Problem Set 1 (40 points)

Question 1 (Herstein 2.5 Q1). [10 points] If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G. (Can you see that the same proof shows that the intersection of any number of subgroups of G, finite or infinite, is again a subgroup of G?)

Question 2 (Herstein 2.3 Q3). [10 points] If G is a group such that $(a \cdot b)^2 = a^2 \cdot b^2$ for all $a, b \in G$, show that G must be abelian.

Question 3 (Herstein 2.3 Q8). [20 points] If G is a finite group, show that there exists a positive integer N such that $a^N = e$ for all $a \in G$.

Question 4 (Herstein 2.3 Q9). [20 points] (a) If the group G has three elements, show it must be abelian. (b) Do part (a) if G has four elements. (c) Do part (a) if G has five elements.

Question 5 (Zee I.1 Q3). [10 points] Show that $\mathbb{Z}_2 \otimes \mathbb{Z}_4 \neq \mathbb{Z}_8$.

Question 6 (Zee I.1 Q2). [10 points] Let $f(g)$ be a function of the elements in a finite group G, and consider the sum $\sum_{g \in G} f(g)$. Prove the identity $\sum_{g \in G} f(g) = \sum_{g \in G} f(gg') = \sum_{g \in G} f(g'g)$ for g' an arbitrary element of G.

Send to grouptheory.sut@gmail.com with subject ID+Hw#n

1ex:98203078Hw1