
EE364a: Convex Optimization I S. Boyd
March 14–15, 15–16, or 16–17, 2019

Final Exam

This is a 24 hour take-home final. Please turn it in at Bytes Cafe in the Packard building,
24 hours after you pick it up.

You may use any books, notes, or computer programs, but you may not discuss the exam with
anyone until 9:30AM March 17, after everyone has finished the exam. The only exception
is that you can ask us for clarification, via the course staff email address or private Piazza
post. We’ve tried pretty hard to make the exam unambiguous and clear, so we’re unlikely
to say much.

Please make a copy of your exam, or scan it, before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . . ), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
or plots for all problems at the end of the final.

We will deduct points from long, needlessly complex solutions, even if they are
correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the source code that produces the result, and the
final numerical results or plots.

Files containing problem data can be found in the usual place,

http://www.stanford.edu/~boyd/cvxbook/cvxbook_additional_exercises/

Please respect the honor code. Although we allow you to work on homework assignments in
small groups, you cannot discuss the final with anyone, at least until everyone has taken it.

All problems have equal weight. Some are (quite) straightforward. Others, not so much.

Be sure you are using the most recent version of CVX, CVXPY, or Convex.jl. Check your
email often during the exam, just in case we need to send out an important announcement.

Some problems involve applications. But you do not need to know anything about the
problem area to solve the problem; the problem statement contains everything you need.

Some of the data files generate random data (with a fixed seed), which are not necessarily
the same for Matlab, Python, and Julia.
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1. Fitting a periodic Poisson distribution to data. We model the (random) number of
times that some type of event occurs in each hour of the day as independent Poisson
variables, with

Prob(k events occur) = e−λt
λkt
k!
, k = 0, 1, . . . ,

with parameter λt ≥ 0, t = 1, . . . , 24. (For λt = 0, k = 0 events occur with probability
one.) Here t denotes the hour, with t = 1 corresponding to the hour from midnight to
1AM, and t = 24 the hour between 11PM and midnight. (This is the periodic Poisson
distribution in the title.) The parameter λt is the expected value of the number of
events that occur in hour t; it can be thought of as the rate of occurence of the events
in hour t.

Over one day we observe the numbers of events N1, . . . , N24.

(a) Maximum likelihood estimate of parameters. What is the maximum likelihood es-
timate of the parameters λ1, . . . , λ24? Hint. There is a simple analytical solution.
You should consider the cases Nt > 0 and Nt = 0 separately.

(b) Regularized maximum likelihood estimate of parameters. In many applications it
is reasonable to assume that λt varies smoothly over the day; for example, the
rate of occurence of events for 3PM–4PM is not too different from the rate of
occurence for 4PM–5PM. To obtain a smooth estimate of λt we maximize the log
likelihood minus the regularization term

ρ

(
23∑
t=1

(λt+1 − λt)2 + (λ1 − λ24)2
)
,

where ρ ≥ 0. Explain how to find the values λ1, . . . , λ24 using convex optimization.
If you change variables, explain.

(c) What happens as ρ → ∞? You can give a very short answer, with an informal
argument. Hint. As in part (a), there is a simple analytical solution.

(d) Numerical example. Over one day, we observe

N = (0, 4, 2, 2, 3, 0, 4, 5, 6, 6, 4, 1, 4, 4, 0, 1, 3, 4, 2, 0, 3, 2, 0, 1).

Find the regularized maximum likelihood parameters for ρ ∈ {0.1, 1, 10, 100} using
CVX*, and plot λt versus t for each value of ρ.

(e) Choosing the hyper-parameter value by out-of-sample test. One way to choose the
value of ρ is to see which of the models found in part (d) has the highest log
likelihood on a test set, i.e., another day’s data, that was not used to create the
model. For each of the 4 values of the parameters you estimated in part (d),
evaluate the log likelihood of another day’s number of events,

N test = (0, 1, 3, 2, 3, 1, 4, 5, 3, 1, 4, 3, 5, 5, 2, 1, 1, 1, 2, 0, 1, 2, 1, 0).

Which hyper-parameter value ρ would you choose?
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2. Currency exchange. An entity (such as a multinational corporation) holds n = 10
currencies, with ciniti ≥ 0 denoting the number of units of currency i. The currencies
are, in order, USD, EUR, GBP, CAD, JPY, CNY, RUB, MXN, INR, and BRL. Our
goal is to exchange currencies on a market so that, after the exchanges, we hold at
least creqi units of each currency i.

The exchange rates are given by F ∈ Rn×n, where Fij is the units of currency j it costs
to buy one unit of currency i. We call 1/Fij the bid price for currency j in terms of
currency i, and Fji the ask price for currency j in terms of currency i.

For example, suppose that F12 = 0.88 and F21 = 1.18. This means that it takes 0.88
EUR to buy one USD, and it takes 1.18 USD to buy one EUR; the bid and ask prices
for EUR in USD are 1.1364 USD and 1.1800 USD, respectively.

We will value a set of currency holdings in USD, by valuing each unit of currency j
at the geometric mean of the bid and ask price in USD,

√
Fj1/F1j. In our example

above, we would value one EUR as
√

1.1364 · 1.1800 = 1.1580 USD.

We let X ∈ Rn×n
+ denote the currency exchanges that we carry out, with Xij ≥ 0 the

amount of currency j we exchange on the market for currency i, for which we obtain
Xij/Fij of currency i. (You can assume that Xii = 0.) The total of each currency j
that we exchange into other currencies cannot exceed our initial holdings, cinitj . After
the currency exchange, we must end up with at least creqi of currency i. (The post-
exchange amount we hold of currency i is our original holding ciniti , minus the total
we exchange into other currencies, plus the total amount we obtain from exchanging
other currencies into currency i.)

The cost of the exchanges is the decrease in value between the currency holdings before
and after the exchanges, in USD. The cost can be interpreted as the transaction costs
incurred by crossing the bid-ask spread (i.e., if the bid and the ask were the same,
there would be no cost.)

Find the currency exchanges X? that minimize the currency exchange cost for the
data in currency_exchange_data.*. (These data are based on real exchange rates,
but with artificially large spreads, to make sure that you don’t encounter any numerical
issues.) Explain your method, and give the optimal value, i.e., the cost obtained.
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3. Optimal operation of a microgrid. We consider a small electrical microgrid that consists
of a photo-voltaic (PV) array, a storage device (battery), a load, and a connection to
an external grid. We will optimize the operation of the microgrid over one day, in 15
minute increments, so all powers, and the battery charge, are represented as vectors in
R96. The load power is pld, which is nonnegative and known. The power that we take
from the external grid is pgrid; pgridi ≥ 0 means we are consuming power from the grid,
and pgridi < 0 means we are sending power back into the grid, in time period i. The PV
array output, which is nonnegative and known, is denoted as ppv. The battery power
is pbatt, with pbatti ≥ 0 meaning the battery is discharging, and pbatti < 0 meaning the
battery is charging. These powers must balance in all periods, i.e., we have

pld = pgrid + pbatt + ppv.

(This is called the power balance constraint. The lefthand side is the load power, and
the righthand side is the sum of the power coming from the grid, the battery, and the
PV array.) All powers are given in kW.

The battery state of charge is given by q ∈ R96. It must satisfy 0 ≤ qi ≤ Q for all i,
where Q is the battery capacity (in kWh). The battery dynamics are

qi+1 = qi − (1/4)pbatti , i = 1, . . . , 95, q1 = q96 − (1/4)pbatt96 .

(The last equation means that we seek a periodic operation of the microgrid.) The
battery power must satisfy −C ≤ pbatti ≤ D for all i, where C and D are (positive)
known maximum charge and maximum discharge rates.

When we buy power (i.e., pgridi ≥ 0) we pay for it at the rate of Rbuy
i (in $/kWh).

When we sell power to the grid (i.e., pgridi < 0) we are paid for it at the rate of Rsell
i .

These (positive) prices vary with time period, and are known. The total cost of the
grid power (in $) is

(1/4)
(
Rbuy

)T (
pgrid

)
+
− (1/4)

(
Rsell

)T (
pgrid

)
− ,

where (pgrid)+ = max{pgrid, 0} and (pgrid)− = max{−pgrid, 0} (elementwise). You can
assume that Rbuy

i > Rsell
i > 0, i.e., in every period, you pay at a higher rate to consume

power from the grid than you are paid when you send power back into the grid.

The data for the problem are

pld, ppv, Q, C, D, Rbuy, Rsell.

(a) Explain how to find the powers and battery state of charge that minimize the
total cost of the grid power. Carry out your method using the data given in
microgrid_data.*. Report the optimal cost of the grid power. Plot pgrid,
pload, ppv, pbatt, and q versus i. Note. For CVXPY, you might need to spec-
ify solver=cvx.ECOS when you call the solve() method.
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(b) Price and payments. Let ν ∈ R96 denote the optimal dual variable associated
with the power balance constraint. The vector 4ν can be interpreted as the
(time-varying) price of electricity at the microgrid, and is called the locational
marginal price (LMP). The LMP is in $/kWh, and is generally positive; the
factor 4 converts between 15 minute power intervals and per kWh prices. Find
and plot the LMP, along with the grid buy and sell prices, versus i. Make a
very brief comment comparing the LMP prices with the buy and sell grid prices.
Hint. Depending on how you express the power balance constraint, your software
might return −ν instead of ν. Feel free to use −4ν instead of ν, or to switch the
left-hand and righ-hand sides of your power balance constraint.

(c) The LMPs can be used as a system for payments among the load, the PV array,
the battery, and the grid. The load pays νTpld; the PV array is paid νTppv; the
battery is paid νTpbatt; and the grid is paid νTpgrid. Note carefully the directions
of these payments. Also note that the battery and grid, whose powers can have
either sign, can be paid in some time intervals and pay in others.

Use this pricing scheme to calculate the LMP payments made by the load, and
to the PV array, the battery, and the grid. If all goes well, these payments will
balance, i.e., the load will pay an amount equal to the sum of the others.

When you execute the script that contains the data, it will create plots showing the
various powers and prices versus time. Your are welcome to use these as templates for
plotting your results. You are very welcome to look inside the script to see how the
data is generated.

Remark. (Not needed to solve the problem.) The given data is approximately consis-
tent with a group of ten houses, a common or pooled PV array of around 100 panels,
and two Tesla Powerwall batteries.
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4. Curvature of some order statistics. For x ∈ Rn, with n > 1, x[k] denotes the kth
largest entry of x, for k = 1, . . . , n, so, for example, x[1] = maxi=1,...,n xi and x[n] =
mini=1,...,n xi. Functions that depend on these sorted values are called order statistics
or order functions. Determine the curvature of the order statistics below, from the
choices convex, concave, or neither. For each function, explain why the function has the
curvature you claim. If you say it is neither convex nor concave, give a counterexample
showing it is not convex, and a counterexample showing it is not concave. All functions
below have domain Rn.

(a) median(x) = x[(n+1)/2]. (You can assume that n is odd.)

(b) The range of values, x[1] − x[n].
(c) The midpoint of the range, (x[1] + x[n])/2.

(d) Interquartile range, defined as x[n/4] − x[3n/4]. (You can assume that n/4 is an
integer.)

(e) Symmetric trimmed mean, defined as

x[n/10] + x[n/10+1] + · · ·+ x[9n/10]
0.8n+ 1

,

the mean of the values between the 10th and 90th percentiles. (You can assume
that n/10 is an integer.)

(f) Lower trimmed mean, defined as

x[1] + x[2] + · · ·+ x[9n/10]
0.9n+ 1

,

the mean of the entries, excluding the bottom decile. (You can assume that n/10
is an integer.)

Remark. For the functions defined in (d)–(f), you might find slightly different defini-
tions in the literature. Please use the formulas above to answer each question.
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5. Control with various objectives. We consider a standard optimal control problem,
with dynamics xt+1 = Axt + But, t = 0, 1, . . . , T − 1. Here xt ∈ Rn is the state,
and ut ∈ Rm is the control or input, at time period t, A ∈ Rn×n is the dynamics
matrix, and B ∈ Rn×m is the input matrix. We are given the initial state, x0 = xinit,
and we require that the final state be zero, xT = 0. (In applications, the state 0
corresponds to some desirable state.) Your job is to choose the sequence of inputs
u0, . . . , uT−1 that minimize an objective. Values for xinit, A, B, and T are given in
various_obj_regulator_data.*.

We consider various objectives, all of which measure the size of the inputs (or, in
control dialect, the control effort).

(a) Sum of squares of 2-norms.
∑T−1

t=0 ‖ut‖22. This is the traditional objective.

(b) Sum of 2-norms.
∑T−1

t=0 ‖ut‖2.
(c) Max of 2-norms. maxt=0,...,T−1 ‖ut‖2.

(d) Sum of 1-norms.
∑T−1

t=0 ‖ut‖1. In some applications this is an approximation of
the fuel use.

For each objective, plot (the components of) optimal input, as well as ‖ut‖2, versus t.
Make a very brief comment on each plot of optimal control inputs, explaining why you
might expect what happened.
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6. Morphing between two discrete distributions. Consider two distributions for a random
variable that takes values in {1, 2, . . . , n}, given by q, r ∈ Rn, with q � 0, 1T q = 1, and
r � 0, 1T r = 1. We seek a sequence of distributions p(i), i = 1, . . . , N , that ‘morph’
between q and r. This means that p(1) = q, p(N) = r, and p(i+1) is close to p(i) for
i = 1, . . . , (N − 1), in some sense. Specifically we will minimize

N−1∑
i=1

d(p(i), p(i+1))

where d is a distance function.

(a) Euclidean morphing. What is the solution when the distance function is the sum
of squares, dsq(u, v) = ‖u − v‖22? The solution is simple; you can just give it
without justification.

(b) Hellinger morphing. Now we use the Hellinger distance function

dhel(u, v) =
n∑
i=1

(
√
ui −

√
vi)

2.

Explain how to solve the Hellinger morphing problem using convex optimization.

(c) Kolmogorov morphing. Now we use the Kolmogorov distance function

dkol(u, v) = max
i=1,...,n

∣∣∣∣∣
i∑

j=1

uj −
i∑

j=1

vj

∣∣∣∣∣ ,
which is the `∞ distance between the respective cumulative distributions (using
the order of the outcomes). Explain how to solve the Kolmogorov morphing
problem using convex optimization.

(d) Find the Euclidean, Hellinger, and Kolmogorov morphings for N = 10, n = 100.
Use q and r provided in morphing_data.*. Plot each p(i) versus n. Produce one
figure for each choice of distance function.

Note. In Python and Julia, you should use the ECOS solver.
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7. Constrained maximum likelihood estimation of mean and covariance. You are given
some independent samples x1, . . . , xN ∈ Rn from a Gaussian distribution N (µ,Σ).
Explain how to find the maximum-likelihood estimate of µ and Σ, subject to the
constraint that Σ−1µ � 0, using convex optimization. You must fully justify any
change of variables.

Finance interpretation. (Not needed to solve the problem.) Suppose x ∼ N (µ,Σ) is
the return of n assets. The portfolio vector h that maximizes the risk-adjusted return
µTh− γhTΣh, where γ > 0 is the risk aversion parameter, is h = (1/2γ)Σ−1µ. So the
constraint in the problem above is that the optimal portfolio has nonnegative entries,
i.e., is a long-only portfolio. The constrained maximum-likelihood estimate finds the
maximum likelihood mean and covariance of the return distribution, subject to the
constraint that the associated optimal portfolio is long-only.

Probability interpretation. (Not needed to solve the problem.) The constraint Σ−1µ � 0
is the same as ∇p(0) � 0, where p is the density of the N (µ,Σ) distribution. In other
words, at 0, the density is nondecreasing in each coordinate.
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8. Minimizing tax liability. You will liquidate (sell) some stocks that you hold to raise a
given amount of cash C. The stocks are divided into n tax lots; a tax lot is a group of
stocks you bought at the same time. For each tax lot i, you have the cost basis bi > 0,
the current market value vi > 0 (both in $), and its short term / long term status.
(Long term means that you acquired the stock in the tax lot more than one year ago,
and short term means that you acquired it less than one year ago.) We assume that
tax lots i = 1, . . . , L are long term, and tax lots i = L+ 1, . . . , n are short term.

The goal is to choose how much of each lot to sell. We let si denote the amount of tax
lot i we sell (in $). These must satisfy 0 ≤ si ≤ vi, and we must have 1T s = C.

When vi < bi, the sale is called a loss, and when vi > bi, the sale is called a gain. The
amount of the gain or loss is given by gi = (si/vi)(vi−bi), with positive values meaning
a gain, and negative values meaning a loss. We define the (net) long and short term
gains as

N l =
L∑
i=1

gi, N s =
n∑

i=L+1

gi.

When N l > 0 (N l < 0), we say that we have had a long term capital gain (loss), and
similary for short term gain.

These two net gains determine the total tax liability. The long and short term net
gains are taxed at two different rates, ρl and ρs, respectively, which satisfy 0 < ρl < ρs.

The simplest case is when both net gains are nonnegative, in which case the tax is
ρlN l + ρsN s. Another simple case occurs when both net gains are nonpositive, in
which case the tax is zero.

In the case when one of the net gains is positive and the other is negative, you are
allowed to use the net loss in one to offset the net gain in the other, up to the value of the
net gain. Specifically, if N l < 0 (you have a long term loss), the tax is ρs(N s +N l)+; if
N s < 0 (you have a short term loss), the tax is ρl(N s+N l)+. (Here (u)+ = max{u, 0}.)
Note that you have zero tax liability if N s +N l ≤ 0, i.e., your total long and short net
gains is less than or equal to zero.

Apology. Sorry this sounds complicated. In fact, this is a highly simplified version of
the way taxes really work.

Hint. The tax liability is neither a convex nor quasiconvex function of the long and
short term net gains N l and N s.

(a) Explain how to find s that minimizes the tax liability, subject to the constraints
listed above, using convex optimization. Your solution can involve solving a mod-
est number of convex problems.

(b) Suppose you want to raise C = 2300 dollars from n = 10 tax lots, and the cost
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basis and values of each lot are given by

b = (400, 80, 400, 200, 400, 400, 80, 400, 100, 500),

v = (500, 100, 500, 200, 700, 300, 120, 300, 150, 600).

Carry out your method on this data with L = 4, ρl = 0.2, and ρs = 0.3. Give
optimal values of si, and the optimal value of the tax liability. Compare this to
the tax liability when you liquidate all tax lots proportionally, i.e., s = (C/1Tv)v.
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9. Fitting with a nonnegative combination of vectors from ellipsoids. You are given ellip-
soids E1, . . . , En ⊂ Rk, and the vector b ∈ Rk. Explain how to use convex optimization
to choose ai ∈ Ei, i = 1, . . . , n, and nonnegative x1, . . . , xn ∈ R, that minimize∥∥∥∥∥

n∑
i=1

xiai − b

∥∥∥∥∥
2

.

You can use any parametrization of the ellipsoids you like, for example,

Ei = {a | ‖Pia+ qi‖2 ≤ 1} ,

or
Ei = {Piu+ qi | ‖u‖2 ≤ 1} ,

or
Ei =

{
a | (a− ci)TP−1i (a− ci) ≤ 1

}
,

with Pi ∈ Sk++ and ci ∈ Rk.

Remark. This is the opposite situation from robust approximation. In robust approxi-
mation, the ai’s would be chosen to maximize the objective, once you choose x. Here,
however, the ai’s are chosen to minimize the objective, along with x.
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