wt,
it means that no rebalancing is done at the beginning of period t; we simply hold our
current portfolio. (This happens if wt = w⋆, for example.)

After holding the rebalanced portfolio over the investment period, the dollar value of
our portfolio becomes ht+1 = diag(rt)h̃t, where rt ∈ Rn

++ is the (random) vector of

asset returns over period t, and h̃t is the post-trade portfolio given in dollar values
(which you do not need to know). The next weight vector is then given by

wt+1 =
diag (rt)w̃t

rTt w̃t

.

(If rTt w̃t ≤ 0, which means our portfolio has negative value after the investment period,
we have gone bust, and all trading stops.) The standard model is that rt are IID random
variables with mean and covariance µ and Σ, but this is not relevant in this problem.

(a) No-trade condition. Show that w̃t = wt is optimal in the rebalancing problem if

γ |Σ(wt − w⋆)| � κ

holds, where the absolute value on the left is elementwise.
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Interpretation. The lefthand side measures the deviation of wt from the target
portfolio w⋆; when this deviation is smaller than the cost of trading, you do not
rebalance.

Hint. Find dual variables, that with w = wt satisfy the KKT conditions for the
rebalancing problem.

(b) Starting from w1 = w⋆, compute a sequence of portfolio weights w̃t for t =
1, . . . , T . For each t, find w̃t by solving the rebalancing problem (with wt a known
constant); then generate a vector of returns rt (using our supplied function) to
compute wt+1 (The sequence of weights is random, so the results won’t be the
same each time you run your script. But they should look similar.)

Report the fraction of periods in which the no-trade condition holds and the
fraction of periods in which the solution has only zero (or negligible) trades,
defined as ‖w̃t − wt‖∞ ≤ 10−3. Plot the sequence w̃t for t = 1, 2, . . . , T .

The file portf_weight_rebalance_data.* provides the data, a function to gen-
erate a (random) vector rt of market returns, and the code to plot the sequence
w̃t. (The plotting code also draws a dot for every non-negligible trade.)

Carry this out for two values of κ, κ = κ1 and κ = κ2. Briefly comment on what
you observe.

Hint. In CVXPY we recommend using the solver ECOS. But if you use SCS you
should increase the default accuracy, by passing eps=1e-4 to the cvxpy.Problem.solve()
method.

Solution.

(a) No-trade condition. The solution w⋆ of the problem without transaction costs
satisfies the KKT conditions

−µ+ γΣw⋆ + ν⋆1 = 0, 1Tw⋆ = 1,

where ν⋆ ∈ R is an optimal dual variable for the constraint 1Tw = 1. (This is
a set of linear equations that we can easily solve, but we don’t need this fact for
this problem.)

Now we derive optimality conditions for the rebalancing problem. First we express
it in the form

maximize µTw − γ
2
wTΣw − κT s

subject to 1Tw = 1,
w − wt � s
wt − w � s,

with additional (slack) variable s ∈ Rn. Defining dual variables ν, λ+, and λ− for
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the three constraints, the optimality conditions are

−µ+ γΣw + ν1+ λ+ − λ− = 0

κ− λ+ − λ− = 0

λ+ � 0

λ− � 0

λT+(w − wt − s) = 0

λT−(wt − w − s) = 0

1Tw = 1

w − wt � s

wt − w � s.

We want to find a condition under which w = wt, s = 0 is optimal. (This means
we do not trade.) With these choices for primal variables, the last 5 conditions
hold. So we need to find dual variables so that the first 4 conditions hold. We’ll
use the dual variable ν⋆ from the original problem, and seek λ+ and λ− so that
the following 4 conditions hold:

−µ+ γΣwt + ν⋆1+ λ+ − λ− = 0

κ− λ+ − λ− = 0

λ+ � 0

λ− � 0.

The first and second conditions can be written (subtracting the optimal solution
of the problem without transaction costs)

γΣ(wt − w⋆) + λ+ − λ− = 0, κ = λ+ + λ−.

This holds for some λ+ � 0 and λ− � 0 if and only if

|γΣ(wt − w⋆)| � κ.

This is what we were supposed to show. Under this condition, w = wt is optimal
for the rebalancing problem, i.e., we do not trade.

(b) We report the average plus or minus one standard deviations of the results, com-
puted over multiple runs of the solution script. (The results vary since the returns
are generated randomly.) With κ = κ1, the no-trade condition holds (10 ± 3)%
of the times and the trades are negligible (17 ± 4)% of the times. With κ = κ2
the no-trade condition holds (27± 6)% of the times and the trades are negligible
(38 ± 7)% of the times. We observe that the no-trade condition holds for less
periods than the periods with negligible trades. This is correct since the no-trade
condition is a sufficient but not necessary condition for having negligible trades.
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We also observe that with transaction costs κ2 we rebalance less than with κ1,
since κ2 � κ1. The plots show that the sequence of w̃t deviate randomly from
w⋆ and the trades tend to bring it closer to w⋆ (that is in fact rebalancing). By
increasing the transaction costs, κ2 � κ1, we rebalance less and let the weights
diverge farther from the target w⋆.
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Optimal weights and trades with transaction cost κ2

The following Python code solves the problem:

import numpy as np

import cvxpy as cvx

import matplotlib.pyplot as plt

T = 100

n = 5

gamma = 8.0

Sigma = np.array([[ 1.512e-02, 1.249e-03, 2.762e-04, -5.333e-03, -7.938e-04],
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[ 1.249e-03, 1.030e-02, 6.740e-05, -1.301e-03, -1.937e-04],

[ 2.762e-04, 6.740e-05, 1.001e-02, -2.877e-04, -4.283e-05],

[ -5.333e-03, -1.301e-03, -2.877e-04, 1.556e-02, 8.271e-04],

[ -7.938e-04, -1.937e-04, -4.283e-05, 8.271e-04, 1.012e-02]])

mu = np.array([ 1.02 , 1.028, 1.01 , 1.034, 1.017])

kappa_1 = np.array([ 0.002, 0.002, 0.002, 0.002, 0.002])

kappa_2 = np.array([ 0.004, 0.004, 0.004, 0.004, 0.004])

threshold = 0.001

## Solve target weights problem

w = cvx.Variable(n)

cvx.Problem(cvx.Maximize(w.T*mu - (gamma/2.)*cvx.quad_form(w, Sigma)),

[cvx.sum_entries(w) == 1]).solve()

w_star = w.value.A1

generateReturns = lambda: np.random.multivariate_normal(mu,Sigma)

## Generate market scenario

plt.figure(figsize=(13,10))

for i, kappa in [(1,kappa_1), (2,kappa_2)]:

ws = np.zeros((T,n))

us = np.zeros((T,n))

no_trade_cond = np.zeros(T)

w_t = w_star

for t in range(T):

# check if no-trade condition holds

no_trade_cond[t]= max(gamma*np.abs(np.dot(Sigma, w_t - w_star)) -

kappa) <= 0

w = cvx.Variable(n)

cvx.Problem(cvx.Maximize(w.T*mu -

(gamma/2.)*cvx.quad_form(w, Sigma) -

cvx.sum_entries(cvx.abs(w - w_t).T*kappa)),

[cvx.sum_entries(w) == 1]).solve()

ws[t,:] = w.value.A1

us[t,:] = w.value.A1 - w_t

w_t = w.value.A1 * generateReturns()

w_t /= sum(w_t)

neglig_trades = np.max(np.abs(us),1) < threshold

print "The no-trade condition holds %.1f%% of the times."%(

sum(no_trade_cond)*100./T)

print "The optimal solution has neglig. trades %.1f%% of the times."%(
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sum(neglig_trades)*100./T)

plt.subplot(210+i)

colors = [’b’,’r’,’g’,’c’,’m’]

for j in range(n):

plt.plot(range(T), ws[:,j], colors[j])

plt.plot(range(T), [w_star[j]]*T, colors[j]+’--’)

non_zero_trades = abs(us[:,j]) > threshold

plt.plot(np.arange(T)[non_zero_trades],

ws[non_zero_trades, j], colors[j]+’o’)

plt.ylabel(’post-trade weights’)

plt.xlabel(’period $t$’)

plt.title(’Optimal weights and trades with transaction cost $\kappa_%d$’%i)

plt.savefig("portfolio_weights.eps")

The following Matlab code solves the problem:

T = 100;

n = 5;

gamma = 8.0;

threshold = 0.001;

Sigma = [[ 1.512e-02, 1.249e-03, 2.762e-04, -5.333e-03, -7.938e-04],

[ 1.249e-03, 1.030e-02, 6.740e-05, -1.301e-03, -1.937e-04],

[ 2.762e-04, 6.740e-05, 1.001e-02, -2.877e-04, -4.283e-05],

[ -5.333e-03, -1.301e-03, -2.877e-04, 1.556e-02, 8.271e-04],

[ -7.938e-04, -1.937e-04, -4.283e-05, 8.271e-04, 1.012e-02]];

mu = [ 1.02 , 1.028, 1.01 , 1.034, 1.017];

kappa_1 = [ 0.002, 0.002, 0.002, 0.002, 0.002];

kappa_2 = [ 0.004, 0.004, 0.004, 0.004, 0.004];

% Solve target weights problem

cvx_begin quiet

variable w_star(n)

maximize(mu*w_star - (gamma/2.)*w_star’*Sigma*w_star)

subject to

sum(w_star) == 1

cvx_end

generateReturns = @() mu + randn(1, length(mu)) * chol(Sigma);

kappas = {kappa_1, kappa_2};

figure(’position’, [0, 0, 900, 800]);

for i = 1:2

kappa = kappas{i};
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ws = zeros(T,n);

us = zeros(T,n);

no_trade_cond = zeros(T,1);

w_t = w_star;

for t = 1:T

% check if no-trade condition holds

no_trade_cond(t) = max(gamma*abs(Sigma*(w_t - w_star))-kappa’) <= 0;

cvx_begin quiet

variable w_tilde(n)

maximize(mu*w_tilde - (gamma/2.)*w_tilde’*Sigma*w_tilde - ...

kappa*(abs(w_tilde - w_t)))

subject to

sum(w_tilde) == 1

cvx_end

ws(t,:) = w_tilde’;

us(t,:) = (w_tilde - w_t)’;

w_t = w_tilde.*generateReturns()’;

w_t = w_t/sum(w_t);

end

neglig_trades = max(abs(us’)) < threshold;

fprintf(’The no-trade condition holds %f%% of the times.\n’, ...

sum(no_trade_cond)*100./T);

fprintf([’The optimal solution has neglig. ’ ...

’trades %f%% of the times.\n’], ...

sum(neglig_trades)*100./T);

colors = [’b’,’r’,’g’,’c’,’m’];

range = 1:T;

subplot(2,1,i)

for j = 1:n

hold on

plot(range, ws(:,j), [’-’ colors(j)]);

plot(range, ones(T)*w_star(j), [’--’ colors(j)]);

non_zero_trades = abs(us(:,j)) > threshold;

plot(range(non_zero_trades), ws(non_zero_trades,j), ...

[’o’ colors(j)], ’MarkerFaceColor’, colors(j));

xlabel(’Period t’);

ylabel(’Post-trade weights w_t tilde’);

title([’Optimal weights and trades with transaction cost kappa_’ ...

num2str(i)]);

end
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end

print -depsc portfolio_weights

The following Julia code solves the problem:

# data and starter code for multiperiod portfolio rebalancing problem

T = 100;

n = 5;

gamma = 8.0;

threshold = 0.001;

Sigma = [[ 1.512e-02 1.249e-03 2.762e-04 -5.333e-03 -7.938e-04]

[ 1.249e-03 1.030e-02 6.740e-05 -1.301e-03 -1.937e-04]

[ 2.762e-04 6.740e-05 1.001e-02 -2.877e-04 -4.283e-05]

[ -5.333e-03 -1.301e-03 -2.877e-04 1.556e-02 8.271e-04]

[ -7.938e-04 -1.937e-04 -4.283e-05 8.271e-04 1.012e-02]];

mu = [ 1.02 , 1.028, 1.01 , 1.034, 1.017];

kappa_1 = [ 0.002, 0.002, 0.002, 0.002, 0.002];

kappa_2 = [ 0.004, 0.004, 0.004, 0.004, 0.004];

using Distributions, Convex, SCS, PyPlot

solver = SCSSolver(verbose=0)

# compute target weights

w_star = Variable(n);

problem = maximize(mu’*w_star - (gamma/2.)*quad_form(w_star,Sigma),

sum(w_star) == 1);

solve!(problem, solver);

w_star = w_star.value;

generateReturns() = rand(MvNormal(mu, Sigma));

kappas = {kappa_1, kappa_2};

figure(figsize=(13,10));

for i = 1:2

kappa = kappas[i];

us = zeros(T,n);

ws = zeros(T,n);

no_trade_cond = zeros(T);

w_t = w_star;

for t = 1:T

# check if no-trade condition holds

no_trade_cond[t] = maximum(gamma*abs(Sigma*(w_t - w_star))

- kappa) <= 0;

w_tilde = Variable(n);
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problem = maximize(mu’*w_tilde - (gamma/2.)*quad_form(w_tilde,Sigma) -

kappa’*(abs(w_tilde - w_t)), sum(w_tilde) == 1);

solve!(problem, solver);

w_tilde = w_tilde.value;

ws[t,:] = w_tilde;

us[t,:] = (w_tilde - w_t)’;

w_t = w_tilde.*generateReturns();

w_t = w_t/sum(w_t);

end

neglig_trades = maximum(abs(us),2) .< threshold;

@printf("The no-trade condition holds %.1f%% of the times.\n",

sum(no_trade_cond)*100/T);

@printf("The optimal solution has neglig. trades %.1f%% of the times.\n",

sum(neglig_trades)*100./T);

colors = ["b","r","g","c","m"];

subplot(210+i);

for j = 1:n

plot(1:T, ws[:,j], colors[j]);

plot(1:T, w_star[j]*ones(T), colors[j]*"--");

non_zero_trades = abs(us[:,j]) .> threshold;

plot((1:T)[non_zero_trades], ws[non_zero_trades,j], colors[j]*"o");

end

ylabel("post-trade weights");

xlabel("period \$t\$");

title(@sprintf "Opt. weights and trades with trans. cost \$\\kappa_%d\$" i);

end

savefig(@sprintf "portfolio_weights.eps")
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5. Solving nonlinear circuit equations using convex optimization. An electrical circuit
consists of b two-terminal devices (or branches) connected to n nodes, plus a so-called
ground node. The goal is to compute several sets of physical quantities that characterize
the circuit operation. The vector of branch voltages is v ∈ Rb, where vj is the voltage
appearing across device j. The vector of branch currents is i ∈ Rb, where ij is the
current flowing through device j. (The symbol i, which is often used to denote an
index, is unfortunately the standard symbol used to denote current.) The vector of
node potentials is e ∈ Rn, where ek is the potential of node k with respect to the
ground node. (The ground node has potential zero by definition.)

The circuit variables v, i, and e satisfy several physical laws. Kirchhoff’s current law
(KCL) can be expressed as Ai = 0, and Kirchhoff’s voltage law (KVL) can be expressed
as v = AT e, where A ∈ Rn×b is the reduced incidence matrix, which describes the
circuit topology:

Akj =







−1 branch j enters node k
+1 branch j leaves node k
0 otherwise,

for k = 1, . . . , n, j = 1, . . . , b. (KCL states that current is conserved at each node, and
KVL states that the voltage across each branch is the difference of the potentials of
the nodes it is connected to.)

The branch voltages and currents are related by

vj = φj(ij), j = 1, . . . , b,

where φj is a given function that depends on the type of device j. We will assume that
these functions are continuous and nondecreasing. We give a few examples. If device
j is a resistor with resistance Rj > 0, we have φj(ij) = Rjij (which is called Ohm’s
law). If device j is a voltage source with voltage Vj and internal resistance rj > 0, we
have φj(ij) = Vj + rjij. And for a more interesting example, if device j is a diode, we
have φj(ij) = VT log(1 + ij/IS), where IS and VT are known positive constants.

(a) Find a method to solve the circuit equations, i.e., find v, i, and e that satisfy
KCL, KVL, and the branch equations, that relies on convex optimization. State
the optimization problem clearly, indicating what the variables are. Be sure to
explain how solving the convex optimization problem you propose leads to choices
of the circuit variables that satisfy all of the circuit equations. You can assume
that no pathologies occur in the problem that you propose, for example, it is
feasible, a suitable constraint qualification holds, and so on.

Hint. You might find the function ψ : Rb → R,

ψ(i1, . . . , ib) =
b

∑

j=1

∫ ij

0

φj(uj) duj,

useful.
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(b) Consider the circuit shown in the diagram below. Device 1 is a voltage source
with parameters V1 = 1000, r1 = 1. Devices 2 and 5 are resistors with resistance
R2 = 1000, and R5 = 100 respectively. Devices 3 and 4 are identical diodes with
parameters VT = 26, IS = 1. (The units are mV, mA, and Ω.)

The nodes are labeled N1, N2, and N3; the ground node is at the bottom. The
incidence matrix A is

A =





1 1 0 0 0
0 −1 1 1 0
0 0 0 −1 1



 .

(The reference direction for each edge is down or to the right.)

Use the method in part (a) to compute v, i, and e. Verify that all the circuit
equations hold.

V1

N1
R2 N2

D3

D4

N3

R5

−

+

Solution.

(a) We first observe that the function ψ given in the hint is convex: since φj is
nondecreasing,

∫ ij

0

φj(uj) duj

is convex in ij, and ψ is the sum of these functions. We note that

∇ψ(i) = (φ1(i1), . . . , φb(ib)).

The optimization problem to solve is

minimize ψ(i)
subject to Ai = 0,

with variable i ∈ Rb. The optimality conditions are Ai = 0 (which is KCL), and
∇ψ(i)+ATν = 0, where ν is a dual variable associated with the constraint Ai = 0.
Defining v = ∇ψ(i) and e = −ν, the optimality conditions can be expressed as

Ai = 0, AT e = v, vj = φj(ij), j = 1, . . . , b.

These are exactly the circuit equations.
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By the way, this characterization of a circuit in terms of an optimization problem
was known to J. C. Maxwell. The function ψ is called the content function for
the circuit.

(b) Let us first compute the content function for each component.

For a resistor
∫ i

0

ru du = (1/2)ri2.

For a voltage source
∫ i

0

V + ru du = V i+ (1/2)ri2.

For a diode

VT

∫ i

0

log(1 + u/IS) du = VT IS((1 + i/IS) log(1 + i/IS)− i/IS).

We add the individual content functions for the circuit, yielding in the optimiza-
tion problem

minimize V1i1 + (1/2)
∑

j∈{1,2,5}Rji
2
j +

∑

j∈{3,4} VT IS((1 + ij/IS) log(1 + ij/IS)− ij/IS)

subject to Ai = 0.

Solving this problem in CVX* results in

AT e =













999.017
982.966
16.051
3.154
12.897













, i =













−0.983
0.983
0.854
0.129
0.129













, e =





999.017
16.051
12.897



 , φ(i) =













999.017
982.967
16.051
3.154
12.897













and
‖φ(i)− AT e‖2

‖φ(i)‖2
= 3.996 · 10−7.

We conclude that the solutions match.

In CVX (and POGS)

% Setup

A = [ 1 1 0 0 0

0 -1 1 1 0

0 0 0 -1 1

-1 0 -1 0 -1];

% Remove redundant ground constraint (ie force ground potential = 0)

A = A(1:end-1, :);
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R1 = 1;

R2 = 1e3;

R5 = 1e2;

VT = 26;

IS = 1;

VS = 1e3;

cvx_begin

variable ii(5)

dual variable e

OBJ1 = VS*ii(1) + (1/2)*R1*ii(1)^2;

OBJ2 = (1/2)*R2*ii(2)^2;

OBJ3 = VT*IS*(-entr(1 + ii(3)/IS) - ii(3)/IS);

OBJ4 = VT*IS*(-entr(1 + ii(4)/IS) - ii(4)/IS);

OBJ5 = (1/2)*R5*ii(5)^2;

minimize(OBJ1 + OBJ2 + OBJ3 + OBJ4 + OBJ5)

subject to

e : A * ii == 0;

cvx_end

% Check Constraints

v = [VS + R1*ii(1)

R2*ii(2)

VT*log(1 + ii(3)/IS)

VT*log(1 + ii(4)/IS)

R5*ii(5)];

v_err = v - A’ * e;

fprintf(’Relative error in voltage: %e\n’, norm(v_err) / norm(v))

%% POGS

f.h = kIndEq0;

g.h = [kSquare; kSquare; kNegEntr; kNegEntr; kSquare];

g.a = [ 1; 1; 1/IS; 1/IS; 1];

g.b = [ 0; 0; -1; -1; 0];

g.c = [R1; R2; VT*IS; VT*IS; R5];

g.d = [VS; 0; -VT; -VT; 0];
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[ii, ~, l] = pogs(A, f, g);

e = -l;

% Check Constraints

v = [VS + R1*ii(1)

R2*ii(2)

VT*log(1 + ii(3)/IS)

VT*log(1 + ii(4)/IS)

R5*ii(5)];

v_err = v - A’ * e;

fprintf(’Relative error in voltage: %e\n’, norm(v_err) / norm(v))

In Julia

# Pkg.update()

# Pkg.add("Convex")

# Pkg.add("SCS")

using Convex

# Setup

A = [ 1 1 0 0 0

0 -1 1 1 0

0 0 0 -1 1

-1 0 -1 0 -1];

# Remove redundant ground constraint

A = A[1:end-1, :];

R1 = 1

R2 = 1e3

R5 = 1e2

VT = 26

IS = 1

VS = 1e3

ii = Variable(5)

OBJ1 = VS*ii[1] + (1./2)*R1*ii[1]^2

OBJ2 = (1./2)*R2*ii[2]^2
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OBJ3 = VT*IS*(-entropy(1. + ii[3]/IS) - ii[3]/IS)

OBJ4 = VT*IS*(-entropy(1. + ii[4]/IS) - ii[4]/IS)

OBJ5 = (1./2)*R5*ii[5]^2

problem = minimize(OBJ1 + OBJ2 + OBJ3 + OBJ4 + OBJ5, [A * ii == 0])

solve!(problem)

ee = -problem.constraints[1].dual

v = [VS + R1*ii.value[1]

R2*ii.value[2]

VT*log(1 + ii.value[3]/IS)

VT*log(1 + ii.value[4]/IS)

R5*ii.value[5]]

v_err = v - A’ * ee

@printf("Relative error in voltage: %e\n", norm(v_err) / norm(v))

println(v)

println(ii)

In CVXPY

from cvxpy import *

import numpy as np

import math

A = np.array([[ 1, 1, 0, 0, 0],

[ 0, -1, 1, 1, 0],

[ 0, 0, 0, -1, 1],

[-1, 0, -1, 0, -1]], dtype=np.float64)

A = A[0:-1,:]

R1 = 1.

R2 = 1e3

R5 = 1e2

VT = 26

IS = 1

VS = 1e3

ii = Variable(5)

OBJ1 = VS*ii[0] + (1./2)*R1*square(ii[0])
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OBJ2 = (1./2)*R2*square(ii[1])

OBJ3 = VT*IS*(-entr(1. + ii[2]/IS) - ii[2]/IS)

OBJ4 = VT*IS*(-entr(1. + ii[3]/IS) - ii[3]/IS)

OBJ5 = (1./2)*R5*square(ii[4])

obj = Minimize(OBJ1 + OBJ2 + OBJ3 + OBJ4 + OBJ5)

constr = [A * ii == 0.]

problem = Problem(obj, constr)

#problem.solve(verbose=True, solver=SCS, eps=1e-4)

problem.solve(verbose=True)

e = -problem.constraints[0].dual_value

v = np.array([[VS + R1*float(ii.value[0])],

[R2*float(ii.value[1])],

[VT*math.log(1. + float(ii.value[2])/IS)],

[VT*math.log(1. + float(ii.value[3])/IS)],

[R5*float(ii.value[4])]])

v_err = v - np.transpose(A) * e

rel_err = np.linalg.norm(v_err) / np.linalg.norm(v)

print "Relative error in voltage: %e\n" % rel_err

print v

print ii.value
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6. Optimal material blending. A standard industrial operation is to blend or mix raw
materials (typically fluids such as different grades of crude oil) to create blended ma-
terials or products. This problem addresses optimizing the blending operation. We
produce n blended materials from m raw materials. Each raw and blended material is
characterized by a vector that gives the concentration of each of q constituents (such
as different octane hydrocarbons). Let c1, . . . , cm ∈ R

q
+ and c̃1, . . . , c̃n ∈ R

q
+ be the

concentration vectors of the raw materials and the blended materials, respectively. We
have 1T cj = 1T c̃i = 1 for i = 1, . . . , n and j = 1, . . . ,m. The raw material concen-
trations are given; the blended product concentrations must lie between some given
bounds, c̃min

i � c̃i � c̃max
i .

Each blended material is created by pumping raw materials (continuously) into a vat or
container where they are mixed to produce the blended material (which continuously
flows out of the mixing vat). Let fij ≥ 0 denote the flow of raw material j (say, in kg/s)
into the vat for product i, for i = 1, . . . , n, j = 1, . . . ,m. These flows are limited by
the total availability of each raw material:

∑n
i=1 fij ≤ Fj, j = 1, . . . ,m, where Fj > 0

is the maximum total flow of raw material j available. Let f̃i ≥ 0 denote the flow rates
of the blended materials. These also have limits: f̃i ≤ F̃i, i = 1, . . . , n.

The raw and blended material flows are related by the (mass conservation) equations

m
∑

j=1

fijcj = f̃ic̃i, i = 1, . . . , n.

(The lefthand side is the vector of incoming constituent mass flows and the righthand
side is the vector of outgoing constituent mass flows.)

Each raw and blended material has a (positive) price, pj, j = 1, . . . ,m (for the raw
materials), and p̃i, i = 1, . . . , n (for the blended materials). We pay for the raw
materials, and get paid for the blended materials. The total profit for the blending
process is

−
n

∑

i=1

m
∑

j=1

fijpj +
n

∑

i=1

f̃ip̃i.

The goal is to choose the variables fij, f̃i, and c̃i so as to maximize the profit, subject
to the constraints. The problem data are cj, c̃

min
i , c̃max

i , Fj, F̃i, pj, and p̃j.

(a) Explain how to solve this problem using convex or quasi-convex optimization.
You must justify any change of variables or problem transformation, and explain
how you recover the solution of the blending problem from the solution of your
proposed problem.

(b) Carry out the method of part (a) on the problem instance given in
material_blending_data.*. Report the optimal profit, and the associated val-
ues of fij, f̃i, and c̃i.
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Solution.

(a) The problem we are to solve is

maximize −
∑

i,j fijpj +
∑

i f̃ip̃i
subject to

∑

j fijcj = f̃ic̃i
1T c̃i = 1
cmin
i � c̃i � cmax

i

0 ≤ f̃i ≤ F̃i

0 ≤ fij
∑

i fij ≤ Fj

with variables fij , f̃i, and c̃i. Each constraint that is indexed by i must hold for
i = 1, . . . , n, and each constraint is indexed by j must hold for j = 1, . . . ,m.

The objective and all constraints except the first set of equality constraints are
linear. On the right hand side of the first set of inequalities we have the product
of two variables f̃i and c̃i, so these constraints are not convex.

To deal with this, we introduce new variables mi = f̃ic̃i ∈ Rq for i = 1, . . . , n, and
reformulate the problem as an optimization problem with decision variables fij ,
f̃i, and mi, removing the variables c̃i. The vectors mi are the blended product
constituent mass flows.

The variables c̃i only appear in the first three sets of constraints. In the first
set of equality constraints, we can simply replace f̃ic̃i with mi, which results in a
set of linear equality constraints. We express 1T c̃i = 1 as 1Tmi = f̃i; these are
equivalent since 1Tmi = f̃i1

T c̃i = f̃i. The third set of constraints is equivalent to
f̃ic

min
i � mi � f̃ic

max
i . Therefore, the problem becomes

maximize −
∑

i,j fijpj +
∑

i f̃ip̃i
subject to

∑

j fijcj = mi, i = 1, . . . , n

1Tmi = f̃i, i = 1, . . . , n

f̃ic
min
i � mi � f̃ic

max
i , i = 1, . . . , n

0 ≤ fij, i = 1, . . . , n j = 1, . . . ,m

0 ≤ f̃i ≤ F̃i, i = 1, . . . , n
∑

i fij ≤ Fj, j = 1, . . . ,m,

with variables fij, f̃i, and mi. This is an LP. In order to reconstruct the solution
to the original problem, we find c̃i by c̃i = mi/f̃i.

(b) The following MATLAB code solves the problem.

clear all

material_blending_data

cvx_begin
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variables f(2,4) ftilde(2) m(3,2)

maximize -sum(f*p)+ sum(m*pTilde)

subject to

m == C*f’

sum(m) == ftilde’

0 <= f

0 <= ftilde <= FTilde

c_minTilde*diag(ftilde) <= m <= c_maxTilde*diag(ftilde)

sum(f)’ <= F

cvx_end

The following Python code solves the problem.

from cvxpy import *

from material_blending_data import *

f = Variable(2,4)

ftilde = Variable(2)

m = Variable(3,2)

objective = Maximize(-sum_entries(f * p)+ sum_entries(m * pTilde))

constraints = [m == C*f.T,

np.ones([1,3])*m == ftilde.T,

0 <= f,

0 <= ftilde,

ftilde <= FTilde,

c_minTilde * diag(ftilde) <= m,

m <= c_maxTilde * diag(ftilde),

(np.ones([1,2]) * f).T <= F]

prob = Problem(objective, constraints)

result = prob.solve()

print prob.value

The following Julia code solves the problem.

using Convex, ECOS

include("material_blending_data.jl");

f = Variable(2,4)

ftilde = Variable(2)

m = Variable(3,2)

obj = (-sum(f * p)+ sum(m * pTilde))
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prob = maximize(obj)

prob.constraints += [m == C*f’,

ones(1,3)*m == ftilde’,

0 <= f,

0 <= ftilde,

ftilde <= FTilde,

c_minTilde * diagm(ftilde) <= m,

m <= c_maxTilde * diagm(ftilde),

f’*ones(2,1) <= F]

solve!(prob, ECOSSolver(verbose=0,max_iters=20000))

println(prob.optval)

We find that the optimal value is 127, with a solution

f =

[

6.0555 0.9167 0.7065 0.3213
0.9445 1.0833 5.2935 2.6787

]

,

f̃ =

[

8
10

]

, c̃1 =





0.8588
0.1000
0.0412



 , c̃2 =





0.7029
0.1800
0.1171



 .
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7. Graph isomorphism via linear programming. An (undirected) graph with n vertices
can be described by its adjacency matrix A ∈ Sn, given by

Aij =

{

1 there is an edge between vertices i and j
0 otherwise.

Two (undirected) graphs are isomorphic if we can permute the vertices of one so it
is the same as the other (i.e., the same pairs of vertices are connected by edges). If
we describe them by their adjacency matrices A and B, isomorphism is equivalent to
the existence of a permutation matrix P ∈ Rn×n such that PAP T = B. (Recall that
a matrix P is a permutation matrix if each row and column has exactly one entry 1,
and all other entries 0.) Determining if two graphs are isomorphic, and if so, finding a
suitable permutation matrix P , is called the graph isomorphism problem.

Remarks (not needed to solve the problem). It is not currently known if the graph
isomorphism problem is NP-complete or solvable in polynomial time. The graph iso-
morphism problem comes up in several applications, such as determining if two de-
scriptions of a molecule are the same, or whether the physical layout of an electronic
circuit correctly reflects the given circuit schematic diagram.

(a) Find a set of linear equalities and inequalities on P ∈ Rn×n, that together with
the Boolean constraint Pij ∈ {0, 1}, are necessary and sufficient for P to be a
permutation matrix satisfying PAP T = B. Thus, the graph isomorphism problem
is equivalent to a Boolean feasibility LP.

(b) Consider the relaxed version of the Boolean feasibility LP found in part (a), i.e.,
the LP that results when the constraints Pij ∈ {0, 1} are replaced with Pij ∈ [0, 1].
When this LP is infeasible, we can be sure that the two graphs are not isomorphic.
If a solution of the LP is found that satisfies Pij ∈ {0, 1}, then the graphs are
isomporphic and we have solved the graph isomorphism problem. This of course
does not always happen, even if the graphs are isomorphic.

A standard trick to encourage the entries of P to take on the values 0 and 1 is to
add a random linear objective to the relaxed feasibility LP. (This doesn’t change
whether the problem is feasible or not.) In other words, we minimize

∑

i,j WijPij ,
where Wij are chosen randomly (say, from N (0, 1)). (This can be repeated with
different choices of W .)

Carry out this scheme for the two isomorphic graphs with adjacency matrices A
and B given in graph_isomorphism_data.* to find a permutation matrix P that
satisfies PAP T = B. Report the permutation vector, given by the matrix-vector
product Pv, where v = (1, 2, . . . , n). Verify that all the required conditions on
P hold. To check that the entries of the solution of the LP are (close to) {0, 1},
report maxi,j Pij(1−Pij). And yes, you might have to try more than one instance
of the randomized method described above before you find a permutation that
establishes isomorphism of the two graphs.
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Solution.

(a) P is a permutation matrix if and only if P1 = 1, P T1 = 1, and Pij ∈ {0, 1}. The
condition PAP T = B is a quadratic equality on P . But we observe that since P is
a permutation matrix, we have P−1 = P T . Multiplying PAP T = B on the right
by P we get PA = BP , a set of linear equations in P . So, P is a permutation
matrix that satisfies PAP T = B if and only if

P1 = 1, P T1 = 1, PA = BP, Pij ∈ {0, 1}.

This is a set of linear equations in P , together with the Boolean condition Pij ∈
{0, 1}.

(b) The LP relaxation, with the random cost function suggested, is

minimize Tr(W TP )
subject to P1 = 1, P T1 = 1, PA = BP

0 ≤ Pij ≤ 1.

(The constraints Pij ≤ 1 are redundant and can be removed.)

When we solve this problem for the given data, we find that there are two different
permutation vectors π1 and π2 that relate A and B. The quantity maxi,j Pij(1−
Pij) is suitably small, on the order of 10−6. These two vectors are

π1 = (16, 22, 27, 9, 5, 13, 1, 25, 21, 23, 19, 14, 26, 6, 2, 7,

30, 11, 10, 17, 15, 24, 8, 18, 20, 3, 12, 28, 4, 29),

and

π2 = (6, 22, 27, 19, 15, 3, 11, 25, 21, 23, 9, 4, 26, 16, 12, 17,

30, 1, 20, 7, 5, 24, 18, 8, 10, 13, 2, 28, 14, 29).

It is interesting to notice that solving the feasibility problem with itself (i.e.,
with objective function 0) usually doesn’t end up finding a permutation matrix.
However adding the linear random objective does help us find a permutation
matrix.

The following MATLAB code solves the problem

graph_isomorphism_data

n = size(A,1);

W = randn(n);

cvx_begin quiet

variable P(n,n)

minimize trace(W*P)
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subject to

P’*ones(n,1) == ones(n,1);

P*ones(n,1) == ones(n,1);

P*A - B*P == 0;

0 <= P <= 1

cvx_end

fprintf([’maximum p(1-p) where p is an entry of P is ’ ...

’%d\n’], max(max(P.*(1-P))))

fprintf([’norm of the residual for first constraint is ’ ...

’%d\n’], norm(P’*ones(n,1) - ones(n,1)))

fprintf([’norm of the residual for second constraint is ’ ...

’%d\n’], norm(P*ones(n,1) - ones(n,1)))

fprintf([’norm of the residual for third constraint is ’ ...

’%d\n’], norm(P*A - B*P))

P*(1:n)’

The following Python code solves the problem

from cvxpy import *

from graph_isomorphism_data import *

n = A.shape[0]

W = np.random.randn(n, n)

P = Variable(n,n)

objective = Minimize(trace(W*P))

constraints = [ P*np.ones([n,1]) == np.ones([n,1]),

P.T*np.ones([n,1]) == np.ones([n,1]),

P*A == B*P,

0 <= P,

P <= 1]

prob = Problem(objective, constraints)

result = prob.solve()

P = P.value

print(’maximum p(1-p) where p is an entry of P is ’

+ str(np.max(np.multiply(P,1-P))))

print(’norm of the residual for first constraint is ’

+ str(np.linalg.norm(P*np.ones([n,1])- np.ones([n,1]))))

print(’norm of the residual for second constraint is ’

+ str(np.linalg.norm(P.T*np.ones([n,1]) - np.ones([n,1]))))

print(’norm of the residual for third constraint is ’

+ str(np.linalg.norm(P*A-B*P)))

print(np.dot(P,np.arange(n)+1))
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The following Julia code solves the problem

using Convex, SCS

include("graph_isomorphism_data.jl");

n = size(A,1);

W = randn(n,n);

P = Variable(n, n);

obj = trace(W*P);

constraints = [

sum(P, 2) == ones(n),

sum(P, 1) == ones(1, n),

P*A == B*P,

P >= 0,

P <= 1

];

prob = minimize(obj, constraints);

solve!(prob, SCSSolver(verbose=false, max_iters=20000));

P = P.value;

println(maximum(P.*(1-P)));

println(norm(sum(P, 2) - ones(n)));

println(norm(sum(P, 1) - ones(1, n)));

println(vecnorm(P*A-B*P));

println(P);
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8. Maintaining static balance. In this problem we study a human’s abil-
ity to maintain balance against an applied external force. We will
use a planar (two-dimensional) model to characterize the set of push
forces a human can sustain before he or she is unable to maintain bal-
ance. We model the human as a linkage of 4 body segments, which we
consider to be rigid bodies: the foot, lower leg, upper leg, and pelvis
(into which we lump the upper body). The pose is given by the joint
angles, but this won’t matter in this problem, since we consider a
fixed pose. A set of 40 muscles act on the body segments; each of
these develops a (scalar) tension ti that satisfies 0 ≤ ti ≤ Tmax

i , where
Tmax
i is the maximum possible tension for muscle i. (The maximum

muscle tensions depend on the pose, and the person, but here they
are known constants.) An external pushing force fpush ∈ R2 acts on
the pelvis. Two (ground contact) forces act on the foot: fheel ∈ R2

and f toe ∈ R2. (These are shown at right.) These must satisfy

|fheel
1 | ≤ µfheel

2 , |f toe
1 | ≤ µf toe

2 ,

where µ > 0 is the coefficient of friction of the ground. There are
also joint forces that act at the joints between the body segments,
and gravity forces for each body segment, but we won’t need them
explicitly in this problem.

fpush

fheel f toe

To maintain balance, the net force and torque on each each body segment must be
satisfied. These equations can be written out from the geometry of the body (e.g.,
attachment points for the muscles) and the pose. They can be reduced to a set of 6
linear equations:

Amusct+ Atoef toe + Aheelfheel + Apushfpush = b,

where t ∈ R40 is the vector of muscle tensions, and Amusc, Atoe, Aheel, and Apush are
known matrices and b ∈ R6 is a known vector. These data depend on the pose, body
weight and dimensions, and muscle lines of action. Fortunately for you, our biomechan-
ics expert Apoorva has worked them out; you will find them in static_balance_data.*
(along with Tmax and µ).

We say that the push force fpush can be resisted if there exist muscle tensions and
ground contact forces that satisfy the constraints above. (This raises a philosophical
question: Does a person solve an optimization to decide whether he or she should lose
their balance? In any case, this approach makes good predictions.)

Find F res ⊂ R2, the set of push forces that can be resisted. Plot it as a shaded region.

Hints. Show that F res is a convex set. For the given data, 0 ∈ F res. Then for
θ = 1◦, 2◦, . . . , 360◦, determine the maximum push force, applied in the direction θ,
that can be resisted. To make a filled region on a plot, you can use the command fill()
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in Matlab. For Python and Julia, fill() is also available through PyPlot. In Julia,
make sure to use the ECOS solver with solver = ECOSSolver(verbose=false).

Remark. A person can resist a much larger force applied to the hip than you might
think.

Solution. The set of vectors (t, f toe, fheel, fpush) which satisfy the constraints

Amusct+ Atoef toe + Aheelfheel + Apushfpush = b
|f toe

1 | ≤ µf toe
2

|fheel
1 | ≤ µfheel

2

0 � t � Tmax,

forms a convex set, a polyhedron. It follows the set of push forces that can be resisted,
F res, is a convex set, since it is the projection of this set onto the variable fpush. In
fact, F res is also a polyhedron.

To find the maximum push force for a given direction θ, we solve the LP

maximize z
subject to Amusct+ Atoef toe + Aheelfheel + Apushz(cos θ, sin θ) = b

|f toe
1 | ≤ µf toe

2

|fheel
1 | ≤ µfheel

2

0 � t � Tmax.

with variables t, f toe, fheel and z ∈ R. We solve this problem for a number of values
of θ, and for each one we record the value fpush = z⋆(cos θ, sin θ), which is on the
boundary of F res. We use these values to fill out the set when plotting.

The set F res for the given data is shown below.
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We see some interesting things from the plot. One is that it’s much easier to make
someone lose their static balance by pulling them up, instead of pushing them down.
Another interpretation (maybe more positive) is that a 75 kg person can maintain this
posture even with a load of 3150 Newtons (321 kg, 708 lbs) attached to their hips.
This is over 4 times body weight! And it’s a little easier to make them lose their
balance pushing them forward, compared to pulling them backward. This analysis
does not take into account other factors such as the maximum compressive load that
can be supported by bones and joints. That said, the human body can produce and
withstand extremely high forces. For reference, in running, the force in the Achilles
tendon can be 6 to 8 times body weight and compressive forces in the lower leg can be
10 to 14 times body weight.

The following Matlab code solves the problem.

static_balance_data

theta_push = pi/180.*(0:1:360);

f_push_max = zeros(size(theta_push));

t_muscle = zeros(n_musc, length(theta_push));

for i = 1:length(theta_push)

theta = theta_push(i);

cvx_begin

cvx_quiet(true)

variable f_push;

variable t(40,1);

variables f_toe(2,1) f_heel(2,1);

maximize(f_push);

A_musc*t + A_heel*f_heel + A_toe*f_toe + ...

A_push*f_push*[cos(theta); sin(theta)] == b;

abs(f_toe(1)) <= mu*f_toe(2);

abs(f_heel(1)) <= mu*f_heel(2);

0 <= t;

t <= T_max;

cvx_end

f_push_max(i) = f_push;

t_muscle(:,i) = t;

end

% plot results

figure

fill(f_push_max.*cos(theta_push), f_push_max.*sin(theta_push), ’c’), hold on
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xlabel(’f^{push}_1 (Newtons)’)

ylabel(’f^{push}_2 (Newtons)’)

plot([-400,400], [0,0], ’k--’), hold on

plot([0,0], [-3500,1000], ’k--’)

print -depsc static_balance_fres_mat

The following Python code solves the problem.

# solution to static balance problem

import numpy as np

import cvxpy as cvx

import matplotlib.pyplot as plt

import matplotlib

from static_balance_data import *

theta_push = np.pi/180. * np.arange(360)

f_push_max = np.zeros(len(theta_push));

for i in range(len(theta_push)):

theta = theta_push[i];

f_push = cvx.Variable(1)

t = cvx.Variable(40,1)

f_toe = cvx.Variable(2,1)

f_heel = cvx.Variable(2,1)

constr = [A_musc*t + A_heel*f_heel + A_toe*f_toe \

+ A_push*f_push*np.array([np.cos(theta), np.sin(theta)]) == b,

cvx.abs(f_toe[0]) <= mu*f_toe[1],

cvx.abs(f_heel[0]) <= mu*f_heel[1],

0 <= t,

t <= T_max]

p = cvx.Problem(cvx.Maximize(f_push), constr)

p.solve(verbose = False)

f_push_max[i] = f_push.value

# plot results

plt.figure(1)

plt.fill(f_push_max*np.cos(theta_push), f_push_max*np.sin(theta_push),’c’)
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plt.plot(np.array([-400,400]), np.array([0,0]), ’k--’)

plt.plot(np.array([0,0]), np.array([-3500,1000]), ’k--’)

plt.xlabel(’$f^\\mathrm{push}_1$ (Newtons)’)

plt.ylabel(’$f^\\mathrm{push}_2$ (Newtons)’)

plt.savefig(’static_balance_fres_py.eps’)

plt.show()

The following Julia code solves the problem.

include("static_balance_data.jl");

using Convex, ECOS, PyPlot

solver = ECOSSolver(verbose=false);

theta_push = pi/180 * [0:359];

f_push_max = zeros(length(theta_push));

for i = 1:length(theta_push)

theta = theta_push[i];

f_push = Variable(1);

t = Variable(40);

f_toe = Variable(2);

f_heel = Variable(2)

constraints = A_musc*t + A_heel*f_heel + A_toe*f_toe +

A_push*f_push*[cos(theta) sin(theta)]’ == b;

constraints += abs(f_toe[1]) <= mu*f_toe[2];

constraints += abs(f_heel[1]) <= mu*f_heel[2];

constraints += 0 <= t;

constraints += t <= T_max;

prob = maximize(f_push, constraints);

solve!(prob, solver)

f_push_max[i] = prob.optval

end

# plot results

fill(f_push_max.*cos(theta_push), f_push_max.*sin(theta_push),"c")

plot([-400,400], [0,0], "k--")
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plot([0,0], [-3500,1000], "k--")

xlabel("\$f^\\mathrm{push}_1\$ (Newtons)")

ylabel("\$f^\\mathrm{push}_2\$ (Newtons)")

savefig("static_balance_fres_jl.eps")
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