
 

Abstract— Many technological networks might experience 
random and/or systematic failures in their components. More 
destructive situation can happen if the components have limited 
capacity, which the failure in one of them might lead to a cascade 
of failures in other components, and consequently break down the 
whole network. In this paper, the tolerance of cascaded failures 
was investigated in weighted networks. Three weighting strategies 
were considered including the betweenness centrality of the edges, 
the product of the degrees of the end nodes, and the product of 
their betweenness centralities. Then, the effect of the cascaded 
attack was investigated by considering the local weighted flow 
redistribution rule. The capacity of the edges was considered to be 
proportional to their initial weight distribution. The size of the 
survived part of the attacked network was determined in model 
networks as well as in a number of real-world networks including 
the power grid, the Internet in the level of autonomous system, the 
railway network of Europe, and the US airports network.  We 
found that the networks in which the weight of each edge is the 
multiplication of the betweenness centrality of the end nodes had 
the best robustness against cascaded failures. In other words, the 
case where the load of the links is considered to be the power-law 
function of the product of the of the betweenness centrality of the 
end nodes is favored for the robustness of the network against 
cascaded failures.  

Index Terms— Complex networks, betweenness centrality, 
cascaded failure, robustness. 

  

I. INTRODUCTION 

ETWORK science has attracted much attention in recent 
years, primarily due to its application in many areas 

ranging from biology to medicine, engineering and social 
sciences [1, 2]. Research in network science starts by observing 
a phenomenon in real data and then tries to construct models to 
mimic its behavior. Many real-world networks share some 
common structural properties such as scale-free degree 
distribution, small-worldness and modularity. The dynamic 
behavior of networks largely depends on their structural 
properties [3, 4]. For example, how the nodes coordinate their 
dynamical behavior or how a dynamical process such as 
cooperation evolves in the network, depends on the structure of 
the network [5, 6]. One of the topics that have attracted much 
attention in this context is robustness of networks against 
random and systematic component failures [7-9]. Networks 
might undergo failures in a number of their components, i.e. 
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nodes and edges, and consequently lose proper functionality 
[10, 11]. The failure in a network can be random or systematic. 
When a random failure, i.e. error, occurs in a network, a 
number of its components are randomly removed from the 
network. While, in a systematic failure, i.e. attack, the 
components are systematically broken down [7, 12]. For 
example, the hub nodes might be target to attacks. When the 
intrinsic dynamics of network flows are taken into account, the 
systematic removal of the components can have a much more 
devastating consequence than random removal [13].  

The modern societies are largely dependent on networked 
structures such as power grids, information communication 
networks, the Internet, and transportation networks. Failure in 
such networks might collapse the normal daily life and result in 
chaos in the society. Evidence has shown that locally emerging 
random or systematic failures in the networks can influence the 
entire network, often resulting in large-scale collapse in the 
network. Examples include large black out in the USA due to 
failure in the power grid [14], and break-down of the Internet 
[15]. Indeed, a cascaded failure happened in such cases [11, 
13]. A possible mechanism for the cascaded failure can be as 
follows [11, 13, 16]. The network loses a component (e.g. a 
node with the highest value of the load). The load passing 
through this component is redistributed among other 
components. This process may lead some other components 
overflow, and consequently, fail. This repeated process may 
end up the network to completely lose the functionality. For 
example, the network becomes disconnected with many 
isolated islands as a consequence of cascaded failures. 
Cascaded failures may also happen in interdependent networks, 
where failures in the nodes of one networks may lead a cascade 
of failures in dependent nodes in other networks [12].            

The influence of the cascaded failure in the size of the 
largest connected component has been investigated in a 
number of model networks including preferential attachment 
scale-free [17], Watts-Strogatz small-world [18], and modular 
networks [19]. In many of the studies, as a component fails, the 
load are recalculated and the components whose load 
exceeding their capacity are removed from the network. The 
process is repeated until the loads of all remaining components 
are below their capacity [17-19]. However, this might not be 
realistic in some applications. For example, consider the 
Internet. It is natural that the load passing through a failed 
component is redistributed among its neighboring components. 
To this end, a Local Weighted Flow Redistribution Rule 
(LWFRR) has been proposed [20]. In this model, the cascaded 
failure is triggered by removing the edge with maximal load. 
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As an edge is removed from the network, its load is 
redistributed among the neighbors. Studying model networks 
with scale-free and small-world properties and by applying 
LWFRR, Wang and Chen found the strongest robustness 
against cascaded failure at a specific weighting strength [20].        

In this paper we investigated a number of factors influencing 
the robustness of the networks against cascaded failures. An 
important question in this context is “which component has the 
largest cascaded effect on the network?” We considered 
cascaded effect of failures in the edges. Furthermore, the 
networks were weighted according to different rules due to the 
fact that many real-world networks are inherently weighted. 
We used three weighting strategy: the betweenness centrality 
of the edge as its weight, the power-law function of the product 
of the degrees of the end nodes, and the power-law function of 
the product of their betweenness centrality. The numerical 
simulations were performed on a number of model networks 
such as preferential attachment scale-free [21], Newman-Watts 
small-world [22], Erdos-Renyi [23], and modular networks 
[19]. Furthermore, we considered a number of real-world 
networks including the power grid, the internet in the level of 
autonomous systems, the railway network of Europe and the 
US airports network. We found that the networks whose 
weights are the product of the betweenness centrality of the 
end nodes have the most robustness against cascaded failures. 
This study suggests that in order to enhance the robustness of 
the networks against cascaded failures, one could take the 
loads (weights) of the edges as the product of the betweenness 
centrality of the end nodes. 

II. LOCAL WEIGHTED FLOW REDISTRIBUTION RULE 

Local Weighted Flow Redistribution Rule (LWFRR) has 
been recently introduced and studied by Wang and Chen [20]. 
In this model, when an edge is subject to attack and removed 
from the network, the flow passing through this edge is 
redistributed to its nearest neighbor edges [20, 24]. As a 
consequence, the load of each neighbor edge increases 
proportional to its weight. More precisely, 
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where eij is the attacked edge, Γi and Γj are the set of neighbors 
of nodes i and j, respectively. Fij is the flow on eij before being 
broken and ∆Fim is the additional flow that the eim receives.   

Every edge eij  has some limited capacity Cij determining the 
maximum load that the edge can handle. The capacity Cij of the 
edge eij is assumed to be proportional to the initial load of the 
edge wij, i.e. Cij=Twij. That is, there exist a constant threshold 
value T > 1 such that if 
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then, the edge eim cannot tolerate the additional flow and will 
break apart. As a result, the network faces further redistribution 
of the flows, and consequently, more edges might break. 
Cascading failure continues as long as there is no edge euv 
whose flow dominates its capacity, i.e. uv uvF Tw . 

The threshold parameter is usually limited by the cost in 
many networks. Thus, the number of edges that will be broken 
at a given threshold is of great importance. The lower the 
number of broken edges, the more robust the network is against 
attacks. There exists a minimum threshold at which removal of 
an edge does not lead to cascading failure any more. A phase 
transition is occurred at this critical threshold (Tc), where for T 
< Tc the network preserves its robustness against any random 
or systematic failure. On the other hand, for T < Tc failure of a 
part can trigger the failure of successive parts of the network 
and cascading failure suddenly emerges. Tc is a significant 
measure in determining a network’s robustness; the lower the 
value of ௖ܶ is the stronger the robustness of the network is 
against removal of its components.  

In real-world networks, cascading failure is often studied in 
order to protect many infrastructure networks. Computer 
networks and the Internet are such examples that should be 
protected against cascaded failures [25, 26]. Protecting 
electrical grid against failures and a society against spread of 
an infectious disease are other examples where the studies in 
this context can be beneficial for. Let us consider a computer 
network. If a few important cables break down, the traffic 
should be rerouted either globally or locally towards the 
destination. This will lead to redistribution of the traffic in the 
network. When a line receives extra traffic, its total flow may 
exceed its bandwidth (threshold) and cause congestion. As a 
result, an avalanche of overloads emerges on the network and 
cascading failure might occur. As another example, suppose a 
disease appears in a region. It might spread to other regions 
through infected individuals traveling across the regions. It is 
obvious that immunization of individuals who travels from 
populated regions prevents the wide-spread distribution of the 
disease. Consequently, spending more money for vaccinating 
these individuals seems a reasonable action. In the power grid 
example, when an element (completely or partially) fails, its 
load shifts to nearby elements in the system. Some of those 
nearby elements may be pushed beyond their capacity and 
become overloaded; thus get broken and shift their load onto 
other neighbor elements. This surge current can induce the 
already overloaded nodes into failure, setting off more 
overloads and thereby taking down the entire system in a very 
short time. This failure process cascades through the elements 
of the system like a ripple on a pond and continues until a 
substantial magnitude of elements in the system are 
compromised and/or the system becomes functionally 
disconnected from the source of its load. Under certain 
conditions, a large power grid might collapse after the failure 
of a single transformer. All these networks are examples of 
weighted networks in which the weight of each edge can be 



 

interpreted as either its capacity or cost of immunization and 
failure of an edge causes an immediate increase of the load of 
its nearest neighbor edges. 

III. WEIGHTING METHODS 

In network characterization, the centrality of an element is a 
significant measure and plays a fundamental role in studying 
cascading failure [27]. The degree of a node is an obvious 
topological metric that can be used for determining its 
connectivity as well as centrality. The degree of the node i is 
defined as 
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where N is the size of the network and A = (aij), i, j = 1, …, N, 
is the adjacency matrix of an undirected and unweighted 
network. However, there may exist some nodes that play a 
crucial role in connecting different parts of the network despite 
their small degree. Such nodes are called bridges or local 
bridges and connect parts of the network that would become 
disconnected otherwise. Because of their topological positions 
in the network, many shortest paths (often the only plausible 
route between many pairs of nodes) pass through these nodes. 
These reasons motivated to introduce another measure for 
centrality of a node in the network, i.e. node betweenness 
centrality. Node betweenness centrality is defined as the 
number of shortest paths between pairs of nodes that pass 
through a given node [28]. More precisely, 
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where Γpq is the number of shortest paths from the node p to 
node q and Γpq(i) is the number of these shortest paths making 
use of node i. The betweenness centrality of a node is indeed 
the load of shortest paths making use of the node, i.e. the larger 
the betweenness centrality of a node is, the more its 
significance is in the formation of the shortest paths in the 
network.  

Another measure of centrality is edge betweenness centrality 
and has been widely used to model the traffic load or weight of 
an edge; it is defined similar to node betweenness centrality. 
The edge betweenness centrality of an edge is the number of 
shortest paths between pairs of nodes that pass through the 
edge eij [28]; That is,  
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where Γpq(i) is the number of shortest paths that go through the 
edge ij.  

These centrality measures can be used to determine the loads 
in an unweighted network or estimate the weights in a 
weighted real network. Wang and Chen [20] used node degrees 
to model the traffic on a network and study cascading failure. 
They used the power-law function of degrees of the two ends 
of an edge as measure for edge centrality and obtained several 
experimental results on different real word networks.  
According to their definition, the weight of an edge is modeled 
by 
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where ݇௜ is the degree of node i and θ is a tuning parameter. 
They showed that θ = 1 leads to strongest robustness on 
various networks.  

We introduce a new weighting method based on node 
betweenness centrality. Our studies showed that this weighting 
method is in accordance with the weights of many real 
networks. The intuition for the new weighting method is based 
on the observation that an edge is important in a network when 
its two end nodes are important. As an example, assume one is 
flying from London to Melbourne. He probably chooses some 
central cities such as Dubai or Kuala Lumpur and flies through 
them in his way to Melbourne. Therefore, an edge is chosen 
when its two ends have high centrality. A similar observation 
can be made for packet routing on the Internet.  The links 
between central points are more probable to be chosen when 
sending a packet. Based on the above observation, one can take 
into account the centrality of both end nodes of an edge and 
define the weight of an edge eij as 
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In this method, the weight of an edge has a power law 
dependence on the product of betweenness centrality of the its 
two end nodes. This is indeed somehow the case in many real-
world networks, where the weights of the links do not follow 
the betweenness centrality of the edges. However, it shows 
high correlation by the weights introduced through equations 
(6) and (7). We showed the correlation between the above two 
weighting strategies on a number of real-world networks 
including:   

US Airlines: An airlines connection network in the USA 
collected in 1997. This network consists of 332 nodes and 1063 
edges. The weights correspond to the number of seats available 
on the scheduled flights [29]. 

US Airports network: This is the network of 500 busiest 
commercial airports in the USA. An edge between two airports 
indicates that a flight was scheduled between them in 2002. 



 

The weights correspond to the number of seats available on the 
scheduled flights [30]. This network has 2980 edges. 

Lesmis: Coappearance network of characters in the 
novel Les Miserables. This network has 77 nodes and 127 
edges [31]. 

Netscience: coauthorship network of scientists working in 
the field of network theory and experiment. This network 
contains 1589 nodes and 1371 edegs [32]. 

Bkham: The network of human interactions in bounded 
groups and on the actors’ ability to recall those interactions. 
This network consists of 44 node and 153 edges [33]. 

Table I shows the Pearson correlation coefficients between 
the real weights and different metrics including the 
betweenness centrality of the edges Bij, the product of the 
betweenness centrality of the end nodes, BiBj, and the product 
if the degree of the end nodes kikj. As it is seen, except for 
Netscience the edge betweenness centrality has almost no 
correlation with the real weights, whereas, the product of the 
degrees and the node betweenness centralities showed 
significant correlation with the real weights. The results 
indicate that these two measures could be a good candidate for 
the weights of the edges. This issue is important especially in 
designing technological networks where the link weights (or 
loads) can be appropriately designed. Next we investigate 
which of the weighting strategies has the best robustness 
against cascaded failures.   

 
 
TABLE I.PEARSON CORRELATION COEFFICENTS BETWEEN REAL 
WEIGHTS AND DEFFERENT METRICS(THE BETWEENNESS 

CENTRALITY OF THE EDGES Bij, THE PRODUCT OF THE 

BETWEENNESS CENTRALITY F THE END NODES, BiBj,AND THE 

PRODUCT OF THE DEGREE OF THE END NODES kikj) IN A NUMBER 
OF REAL-WORLD NETWORKS.  

Network 
Correlation 
with ࢐࡮࢏࡮ 

Correlation 
with ࢑࢐࢏࢑ 

Correlation 
with ࢐࢏ࡱ 

USAir97 0.24 0.28 0.08 
USAirport500 0.29 0.61 -0.04 

Lesmis 0.25 0.36 -0.04 
Netscience 0.21 0.10 0.19 

Bkham 0.54 0.63 0.05 

 

IV. NETWORK DATA 

In this section, the cascaded failure is investigated in 
artificially constructed model networks as well as in a number 
of real networks, weighted through different strategies.  

A.  Model Networks 

We considered a number of models to produce artificially 
constructed networks. Networks with power-law degree 
distribution, i.e. scale-free networks, are abundant in real 
systems. Random scale-free networks were generated using the 
original preferential attachment algorithm proposed by 
Barabasi and Albert in their seminal paper [34]. Starting with a 
number of all-to-all connected nodes, the network grows by 
adding new nodes. These nodes are connected to the old nodes 

with probability proportional to their degree. The resulting 
network has degree distribution that is power-law with 
exponent 3. Scale-free networks are widely observed in natural 
and man-made systems, including the Internet, the World Wide 
Web, citation networks, and some social networks. 

The degree distribution of scale-free networks is 
heterogeneous; however, many real networks have 
homogeneous degree sequence. In order to construct such 
networks, we considered two other models, namely, Newman-
Watts and Erdös-Rényi models. The Newman-Watts networks 
were constructed as follows [35]. Starting with a regular ring 
graph with nodes connected to their m-nearest neighbors, the 
non-connected nodes get connected with a probability P. In 
order to construct Erdös-Rényi random networks, in a network 
with N nodes, the nodes are connected with a probability P, 
where for the values of P = 1 an all-to-all connected network is 
obtained [36]. 

It has been shown that many real networks have modular 
structure [37, 38]. We also considered modular networks 
constructed through an algorithm as follows [19]. First n 
isolated modules each with preferential attachment scale-free 
structure are built. Then, with probability P the intra-modular 
links are disconnected and inter-modular connections are 
created. In other words, with probability P each intra-modular 
link is disconnected and a connection is created between two 
random nodes from two randomly chosen modules.      

    

B.  Real Networks 

Although model networks are useful in understanding how 
real systems behave, they cannot capture many of the structural 
properties of the real networks. Therefore, we also considered a 
number of real networks and applied the cascaded failure on 
them. We consider four technological networks where the 
weights of the links (and the traffic as well) can be designed.  

US Airports network. We analyze the USA airports 
network containing the 500 busiest commercial airports in the 
United States [30]. A link between two airports indicates that a 
flight was scheduled between them in 2002. Even though this 
networks is naturally directed, the networks are highly 
symmetric [39]. We considered the network with real weights 
as well as the unweighted version that is if there exist a link 
from one airport towards the one, there is a reciprocal link 
between these nodes. The network has 500 nodes and 2980 
links. 

Internet. Sometimes, Internet is considered as a network of 
routers connected by links. Each router belongs to some 
autonomous system (AS), this dataset simultaneously studies 
the router and AS level topology; and thus, both routers and 
AS’s are considered as nodes. It contains 2062 nodes and 4233 
links [40]. 

Transportation network. The railway network used in this 
work is formed by major trains and stations in the central 
European region [41]. This network dataset is compiled from 



 

traffics flows from timetables of public mass transportation 
systems. The set of nodes is defined by the set of all train 
stations. Two stations are considered to be connected by a link 
when there is at least one vehicle that stops at both stations. 
The network consists of 2488 nodes and 6691 edges.  

Electrical power grid. This network is an undirected and 
unweighted network representing the topology of the western 
states high-voltage power grid of the United States [42]. In 
construction of the network, the transformers, substations, and 
generators are considered as nodes, and the links are high-
voltage transmission lines. The network is composed of 4941 
nodes and 6549 links. 

V. SIMULATION RESULTS 

In order to investigate the profile of robustness against 
cascaded failures, the behavior of the network is studied as a 
function of the threshold parameter T. We considered different 
weighting strategies in the networks as follows: 

1) wij = (BiBj)θ, where wij is the weight of edge eij and ܤ௜ is 
the betweenness centrality of nodes i.  

2) wij = Bij, where ܤ௜௝ is edge betweenness of edge eij. 

3) wij = (kikj)θ, where ki is the degree of nodes i. 

In order to study the effect of a small initial attack on the 
cascading model, we cut an edge eij and compute the number of 
broken edges once the process of cascading failure is over. 
Then, we compute the expected of this value according to the 
following formula: 
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where E is the number of edges in the network, sij is the 
normalized avalanche size, i.e. the number of broken edges, by 
cutting edge eij and ܵே is averaged over all normalized 
avalanche sizes. Note that as one edge gets broken and its 
weight is locally redistributed, other edges get broken if their 
new load become more than their capacity that is proportional 
to their initial weight. In other words, the initial load of the 
edges is considered to be their weight.    

Let us first study the influence of the parameter θ on the 
critical threshold Tc. It has been shown that the values of θ ≅ 1 
are optimal for the weighting method (3), where the weights of 
the edges are the product of the degrees of the end nodes [20]. 
Fig. 1 shows Tc as a function of θ  in scale-free and Newman-
Watts networks with the weights assigned as the method (1), 
i.e. the product of the betweenness centralities of the end 
nodes. This figure shows that weighting the networks with θ ≅ 
1 results in optimal Tc. Although θ  ൐  1  assigning stronger 
weights to the links between central nodes, it might make the 
networks more robust against cascading failure for smaller 
values of T, it also increases the critical threshold (Tc). Since 
optimal Tc is important in the robustness of the networks 

against cascaded failures, we adopted θ ൌ 1 for the numerical 
simulations. Next we also derive some theoretical foundation 
for this choice. 

 

Fig. 1.The critical threshold Tc as a function of θ for (a), scale-free with 
1000 nodes and m = 3 (b), Newman-Watts networks with 1000 nodes, 
k = 3 and p = 0.1. Data shows averages over 10 realizations.   

 

Attacking an edge subjects its neighboring edges to receive 
an overload proportional to their current flow. In order to avoid 
cascading failure in a network, the flow passing from each 
edge after flow redistribution should remain less than its 
capacity, see Eq. (2). From Eqs. (1)-(2) and using the 
weighting method as wij = (BiBj)

θ, one can drive 
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where Γi and Γj are the set of neighbors of nodes i and j, 
respectively. 

Now let us define P(B'|Bi) as the conditional probability that 
a node with betweenness centrality Bi is connected to a node 
with betweenness centrality B'. Using Bayes’ rule [43] we get 
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where Bmax and Bmin are the minimum and maximum node 
betweenness centralities. 

It has been shown that the networks constructed through 
preferential attachment and Newman-Watts algorithms do not 
show assortative or disassortative behavior, i.e. no degree-
degree correlations [44, 45] . Similarly we numerically 
computed the betweenness-betweenness correlations for the 
networks. The scale-free networks were constructed with N = 
1000 and m = 3, and the Newman-Watts networks with N = 
1000, m = 3, and P = 0.1. Then, the correlation coefficient 
among the betweenness centrality of the nodes was computed. 
Averaging over 100 realizations, the betweenness-betweenness 
correlations were obtained as -0.03 for scale-free networks and 



 

0.01 for Newman-Watts networks. Similar results were 
obtained for networks of other sizes and topological parameters 
(Data not shown here). Therefore, these networks do not show 
any significant betweenness-betweenness correlations, and 
thus, one can write         
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From Eqs. (10) and (11) we have:  
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Therefore, one may rewrite Eq. (9) as 
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Using Geometric inequality 1 1 ( 1)/22( )i j i jB B B B      , Eq. 

(13) can be rewritten as  
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From Eq. (14), we can derive the solution for Tc by dividing 

θ into three regions as  
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where Bmin and Bmax are the minimum and maximum node 
betweenness centralities. First, we calculate the minimum 
value of Tc for θ > 1 in Eq. (15) 
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With a similar reasoning for θ < 1, we have 
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 As we can see, Tc(θ > 1) > Tc(θ = 1) and Tc(θ < 1) > Tc(θ = 
1). Apparently, the system reaches its strongest robustness 
level at θ ൌ 1. 

To confirm that our weighting strategy (strategy 1) can 
result the strongest robustness of the network against random 
or systematic failures, we compare the critical threshold of our 
weighting method at θ ൌ 1 with the other strategies (note that 
the θ ൌ 1 has been previously obtained as the optimal case for 
the weighting strategy 3 [20]). The critical thresholds for each 
weighting strategy are listed in table II. As it is seen the 
weighting based on the product of the betweenness centrality 
of the end nodes resulted in the least critical threshold for these 
networks (the less the critical threshold of a network is the 
more desirable its behavior is against cascaded failures).  In 
other words the strongest level of robustness for the networks 
is resulted from the weighting strategy 1, and hence, weighting 
strategy 1 results in the strongest level of robustness for any 
choice of parameter T. 

 
TABLE II. CRITICAL THRESHOLD OF SCALE-FREE NETWORK WITH 
1000 NODES AND m = 3, AND NEMAN-WATTS NETWORK WITH 1000 
NODES AND k = 3 AND p = 0.1. THE RESULTS ARE SHOWN AT θ = 1 
FOR WEIGHTING STRATEGY 1-3. EACH DATA POINT IS AVERAGED 
OVER TEN DIFFERENT NETWORK REALIZATIONS. 

Network ࢝࢐࢏ ൌ ࢐࢏࢝  ࢐࡮࢏࡮ ൌ ࢐࢏࢝ ࢐࢏࡮ ൌ  ࢑࢐࢏࢑
Scale-free 1.080 1.318 1.138 

Newman-Watts 1.122 1.255 1.137 

 

Hereafter, we study the profile of cascaded failure in model 
networks including scale-free, Newman-Watts, Erdös-Rényi, 
and modular scale-free networks. Fig. 2 shows the value of  ܵே 
as a function of the threshold parameter for networks with size 
N = 1000. These networks were weighted with the three 
weighting strategies discussed above. To have more reliable 
statistics, each simulation was repeated 10 times and the 
average was shown. As it is seen, the networks weighted 
through the product of the node betweenness centralities, i.e. 
the weighting strategy (1), have the best robustness against 
cascaded failure. In other words, for a fixed value of the 
threshold T, the SN for the networks weighted based on strategy 
(1) is smaller than the other two cases; the smaller the value of 
SN is the more the robustness of the network against the 
cascaded failure is.  

Interestingly, the difference between the profiles of different 
weighting methods was more pronounced for scale-free and 
modular scale-free networks as compared to Newman-Watts 
and random graphs Fig. 2.  This can be explained by the fact 



 

that unlike random and small-world networks that have 
homogeneous betweenness centrality distribution, scale-free 
networks have heterogeneous betweenness centrality. Thus, 
there are some nodes that have much higher betweenness 
centrality than other nodes in such networks. This means a high 
number of shortest paths in the network pass through these 
central nodes and extremely overloads them. Consequently, 
assigning more weight to the links between these central nodes 
is a more realistic solution and significantly improves the 
robustness of the network against random or systematic 
failures. This explanation may raise this question that if 
assigning higher weights to those edges which their end nodes 
have higher betweenness centrality improve the robustness of 
the network against cascading failure, why increasing θ in Eqs. 
(6) and (7) does not have the same effect. Indeed, increasing θ 
makes  the  network  more  robust  for  T൏Tc  ሺresults  not 
shown hereሻ; however, as shown  in Fig. 1, Tc  increases by 
increasing θ that is not desirable. 

 

Fig. 2. Normalized average size of the removed edges (ܵே) as a function of 
the threshold parameter (ܶ) for (a) scale-free network with 1000 nodes and m = 
3, (b) Newman-Watts network with 1000 nodes, k = 3 and p = 0.1 (c) Erdös-
Rényi network with 1000 nodes and p = 0.006, (d) modular networks that has 
three modules with 200, 300, and 500 nodes and 3000 edges. The red, blue and 
green lines show the changes in the ܵே for weighing methods based on edge 
Betweenness centrality, degree multiplication, and multiplication of node 
betweenness centrality, respectively. Data shows averages over 10 realizations.   

 

The cascaded failure process was also investigated in a 
number of real-world technological networks, where such a 
failure can broke the whole network down. Such cascaded 
failures can be due to failure in a central station in the rail 
transportation network or in a central airport in the network of 
the airports. In the Internet breaking a few optical cables can 
lead to congestion in many other links, and consequently, 
cascaded failures in the network and significantly delayed 
information transmission. In a power grid, failure of a single 
transformer that has central role in the network, may overload 

the nearby elements and causing the entire system to collapse 
in a very short time. 

Fig. 3 shows the SN for the US airports network. Since the 
original version of this network is weighted, we also 
considered the weighted US airports network and run the 
cascaded failure process. As it is seen, the network weighted 
based on the product of the betweenness centrality of the end 
nodes has the best robustness among different weighting 
methods Fig. 3. For example, for the values of the threshold as 
T = 1.00305, if the US airports network is weighted according 
to the product of the betweenness centrality of the end nodes, 
the average avalanche size is SN = 0.2, while SN > 0.6 for other 
weighting strategies Fig. 3. The network of the US airports has 
power-law degree distribution [30] and its profile against 
cascaded failures, as shown in Fig. 3, is similar to the one 
obtained for scale-free networks (Fig. 2a).  

Similar patterns were observed for other real networks 
including the central European rail network (Fig. 4), the 
Internet in the level of an autonomous system (Fig. 5), and the 
power grid (Fig. 6). In all these networks, the weighting 
strategy based on the product of the betweenness centrality of 
the end nodes resulted in the best robustness against cascaded 
failures. The European rail network and the Internet in the level 
of an autonomous system are scale-free in their degree 
distribution, and thus, their profile is similar to that of scale-
free networks (Fig. 2a). While, the power grid has Poissonian 
degree distribution, similar to small-world and random 
networks, and its behavior (Fig. 6) is also similar to these 
networks (Figs 3b and 3c). In any of these examples, 
increasing the weights of the links connecting the most central 
nodes improves the robustness of the network against 
cascading failures.  

This indicates that the robustness of a network against 
cascaded attacks can be substantially improved by assigning 
proper weights for the links. Considering this issue while 
designing networks will make them more robust against 
cascading failures. 

 



 

Fig. 3. ܵே as a ܶ for the US airports network. The cyan line shows the changes 
in the ܵே for real weights. Other designations are as Fig. 2. 

Fig. 4. ܵே as a ܶ for the central European rail network. Other designations are as 
Fig. 3. 

 
Fig. 5. ܵே as a ܶ for the network of the Internet in the level of autonomous 
system. Other designations are as Fig. 2 

 
 

 
Fig. 6. ܵே as a ܶ for the electrical power grid. Other designations are as Fig. 2. 
 

VI. CONCLUSION 

Networks might undergo random or systematic failures in 
their components. If the components have limited capacity, 
these failures might lead to a cascade of failures throughout the 
network and make it lose its proper functionality. Robustness 
of a network against systematic attacks is an important issue in 
the field of complex network. In this article, we investigated 
the profile of the robustness against cascaded failures in 
weighted networks. A number of model networks as well as 
real-world one were considered and weighted through different 
strategies including: the betweenness centrality of the edges, 
the product of the degrees of the end nodes and the product of 
the betweenness centrality of the end nodes. Furthermore, the 
load of the edges was considered to be as their weights and 
their capacity as a functional of the initial loads, i.e. the initial 
weight multiplied by some threshold value. By employing the 
local weighted flow redistribution rule, i.e. redistribution of the 
load of the broken edge among the neighboring edges 
proportional to their load, we investigated the average 
avalanche size and the critical threshold in the networks 
weighted through different strategies. We found that the 
networks weighted through the product of the betweenness 
centrality of the nodes had the best robustness both in case of 
avalanche size and the critical threshold. The effectiveness of 
this weighting strategy in improving the robustness of the 
networks was more pronounced in scale-free networks as 
compared to small-world and random ones.  For some 
networks, it might be possible to design the connection weights 
(i.e. loads) and considering our results can make them more 
robust against cascading failures. 

A downside of the weighting based on the node betweenness 
centrality might be its larger computational complexity as 
compared to the one based on the degrees. However, recently 
Ercsey-Ravasz and Toroczkai showed that the betweenness 
centrality can be well approximated in a local manner  [46].  
Using this approach, betweenness centrality can be 



 

approximately computed for large scale networks with a low 
computational cost. This makes the weighting based on the 
node betweenness centralities practical to ameliorate the 
robustness of large-scale networks against cascaded failures.  
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