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Abstract—Software-defined networks (SDNs) provide cus-
tomizable traffic control by storing numerous rules in on-chip
memories with minimal access latency. However, the current
on-chip memory capacity falls short of meeting the growing
demands of SDN control applications. While rule eviction and
aggregation strategies address this challenge at the switch level,
programmable data planes enable a more flexible approach
through cooperative rule caching. However, current solutions
rely on computationally intensive off-the-shelf solvers to perform
rule placement across the network. In this paper, we present
an efficient solution for the cooperative rule caching problem.
We first present the design of a resource-efficient switch capa-
ble of caching rules for its neighbors alongside a lightweight
protocol for retrieving cached rules. Then, we introduce RaSe,
an approximation algorithm for minimizing rule lookup latency
across the network through optimized cooperation-aware rule
placement. We conduct a theoretical analysis of RaSe, followed by
a P4-based proof-of-concept assessment in Mininet and a large-
scale numerical evaluation using real-world network topology.
In comparison with existing solver-based solutions, the proposed
method obtains the solution 160 times faster and improves the
average rule lookup latency by about 21% compared to several
algorithmic baselines.

Index Terms—Software-defined networks, rule caching, switch
cooperation, data plane, optimization, approximation algorithm.

I. INTRODUCTION

Software-Defined Networks (SDNs) provide network ad-
ministrators with unprecedented flexibility and control over
traffic management. This level of customization allows
switches to direct packets to specific destinations, where
crucial network functions are executed to achieve performance
and functionality objectives. At the core of this capability is
the ability of SDN-enabled switches to analyze data packets
and make routing decisions based on a high-level network
policy [1]. To enable this customized routing, each switch
requires a set of rules that identify incoming traffic and trigger
appropriate actions. These rules are stored in specialized on-
chip memories, such as SRAMs and TCAMs, which are se-
lected for their ability to provide extremely low access latency.
This low latency is crucial for effectively handling traffic from
various applications, such as virtual and augmented reality,
which are highly sensitive to delays.

Despite recent progresses, the capacity of on-chip memories
does not meet the demands of SDN control applications.
This limitation forces certain traffic to retrieve rules from
slower off-chip memory (such as DRAM) or the remote
central controller. Unfortunately, these alternatives are deemed
unacceptable for delay-sensitive flows [2]. Expanding the
on-chip memory capacity faces various physical limitations
while equipping switches with larger memories leads to in-
creased costs, power consumption, and heat generation [3].
Consequently, SDNs have seen the emergence of alternative
strategies aimed at optimizing the available capacity, either at
the switch level or across the entire network [4]. Some efforts
focus on solving the problem of evicting infrequent rules to
create space for crucial rules. Another switch-level technique
involves aggregating [5] and compressing [6] existing rules,
enabling the same semantic representation with a reduced
number of rules by using wildcards.

Orthogonal to switch-level solutions, the programmable
data plane offers flexible network-wide remedies for miti-
gating memory constraints in SDNs. Seminal studies have
illustrated the potential of assigning pairs to each switch
and utilizing neighboring pairs’ memory as an in-network
cache [2]. However, these studies often overlook memory
allocation optimization or rely on computationally intensive
integer linear program (ILP) solvers, which struggle to meet
the time constraints of modern networks. We address this
research gap by presenting an efficient algorithm that finds
optimal solution for the joint problem of switch-pairs selection
and rule placement.

We formulate the Pair Selection (PaSe) problem, which
incorporates the load and traffic pattern within an ILP. Then,
we design a switch (based on the Protocol Independent Switch
Architecture [7]) that is able to share its memory seamlessly
among its neighbors. Then, we propose a low-overhead proto-
col to retrieve the cached rules. Finally, we design a Rounding-
based Pair Selection (RaSe) algorithm for PaSe that runs in
polynomial time. RaSe is designed based on deterministic
rounding of ILPs, a robust framework for crafting approximate
algorithms. The key contributions of this paper are as follows:
• We design a switch capable of collaborative rule caching as

a proof-of-concept and implement it in P4 language.



• We introduce RaSe, an algorithm addressing the joint chal-
lenge of pair selection and rule placement in SDNs.

• We analyze the approximation ratio of RaSe.
• We emulate and test the P4 implementation of the designed

switch in Mininet using iperf and ping tools.
• We show the scalability and performance of RaSe by

comparing it with the optimal solution obtained from an ILP
solver [8] and other baselines through numerical simulations
across a wide range of parameters and conditions.
In the following, Section II reviews the relevant works. The

problem is described in Section III, followed by the proposed
solution in Section IV. Evaluation results are discussed in
Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

In [2], the authors enhance rule caching in SDNs by allowing
switches to cache matching rules for their neighboring switches.
However, this work neglects the load imbalance in the network
and adopts a simplistic random pairing strategy, which limits
the overall efficiency. The authors in [9] use software switches
to overcome the constraints posed by on-chip memories in SDNs.
They argue that consideration of network load imbalance is vital
and propose a traffic-aware rule cache assignment algorithm us-
ing a matching framework. The work in [10] considers both tem-
poral and spatial traffic patterns and proposes a selective caching
algorithm for TCAMs. Authors in [11] present polynomial-time
algorithms for caching of longest-prefix-match policies in SDNs.

The authors in [12] present a deep Q-learning-based approach
to overcome the limitations of flow table capacities in SDNs.
Their method considers idle timeouts and rule dependencies to
dynamically adapt to network conditions, ensuring rules are re-
moved in the correct order. SmartTime [13] employs an adaptive
timeout selection for proactive eviction of forwarding rules in its
flow management strategy. Similarly, FlowMaster [14] predicts
the likely expiration of an entry and proactively removes it to
create space for new entries. This prediction is facilitated by
a Markov-based learning predictor that considers the ongoing
value of individual flows. FlowMaster categorizes flows into
Live, Unique, Revisited, and Discarded, and decides on rule
retention or eviction based on these categories. Authors in [15]
present a randomized competitive algorithm for the general
problem of caching with dependencies.

III. PROBLEM STATEMENT AND FORMULATION

In this section, we describe the problem of rule caching in
SDNs and subsequently present its formulation as an ILP.

A. System Model

We consider an SDN where the controller aims to place a set
of rules, R, in the memory of a subset of switches, S. Each
rule r ∈ R must reside in switch wr ∈ S to route a subset
of traffic with rate ρr packets per second. Each switch w ∈ S
is equipped with a total of Mw memory slots and each rule r
occupies qr memory slots. Switches search for the matching
rules in a predetermined order, dictated by priority (as per the
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Fig. 1. Example of collaborative packet handling with cached rules, high-
lighting notable interactions among entities in the considered system.

OpenFlow protocol). As a result, if a rule does not exist in the
memory of a switch, it may incorrectly use another rule with a
lower priority. To address this rule dependency, we assume that
each rule r ∈ R possesses a set of dependent rules, denoted as
Rr, such that if r is in a switch all rules in Rr should also be
placed in the same location.

To alleviate memory limitations, we assume that each switch
is paired with another switch capable of storing a subset of
rules on its behalf [2]. See Fig. 1 for an example. When queried
by the original switch, the paired switch can respond with the
appropriate action associated with the cached rules. If the queried
rule is not cached, the pair will relay the query to the controller,
which will respond to the originator of the query directly. This
collaborative rule retrieval is faster than querying the remote
controller or the local off-chip memory due to the ultra-low
transmission and on-chip processing latency in switches [2]. We
assume that the rule retrieval time from the local on-chip memory
is d1, from the paired switch is d2, and from the remote controller
or the off-chip memory is at most d3, where d1 ≤ d2 ≤ d3.

B. PaSe: Pair Selection problem

We use two binary decision variables to formulate the problem
as an ILP. The first variable, zw,v , is set to one if switch v caches
rules for switchw, and zero otherwise. We refer to switch v as the
pair of switch w. Two switches are not necessarily each other’s
pair. The second variable, yw,r, is set to one when rule r is placed
in switch w and zero otherwise. The formulation is as follows:

min
∑
r∈R

ρr ·
{
d1 · ywr,r +

∑
v∈S−{wr}

d2 · yv,r + d3 ·
(
1−

∑
v∈S

yv,r

)}
(1)

s.t.
∑

v∈Sw

zw,v = 1, w ∈ S, (2)

∑
w∈S

yw,r ≤ 1, r ∈ R, (3)

yv,r ≤ 1v=wr + zwr,v, r ∈ R, v ∈ Swr , (4)∑
r∈R

qr · yv,r ≤Mv, v ∈ S, (5)

yv,r ≤ y
v,r

′ , r ∈ R, r
′
∈ Rr, v ∈ S. (6)

The objective function in (1) shows the average rule retrieval
latency weighted by rule usage rate. The weights prioritize the
storage of frequently used rules in the local memory of switches.
The objective comprises three terms: (i) if rule r is placed in
wr, considering the minimum latency d1; (ii) if rule r is in any
other switch (i.e., v ∈ S − wr), then the moderate latency d2 is
considered; and (iii) if ruler isnotpresent inanyswitch, implying
it resides either in the controller or the off-chip memory of the
switch, then the maximum latency of d3 is considered.



Algorithm 1 Table contain-
ing cached rules.

1 table cache_t {
2 key = {
3 cache_h.action_or_owner:

exact;
4 ipv4.dstAddr: lpm;
5 }
6 actions = {
7 get_self_action;
8 get_cached_action;
9 NoAction;

10 }
11 }

Algorithm 2 Table contain-
ing the ports to pair and con-
troller.
12 table pairing_t {
13 key = {
14 cache_h.type: exact;
15 }
16 actions = {
17 query_pair;
18 send_2ctrl;
19 NoAction;
20 }
21 }

Constraint (2) guarantees that each switch w has exactly one
pair, where setSw represents the feasible pairs for switchw. Note
that a switch may be the pair of multiple switches. Constraint (3)
ensures that each rule rmay be placed within at most one switch.
Ifyw,r equals zero for allw, then that rule r is stored in the remote
controller or the off-chip memory. Constraint (4) enforces that
each rule r can only be stored in wr (i.e., 1v=wr = 1) or its pair
(i.e., zwr,v = 1). Note that 1v=wr is an indicator function that is
equal to one if v = wr and zero otherwise. Constraint (5) ensures
that the memory capacity of switches is respected. Constraint (6)
ensures that if rule r is placed in a switch, all of its dependent
rules, i.e., Rr, are also placed there.

IV. PROPOSED SOLUTION

In this section, we first design a switch capable of rule caching
based on the Portable Switch Architecture and present its imple-
mentation in P4 language in Subsection IV-A. Then, we propose
an algorithm to solve the RaSe problem in Subsection IV-B.

A. Design and P4 Implementation

We introduce the following packet header (named cache h) to
enable switches to query their pairs and receive a response:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

protocol type action or owner padding

The protocol field is the backup for the protocol field in the IPv4
header. We discuss the reason for this backup in the following
paragraph. The type field takes four values TYPE L=0, TYPE Q1=1,

TYPE Q2=2, TYPE R=3. A switch uses TYPE L to search for its own
rules in its local cache. The value TYPE Q1 allows to search the
local cache for rules belonging to other switches. The value
TYPE Q2 specifies a query that is sent to the controller and TYPE R

specifies a response. The action or owner field contains a number
that, depending on the value of the type field, either identifies
the originator of the query or a response value. A response value
specifies the port to which the packet should be forwarded. Since
many switch targets only support headers that are a multiply of
eight bits long, the last five bits in cache h are padding bits.

Upon adding cache h, the switch must store a unique number in
a IPv4 header field called protocol to allow the recipient parse the
packet correctly. We use the unassigned value 146 as the unique
number for cache h. The switch removes cache h after receiving a
response from the pair or the controller. Upon removal, the switch
must restore the protocol value in the IPv4 header. Therefore,
before writing 146 into the IPv4 header, the switch stores its
current value in the protocol field of cache h for later restoration.
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Fig. 2. Ingress processing logic of the designed cache enabled switch.

Each switch contains a table called forward t, which stores the
switch’s local rules.Theswitch forwardsapacket asusualwhen it
hasamatchingentry in forward t.Tocache rulesbelonging toother
switches, we add two additional tables called cache t and pairing t

to each switch. See Algorithms 1 and 2 for a description of these
switches in P4 language. Table cache t can store forwarding rules
for the neighbors or the switch itself. Table pairing t provides
information to send a query to the pair, to the controller, or a
response packet to the original sender of the query.

When a switch does not find a matching rule in forward t, it
adds the cache h header with type=TYPE L and action or owner=0

and searches cache t. If a match is found, the header is removed
and the packet is forwarded regularly. We refer to this action by
get self action in table cache t. This design enables each switch to
utilize the cache capacity for its own purposes. If a match is not
found in cache t, the switch uses table pairing t to send a query to
the pair. Table pairing t matches on any packet with header field
type=TYPE L and contains a value that shows the port number from
which the pair is accessible. Before sending out the packet, the
switch sets the value of the field type to TYPE Q1. We call this
action query pair in table pairing t.

When a switch receives a packet containing type=TYPE Q1, it
sets the value of action or owner to the ingress port of the packet
and searches table cache t for a match. If a rule is found, the
switch modifies the packet according to the rule, changes the
value of type to TYPE R, stores the port number that the original
sender of the query should forward the packet in action or owner

and sends the packet back to the sender of the query through
the same port that the query packet has been received. These
operations are performed under an action called get cached action

in table cache t. However, if a match is not found, the switch uses
an action called send 2ctrl in table pairing t to set type=TYPE Q2

and forward the packet to the controller. The controller uses the
ingress port and the number in field action or owner to find the
originator of the query and sends a response directly to it.

When a switch gets a packet containing type=TYPE R, it restores
the protocol value in IPv4 header, removes the header, and for-
wards the packet through the port specified in the action or owner

field. Figure 2 depicts the proposed ingress processing.

B. Algorithm Design

In this section, we propose the RaSe algorithm within the de-
terministic rounding framework for linear programs. As shown
in Algorithm 3, RaSe starts by building an instance of PaSe using
the input parameters. Then, in line 2, RaSe relaxes the problem
instance by discarding the integrality constraints on decision
variables zw,v and yw,r to form a linear program, which is



Algorithm 3 RaSe: Rounding-Based Pair Selection Algorithm
Input: R, S, {ρr}, {d1, d2, d3}, {Mv}, {qr}
Output: {zw,v, yw,r} // pairing and placement decisions

1: m← PaSe(R,S, {ρr}, {d1, d2, d3}, {Mv}, {qr})
2: m̃← relax(m)
3: {z̃w,v, ỹw,r} ← solve(m̃)
4: for w ∈ S do
5: v ← argmax

v
′∈S

z̃
w,v

′

6: m̃.add constraint(zw,v = 1)
7: m̃← update(m̃, {Mv

3 })
8: {z̃w,v, ỹw,r} ← solve(m̃)
9: sort(R, key={|Rr|})

10: {Lr} ← NULL
11: for r ∈ R do
12: v ← argmax

v
′∈S

z̃
w,v

′

13: α← 1− ỹwr,r − ỹv,r

14: s← NULL
15: if ỹwr,r ≥ ỹv,r and ỹwr,r≥ α and (Lr is NULL or Lr = wr) then
16: s← wr

17: else if ỹv,r≥ ỹwr,r and ỹv,r≥α and (Lr is NULL or Lr = v) then
18: s← v
19: else
20: m̃.add constraints(ywr,r = 0, yv,r = 0)
21: if s is not NULL then
22: m̃.add constraint(ys,r = 1)
23: R ← R−Rr

24: for r
′
∈ Rr ∪ {r} do

25: for r
′′
∈ R

′

r
′ do

26: L
r
′′ ← s

27: m̃← update(m̃, {Mv})
28: {z̃w,v, ỹw,r} ← solve(m̃)
29: return {z̃w,v, ỹw,r}

solvable in polynomial time [16]. Then, RaSe solves the relaxed
problem instance, denoted as m̃, in line 2 by employing an off-
the-shelf solver (e.g., SciPy [8]). In the subsequent discussion,
we refer to the values of decision variableszw,v andyw,r obtained
from solving the linear program as z̃w,v and ỹw,r, respectively.
RaSe uses the fractional solution to construct an integer solution
in two phases: (1) pair selection and (2) rule placement.

C. Pair Selection

RaSe interprets z̃w,v as a measure of fitness, choosing the
switch v that maximizes z̃w,v to serve as the pair for switch w.
This step is outlined in lines 4 to 6 in Algorithm 3. RaSe adds
the new constraint zw,v=1 to enforce that v isw’s selected pair.

Lemma 1. Let Ŝ = maxw∈S |Sw|. Deterministic rounding
of zw,v variables increases the delay by at most a factor of
1 + d3/d2

(
1− 1/Ŝ

)
.

Proof. RaSe rounds the maximum z̃w,v to one, which is at least
1/|Sw| for each switchw due to constraint (2). Hence,1−1/|Sw|
of rules may be in other fractionally selected pairs. After round-
ing the maximum z̃w,v to one, its capacity may be insufficient
to store the rules in the remaining fractionally selected pairs.
All such rules are forced to be placed in the controller, which
increases the objective by a factor of 1 + d3/d2(1 − 1/|Sw|).
Therefore, the rounding procedure, in the worst-case scenario,
increases the objective by a factor of 1 + d3/d2(1− 1/Ŝ). ■

D. Rule Placement

RaSe assigns a fitness score to rule placement options based
on fractional values of variables ỹw,r. The score of the original
switch, its pair, and the remote controller for each rule r are,

respectively, ỹwr,r, ỹv,r, and 1− ỹwr,r − ỹv,r, where zwr,v = 1.
Since there are three options, the maximum of these values is
at least 1/3. Consequently, RaSe should ensure that rounding it
to 1 does not cause a memory capacity violation. To this end,
RaSe divides the memory capacity of all switches by three and
resolves the problem in lines 7 and 8. This modification ensures
that rounding any variable from at least1/3 to1would not violate
a memory capacity constraint.

RaSe places rules in the descending order of the number of
their dependants by first sorting them in line 9. When a rule is
placed in a switch, RaSe places all of its dependant rules (i.e.,
Rr) in that switch and removes them from the set of rules R in
line 23. However, this strategy is not sufficient to guarantee the
rule dependency constraints. To this end, RaSe uses set R′

r that
shows the set of rules that depend on r. When rule r is placed in a
switch, RaSe assigns the identifier of that switch to an auxiliary
variable Lr′ , initialized NULL, for all r

′ ∈ R′

r. In subsequent
iterations, if variable Lr′ is not NULL, r

′
may only be placed

in the specified switch or the remote controller. RaSe introduces
two constraints in line 20 when rule r is placed in neitherwr nor
its pair. This situation occurs when the values of ỹwr,r and ỹv,r
are less than 1− ỹwr,r − ỹv,r.

Lemma 2. The objective of the modified problem with a third
of capacity increases by a factor of ( 13 + 2d3

3d1
).

Proof. A third of traffic is forwarded similar to the original
problem and 2/3 of traffic is pushed to the controller. The
difference between the data plane delay and the controller delay
is at most d3

d1
, which proves the lemma. ■

Lemma 3. Let κ be the ratio between the volume that can
be handled entirely in the data plane to the total volume of
traffic. Assuming n = max{2, d3

d1
− 1}, the multiplication of

variables by 3 increases the objective by a factor of (1+nκ).

Proof. Let ρ1, ρ2, and ρ3 be the amounts of traffic that are
handled locally, in the pair, and in the controller, respectively.
Thus, the objective of the modified linear program is ψ1 =
d1ρ1 + d2ρ2 + d3ρ3. Let ρ1i be part of ρi that is multiplied
by three and let ρ2i = ρi − ρ1i . The objective after rounding
is ψ2 = 3d1ρ

1
1 + 3d2ρ

1
2 + d3(ρ3 + ρ21 + ρ22). Thus, ψ2 =

ψ1 + ρ11(2d1) + ρ12(2d2) + ρ21(d3 − d1) + ρ22(d3 − d2) ≤
ψ1 + nd1(ρ1 + ρ2) ≤ ψ1 + nκψ1. ■

Lemma 4. Let ρ and q be the ratio of largest to smallest
rates and memory slots between any pair of rules, respectively.
The objective increases at most by a factor of d1+d3ρq

d1ρq+d3
, due

to placing rules in the descending order of their number of
dependants.

Proof. RaSe ignores the number of slots required by a rule in its
strategy to place rules. Consequently, it may select a rule with
large qr and small ρr over a rule with small qr and large ρr. The
worst-case of this situation proves the lemma. ■

It is possible to characterize the approximation ratio of RaSe
from Lemmas 1, 2, 3, and 4.
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Fig. 3. Topology used for evaluations.

V. PERFORMANCE EVALUATION AND DISCUSSIONS

In this section, we first evaluate the proof-of-concept P4
implementation in Subsection V-A using emulation in Mininet.
Then, we perform small-scale and large-scale simulations to
compare RaSe with the optimal algorithm and existing baselines.
All the instructions and codes required for reproducing the
presented results are available in [17].

A. Emulation Setup

We implemented the topology depicted in Fig. 3a (showing the
link delays and bandwidths) using P4 software switch (bmv2)
and Mininet. We use ping and iperf to measure the delay
between hosts and the bandwidth through uploading data from
h1 to h2, respectively. We consider the following three placement
schemes to show the effect of rule caching in the data plane:
• No Caching (NC): Switches are unable to utilize free capacity

of neighboring switches.
• Prioritize h1 (H1): Traffic destined to h1 has a higher priority

to receive the free capacity of neighboring switches.
• Prioritize h2 (H2): Similar to H1, however, traffic destined

to H2 is prioritized.
In all schemes, switch S3 is the pair of switches S1 and S2, and
all inbound traffic of the controller arrives through switch S3.

B. Emulation Results

We investigate the impact of rule caching on network traffic
by considering three capacity configurations: C1, C2, and C3. In
C1, the switches’ memory is completely full, leading to all traffic
being routed through the remote controller via the pair switch S3.
As depicted in Figures 4a and 4b, all placement schemes achieve
a maximum end-to-end delay of approximately one second and
a minimum upload rate of around 0.8 Mbps. In C2, each switch
has a single empty memory slot. Figure 4a reveals that it is
possible to avoid controller involvement in the communication
between hosts h1 and h2 in one direction. As a result, the end-
to-end delay is reduced to approximately 500 ms. Furthermore,
traffic destined for h2 bypasses the bottleneck links between
switches and the controller, resulting in an upload rate of 4.82
Mbps for h2. This outcome demonstrates the significance of the
rule placement strategy in improving delay and throughput.

In C3, switches S1 and S2 have a single available memory
slot and switch S3 has two available memory slots, which is
sufficient to completely avoid sending the traffic to the controller.
Therefore, under both rule placement schemes H1 and H2, the
end-to-end delay reduces to about 380 ms and the upload rate
increases to a maximum of 5.6 Mbps. We conclude that it
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is possible to significantly improve the quality of service by
utilizing the available capacity dispersed across the network
through a collaborative mechanism.

C. Simulation Setup

We implemented the algorithms in Python 3.10 and used
SCIPY [8] as the solver for ILP and LP tasks. We employ
the Abilene network topology [18,19], depicted in Fig. 3b. We
compare RaSe with the following baselines:
• Optimal (OPT): The solution obtained from the ILP solver.
• Random Pairing, Optimal Placement (RO): This method

represents the strategy of the paper by Rottenstreich et al. [2].
The switches are paired randomly and then rules are placed
optimally using the ILP solver.

• Random Pairing, Greedy Placement (RG): Similar to RO,
this algorithm pairs the switches randomly. Then, it places
rules in a greedy manner by first selecting the original switch,
then the pair, and finally the controller.

• No Caching (NC): This baseline represents the standard SDN
scenario where collaborative rule caching is not available.

D. Simulation Results

Optimality and Scalability. Figure 5 shows the result of
algorithms as the number of rules is increased from 500 to 1000.
OPT and RO achieve the lowest weighted delay as they use
the solver to place rules optimally. However, these methods are
not applicable in delay-sensitive environments as their runtimes
reach 60 seconds for placing one thousand rules. RaSe is able to
perform the placement of 500 and 1000 rules in about 0.1 and
0.3 seconds, respectively. RaSe is 21% and 11%worse than OPT
and RO, while being at least 170 times faster. Figure 5 shows that
RaSe is about 20% and 26% better than RO and NC, respectively.
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Fig. 6. The attainable rate and delay between two hosts under different capacity and rule placement configurations.

In the following, we perform multiple benchmarks to test
the effect of different factors on the performance of RaSe.
Benchmarks consider 5000 rules, where OPT and RO do not
terminate after hours of wait. Thus, we omit them from the plots.
Effect of Load Imbalance. We select the original switch of the
rules by using two distributions Uniform and Zips with parameter
α = 3. Uniform creates a balanced load while Zipf creates
a highly imbalanced load. Figure 6a shows that the weighted
delay of RaSe increases by a factor of 1.5 as the load becomes
imbalanced. RG and NC also experience a similar effect as they
increase by a factor of 2.4 and 1.7, respectively. Also, we observe
that RaSe achieves a better result than RG and NC, improving
the objective by at least ten percent compared to them.
Effect of Capacity Imbalance. In this benchmark, we investi-
gate the effect of capacity imbalance on the performance of the
algorithms. We consider two cases by specifying the capacity
of switches by drawing random samples from two intervals
[300, 500] and [100, 700]. The former shows a uniform memory
availability, while the latter shows a more imbalanced network.
In Fig. 6b, we see that as the available resource becomes more
asymmetric, the pairing and placement strategy becomes more
important and influential. Specifically, in the uniform case, RaSe
improves RG by about 5 percent, however, the improvement
reaches about 15 percent in the imbalanced environment. Also,
the effect of rule caching is prominent as both caching algorithms
improve the NC by at least 13 percent.
Effect of Caching Delay. In this benchmark, we consider two
extreme cases for the caching delay:d2 = 10ms andd2 = 90ms.
As expected, Fig. 6c shows that NC does not change in these
two cases. Interestingly, RG becomes even worse than NC, as
it greedily uses the space of neighbors, which can be used to
store local rules of that switch which incurs lower delays. We
can observe that even at d2 = 90 ms RaSe performs better than
both RG and NC for d2 = 10ms, demonstrating its effectiveness
at utilizing the network-wide resources.
Effect of Dependency. Figure 6d shows the weighted delay
as the number of dependants changes from 10 to 40. Although
the delay under RaSe increases by 10% it is still about half of
delay under RG, and NC. Evidently, RaSe handles high levels
of dependency among rules well and finds significantly better
solutions compared to both RG and NC.

VI. CONCLUSION

This paper introduces RaSe, an approximation algorithm that
leverages rounding of ILPs for pairing switches to cache rules in

P4-enabled SDNs. We detail the design and P4 implementation
of a caching-capable switch, evaluating its performance in
a Mininet-based emulation. Extensive numerical simulations
assess RaSe’s scalability and effectiveness, especially under
uneven network loads. Future research could explore scenarios
involving multiple switch pairings or non-immediate neighbors.
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