
ALPHAS: Adaptive Bitrate Ladder Optimization
for Multi-Live Video Streaming

Farzad Tashtarian1˚, Mahdi Dolati1:, Daniele Lorenzi˚, Mojtaba Mozhganfar;,
Sergey GorinskyS, Ahmad Khonsari;¶, Christian Timmerer˚, and Hermann Hellwagner˚

˚Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt, Austria
:Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

;School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
¶School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

SIMDEA Networks Institute, Spain

Abstract—Live streaming routinely relies on the Hypertext
Transfer Protocol (HTTP) and content delivery networks (CDNs)
to scalably disseminate videos to diverse clients. A bitrate ladder
refers to a list of bitrate-resolution pairs, or representations,
used for encoding a video. A promising trend in HTTP-based
video streaming is to adapt not only the client’s representation
choice but also the bitrate ladder during the streaming session.
This paper examines the problem of multi-live streaming, where
an encoding service coordinates CDN-assisted bitrate ladder
adaptation for multiple live streams delivered to heterogeneous
clients in different zones via CDN edge servers. We design
ALPHAS, a practical and scalable system for multi-live streaming
that accounts for CDNs’ bandwidth constraints and encoders’
computational capabilities and also supports stream prioriti-
zation. ALPHAS, aware of both video content and streaming
context, seamlessly integrates with the end-to-end streaming
pipeline and operates in real time transparently to clients and
encoding algorithms. We develop a cloud-based ALPHAS imple-
mentation and evaluate it through extensive real-world and trace-
driven experiments against four prominent baseline approaches
that encode each stream independently. The evaluation shows
that ALPHAS outperforms the baselines, improving quality of
experience, end-to-end latency, and per-stream processing by up
to 23%, 21%, and 49%, respectively. 1

©2025 IEEE. This is the authors’ accepted version of the article. The original publication is to appear in IEEE Xplore:
IEEE INFOCOM 2025 - IEEE Conference on Computer Communications.

I. INTRODUCTION

Video applications account for 38% of downstream traffic
in fixed and mobile networks [1]. By the end of 2023,
video traffic constitutes 73% of all mobile data traffic [2].
Videos also strongly influence user behavior. For instance,
96% of consumers find product videos helpful in purchasing
decisions [3]. Compared to video-on-demand (VoD) content,
live video streams gain in popularity and drive greater user
engagement.

The Hypertext Transfer Protocol (HTTP) and HTTP Adap-
tive Streaming (HAS) are common foundations for both VoD
and live delivery over the Internet [4]. In a HAS session, the
server divides a video into segments and encodes each segment

1The first two authors contributed equally to this work. The research
was supported in part by the Austrian Federal Ministry for Digital and
Economic Affairs, the National Foundation for Research, Technology, and
Development, and the Christian Doppler Research Association through the
Christian Doppler Laboratory ATHENA (https://athena.itec.aau.at/). Addition-
ally, it was supported by project PID2022-140560OB-I00 (DRONAC), funded
by MICIU/AEI/10.13039/501100011033, ERDF, and EU.

into multiple representations according to a bitrate ladder,
where the segment’s bitrate and resolution characterize each
representation. The server advertises available representations
by sending a manifest file, and the client employs an adaptive
bitrate (ABR) algorithm to select from the manifest file a
representation for the next requested segment. Existing ABR
algorithms seek improvement in multiple metrics, including
quality of experience (QoE) which captures the end user’s
overall subjective satisfaction with the streaming session [5].
With each client selecting the representations independently
and dynamically, HAS scalably deals with the heterogeneity
and variability in network connectivity between servers and
clients [4].

The bitrate ladder, which determines the representations
available to clients [6]–[10], plays a key role in HAS ef-
fectiveness. Per-title encoding [11] and other content-aware
methods [12]–[16] rely on intensive offline computations to
construct a static ladder tailored to each video. Context-
aware techniques adapt the ladder based on session-specific
factors, such as the end users’ device types and network con-
ditions [17]–[19]. Dynamic bitrate ladders respond to changes
in both context (e.g., network bandwidth) and content (e.g.,
video complexity) during streaming [20,21].

Content delivery networks (CDNs) are indispensable for
HAS in practice and increasingly integrate with streaming
services. Traditional CDNs cache video content scalably and
transparently, delivering it from globally distributed edge
servers to end users with low latency [22]. A prominent
industry trend in enhancing CDN support for HAS is the
use of client-reported network and playback conditions. The
Common Media Client Data (CMCD) protocol [23] emerges
as a standard for this purpose, with major CDNs like Akamai,
Cloudflare, and Fastly adopting it. ARTEMIS [24] utilizes
CMCD to construct dynamic bitrate ladders effectively.

Compared to VoD, live streaming presents new challenges
and opportunities for bitrate ladder adaptation. The need for
low end-to-end latency limits the computation that a live
encoder can perform. Unlike a VoD encoder, which creates and
stores all representations for future playback, the live encoder
does not have this requirement. For example, ARTEMIS

supports live streaming by advertising many representations
through a mega-manifest file and dynamically composing the
bitrate ladder from a small subset of these representations.

In this paper, we introduce and study the problem of
multi-live streaming, where an encoding service coordinates
CDN-assisted adaptation of bitrate ladders for concurrent live
streams from multiple streamers to clients in various zones,
as shown in Figure 1. Each streamer sends its content to the
encoder in a single representation. The live encoder generates
lower representations for the current video segment according
to the optimized bitrate ladder and passes the segment in
multiple representations to the CDNs supporting the streams.
Clients assigned to a particular CDN edge server form a zone.
They are heterogeneous and can request different representa-
tions. The CDN deploying the edge server for a client zone
allocates a certain amount of bandwidth for content delivery
to this zone [25].

Multi-live streaming entails unique complexities compared
to independently encoding each live stream. As more streams
share a bottleneck network link, clients’ independent band-
width estimates become less reliable, potentially causing the
aggregate bitrate of requested representations to exceed the
bandwidth allocated for the zone by the CDN. CDN-assisted
construction of dynamic bitrate ladders for multiple streams
enhances clients’ QoE by adhering to bandwidth constraints
set by the CDN. Additionally, multi-live streaming allows the
encoding service to prioritize streams, such as based on service
agreements with streamers. However, coordinating the encod-
ing of multiple concurrent streams increases computational
demands and makes it challenging to meet latency targets.

To address the challenges of multi-live streaming, we
propose ALPHAS (Adaptive bitrate Ladder oPtimization for
multi-live HAS). ALPHAS builds on an optimization problem
that considers CDN bandwidth constraints and stream priori-
ties. Since solving the problem optimally is computationally
impractical for large-scale real-time use, we exploit its sub-
modular structure to design a heuristic that quickly computes
dynamic bitrate ladders for multiple live streams. ALPHAS
advances the state of the art by combining the mega-manifest
technique [24] and accurate real-time prediction [26] of Video
Multimethod Assessment Fusion (VMAF) [27] to dynamically
create a content-aware bitrate ladder for each live stream using
a small subset of mega-manifest representations. The CDN
edge server utilizes the generated representations to provide
each client in its zone with the highest available representation
that does not exceed the client’s request.

We implement ALPHAS on the Amazon Elastic Compute
Cloud (EC2) and evaluate it in real-world scenarios against
existing solutions for bitrate ladder construction. The results
show that ALPHAS outperforms these solutions in QoE, end-
to-end latency, and computation time.

This paper makes the following four main contributions:
1) We formulate the problem of CDN-assisted bitrate ladder

adaptation for multi-live video streaming. Our formulation
considers CDN bandwidth constraints, computation avail-
able for encoding, and stream prioritization.

streamer

clients

streamer

streamer

CDN edge
 server

encoded
segments

CDNs'
distribution

infrastructure

streamer’s
contentencoded

segments

live encoder

client zone

Fig. 1. Multi-live video streaming.

2) We design ALPHAS, an end-to-end system that adjusts the
bitrate ladder dynamically during each streaming session.
ALPHAS accounts for video content, streaming context,
and scalable client feedback via CDNs.

3) We introduce a practical approximation algorithm for
ALPHAS that leverages the submodular structure of the
optimization problem, ensuring bounded theoretical perfor-
mance.

4) We evaluate ALPHAS through a cloud-based implemen-
tation, comparing it to four prominent baseline solutions
that encode streams independently. ALPHAS outperforms
these baselines by improving QoE, end-to-end latency, and
per-stream processing efficiency by up to 23%, 21%, and
49%, respectively.

II. MOTIVATION

Major streaming platforms provide encoding services for
a large number of simultaneous live streams, which vary
widely in duration and audience size. As part of this study, we
collect real data on the stream duration and average number of
concurrent viewers for over 12,000 live streams on YouTube
during May and June 2024. Figures 2a and 2b illustrate the
distributions of these two metrics. The lower quartile (Q1)
and third quartile (Q3) for stream duration span a long range
from 326 to 1,104 minutes (5.4 to 18.4 hours). Similarly, the
Q1 and Q3 values for average concurrent viewers are 159
and 1,970, respectively. This data confirms that many live
streams are long and exhibit significant variation in duration
and popularity.

Encoding live streams requires significant computational
resources. To illustrate this, we employ Big Buck Bunny [28]
as the source video, the 30 representations from Table 1
of [24], an EC2 t2.2xlarge instance, and FFmpeg [29]
with the ultra-fast preset to concurrently encode 3–6 of these
representations, with each encoded at least 14 times. We mea-
sure the relative central processing unit (CPU) utilization and
develop a linear regression model, with an 𝑅2 score of 0.95,
to estimate the CPU load per representation. Figure 2c shows
that higher representations incur greater CPU overhead while
providing better video quality. VMAF improves significantly
for lower representations but less noticeably for higher ones.
Therefore, composing the bitrate ladder from a small number
of representations is computationally efficient and benefits
from accounting for their VMAF values.

2

101 102 103 104 105

stream duration (minutes)
(a)

0.00

0.25

0.50

0.75

1.00
fra

ct
io

n
of

 st
re

am
s

Q1
Q3

100 101 102 103 104 105

average number of viewers
(b)

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

of
 st

re
am

s

Q1
Q3

0 10 20 30
representation identifier

(c)

0

10

20

30

CP
U

ut
iliz

at
io

n
(%

)

20 40 60 80 100 120
streaming time (seconds)

 (d)

0

25

50

75

100

ba
nd

wi
dt

h
(M

bp
s) bottleneck capacity

estimate by one client
estimate by 10 clients

25

50

75

100

VM
AF

CPU utilization
avg. VMAF

Fig. 2. Motivation for multi-live streaming: (a) long diverse stream duration,
(b) diverse stream popularity, (c) CPU overhead and VMAF values of
representations, and (d) estimation accuracy of the bottleneck link capacity.

An alternative to multi-live streaming is to independently
encode each stream by running separate instances of a bitrate
ladder adaptation system. However, this approach lacks stream
prioritization and coordinated control over shared computa-
tional resources, increasing the risk of resource exhaustion
as the number of streams grows. Additionally, uncoordinated
adaptation can result in clients within the same zone requesting
representations with an aggregate bitrate that exceeds the
CDN edge server’s bandwidth allocation, thereby degrading
QoE. This issue becomes more severe when multiple clients
share a bottleneck link and estimate available bandwidth less
accurately [30].

To illustrate this, we use ARTEMIS, a state-of-the-art
design for single-stream bitrate ladder adaptation, in two
EC2 experiments where the bottleneck link alternates between
10 and 20 Mbps. In the first experiment, a single client
closely tracks the bottleneck capacity, while in the second,
10 clients independently estimate the available bandwidth at
the shared bottleneck link. Figure 2d shows that the aggregate
estimates from the 10 clients vary widely, exceeding the
bottleneck capacity by a factor of 2 or more. Hence, multi-live
streaming requires a solution to the challenges of independent
encoding by coordinating bandwidth usage, managing encoder
resources, and prioritizing streams.

III. MODELING AND PROBLEM FORMULATION

A. System Model

Figure 3 illustrates the conceptual architecture of the
proposed ALPHAS system, with Table I summarizing our
mathematical notation. ALPHAS employs a live encoder that
concurrently handles a set of video streams. The clients of the
streams form zones, with a particular CDN edge server being
responsible for each zone. 𝑉 and 𝑍 denote the sets of the
video streams and client zones, respectively. 𝐶𝑧,𝑣 captures the
number of the clients of stream 𝑣 in zone 𝑧. 𝐷𝑧 refers to
the bandwidth allocated by the CDN for video delivery to
zone 𝑧 from the respective CDN edge server. The streamer of
stream 𝑣 supplies the content to the live encoder in a single
representation that has bitrate p𝑞𝑣 . Optionally, the live encoder

live
encoder client zone

ALPHAS server

mega-
manifest

CDN edge-
server logs

optimized
bitrate ladders

predicted
quality metric

encoded
segments CDN edge

 server

HTTP
requests
& replies

Fig. 3. ALPHAS conceptual architecture.

TABLE I
MATHEMATICAL NOTATION.

Symbol Description

𝑉 Set of concurrent video streams
𝑍 Set of client zones
𝐶𝑧,𝑣 Number of clients of stream 𝑣 in zone 𝑧
𝐷𝑧 CDN bandwidth allocated for video delivery to zone 𝑧
p𝑞𝑣 Bitrate of the streamer-supplied representation of stream 𝑣

Ω Set of mega-manifest representations
𝑟𝑧,𝑣𝑞 Number of requests for representation 𝑞 of stream 𝑣 in zone 𝑧
Ψ Total computational capacity of the live encoder
𝜓𝑞 Computation required to generate representation 𝑞
𝜈𝑣,𝑝 VMAF estimate for representation 𝑝 of stream 𝑣

𝑝𝑧,𝑣 Priority of stream 𝑣 in zone 𝑧
ℓ Maximum number of representations in a bitrate ladder

𝑥𝑣,𝑞 Presence of representation 𝑞 in the bitrate ladder of stream 𝑣

𝑦𝑣𝑝,𝑞 Use of representation 𝑝 to serve the clients of stream 𝑣 that
request representation 𝑞

𝜌𝑝 Bitrate of representation 𝑝
𝑦𝑧,𝑣 Average video quality for the clients of stream 𝑣 in zone 𝑧
ℐ Set of items, each of which is a stream-representation pair
ℐ𝜏 Set of selected items after iteration 𝜏
ℐ𝜏 Set of discarded items after iteration 𝜏
𝜆 Computational budget
𝑤𝑑𝑖 Weight of item 𝑖 for dimension 𝑑
𝜑𝑗𝜏 Cost-to-benefit ratio for item 𝑗 at iteration 𝜏
𝑧𝑑,𝜏 Cost for dimension 𝑑 after iteration 𝜏

upscales the received representation to increase p𝑞𝑣 . ALPHAS
sends the clients a mega-manifest file that describes Ω, a
large set of candidate representations for encoding of video
segments. Each CDN edge server collects and communicates
to the ALPHAS server the value of 𝑟𝑧,𝑣𝑞 , the number of
requests for representation 𝑞 of stream 𝑣 in zone 𝑧.

The ALPHAS server relies on time slots in its operation.
During each slot, it gathers the 𝑟𝑧,𝑣𝑞 and 𝐷𝑧 data from the CDN
edge servers. The ALPHAS server also collects information
from the live encoder. This information includes Ψ and 𝜓𝑞 ,
which refer to the live encoder’s total computational capacity
and the amount of computation required to generate mega-
manifest representation 𝑞, respectively. Additionally, the live
encoder supplies its real-time VMAF estimate 𝜈𝑣,𝑝 for the
video quality of representation 𝑝 of stream 𝑣.

B. Problem Formulation

Based on the inputs from the CDNs and live encoder,
the ALPHAS server computes optimized bitrate ladders for
all streams. The computation of the bitrate ladders sup-

3

ports stream prioritization, with 𝑝𝑧,𝑣 denoting the priority of
stream 𝑣 in zone 𝑧. To keep the computation and communica-
tion overhead low, ALPHAS limits the maximum number of
representations in a bitrate ladder to ℓ, which is much smaller
than the number of the mega-manifest representations. The live
encoder receives from the ALPHAS server, at the end of every
time slot, the optimized bitrate ladder for each stream and,
during the next time slot, generates segment representations
for the stream according to this updated bitrate ladder. When
the bitrate ladder does not contain a representation requested
by a client, the CDN edge server delivers the segment in the
highest lower representation present in the bitrate ladder.

To describe how ALPHAS constructs bitrate ladders and
serves client requests, we use vectors 𝑥𝑥𝑥 and 𝑦𝑦𝑦 of binary
decision variables 𝑥𝑣,𝑞 and 𝑦𝑣𝑝,𝑞 . If 𝑥𝑣,𝑞 is set to 1, the
bitrate ladder of stream 𝑣 contains representation 𝑞; otherwise,
𝑥𝑣,𝑞 equals 0. 𝑦𝑣𝑝,𝑞 “ 1 means that a client of stream 𝑣
requests a segment in representation 𝑞, and the CDN edge
server delivers the segment in representation 𝑝. To ensure that
ALPHAS serves each client request in the requested or lower
representation, the problem formulation incorporates:

ÿ

𝑝PΩ,𝑝ď𝑞
𝑦𝑣𝑝,𝑞 “ 1 @𝑣 P 𝑉, 𝑞 P Ω. (1)

The next constraint guarantees that if ALPHAS decides to
deliver segments to clients of stream 𝑣 in representation 𝑝, the
encoder generates this representation for the stream:

ÿ

𝑞PΩ,𝑞ě𝑝
𝑦𝑣𝑝,𝑞 ď 𝑥𝑣,𝑝 ˆ |Ω| @𝑣 P 𝑉, 𝑝 P Ω. (2)

For each stream 𝑣, the encoder does not generate repre-
sentations with bitrates exceeding the bitrate of the streamer-
supplied representation (or its upscaled version):

ÿ

𝑞ąp𝑞𝑣
𝑥𝑣,𝑞 “ 0 @𝑣 P 𝑉. (3)

When the bitrate ladder misses a requested representation,
the following constraint assures the use of the highest lower
representation present in the bitrate ladder:
ÿ

𝑝ă𝑗ď𝑞
𝑥𝑣,𝑗 ď p1 ´ 𝑦𝑣𝑝,𝑞q ˆ |Ω| @𝑣 P 𝑉, 𝑝, 𝑞 P Ω, 𝑝 ă 𝑞. (4)

The subsequent constraint ensures that the computation
required to generate the representations for all streams in ac-
cordance with their bitrate ladders is within the live encoder’s
total computational capacity:

ÿ

𝑣P𝑉

ÿ

𝑞PΩ
𝜓𝑞 ¨ 𝑥𝑣,𝑞 ď Ψ. (5)

We impose the upper limit on the number of representations
in a bitrate ladder as follows:

ÿ

𝑞PΩ
𝑥𝑣,𝑞 ď ℓ @𝑣 P 𝑉. (6)

With 𝜌𝑝 referring to the bitrate of representation 𝑝, the
following constraint guarantees that the aggregate bitrate of
the representations requested by the clients of all streams in
each zone does not exceed the CDN edge server’s bandwidth
allocated for video delivery to this zone:

ÿ

𝑣P𝑉

ÿ

𝑞PΩ
𝑟𝑧,𝑣𝑞

´

ÿ

𝑝PΩ,𝑝ď𝑞
𝜌𝑝 ¨ 𝑦𝑣𝑝,𝑞

¯

ď 𝐷𝑧 @𝑧 P 𝑍. (7)

To construct content-aware bitrate ladders for the streams,
ALPHAS combines the VMAF estimates for all mega-
manifest representations, the number of requests for each
representation, and the number of clients in every zone to
express average video quality 𝑦𝑧,𝑣 for the clients of stream 𝑣
in zone 𝑧 as follows:

𝑦𝑧,𝑣 ď
1

𝐶𝑧,𝑣

ÿ

𝑞PΩ
𝑟𝑧,𝑣𝑞

´

ÿ

𝑝PΩ,𝑝ď𝑞
𝜈𝑣,𝑝 ¨ 𝑦𝑣𝑝,𝑞

¯

. (8)

We define the objective function for ALPHAS as the following
expression that considers both average video quality and
priority of all streams 𝑣 in all zones 𝑧:

𝑓p𝑦𝑦𝑦q “
ÿ

𝑧P𝑍

ÿ

𝑣P𝑉
𝑝𝑧,𝑣 ¨ 𝑦𝑧,𝑣. (9)

We note here that Constraint 8 is an intermediate step that
computes the auxiliary variables 𝑦𝑧,𝑣 required in 𝑓p𝑦𝑦𝑦q. There-
fore, the following integer linear program (ILP) produces
bitrate ladders for all streams in every time slot:

max.
𝑥𝑥𝑥,𝑦𝑦𝑦

𝑓p𝑦𝑦𝑦q s.t. Constraints 1 through 7 hold. (10)

IV. ALPHAS DESIGN AND ANALYSIS

We refer to Problem 10 in Section III-B as Optimal ALP-
HAS (OPT-ALPHAS). Since solving it is computationally
prohibitive for real-time operation, we address a variation
of this problem and propose Submodular ALPHAS (SM-
ALPHAS), an algorithm that exploits the submodular structure
of the objective function.

A. Submodularity Characterization

To enhance clarity and simplify notation, we reformulate
OPT-ALPHAS as an optimization problem over a set and
characterize its core component with a submodular function.
Specifically, we treat each pair of stream 𝑣 and representation 𝑞
as an item and define set ℐ of items:

ℐ “ tp𝑣, 𝑞q | 𝑣 P 𝑉, 𝑞 P Ωu. (11)

We also define set function r𝑓 that maps ℐ to R as follows:

r𝑓p𝒥 q “ max.
𝑦𝑦𝑦

𝑓p𝑦𝑦𝑦q s.t. Constraints 1 through 4 hold (12)

𝑥𝑣,𝑞 “ 1 Ø p𝑣, 𝑞q P 𝒥 Ď ℐ (13)

This reformulation omits Constraints 5 through 7. Inclusion
of item p𝑣, 𝑞q in set 𝒥 is equivalent to the availability of
representation 𝑞 for stream 𝑣 in OPT-ALPHAS.

Definition 1 (Submodular set function). Let Δp𝑖 | 𝒥 q “
r𝑓p𝒥 Y t𝑖uq ´ r𝑓p𝒥 q denote the increase in set function r𝑓 after
adding item 𝑖 to set 𝒥 . Function r𝑓 is submodular if, for every
pair of sets 𝒥1 and 𝒥2 such that 𝒥1 Ď 𝒥2 Ď ℐ, and for any
item 𝑖 P ℐ z𝒥2, increase Δp𝑖 | 𝒥1q is at least Δp𝑖 | 𝒥2q.

Theorem 1. r𝑓p𝒥 q is a submodular set function.

Proof. Suppose 𝑖 P ℐ z𝒥2 and 𝒥1 Ď 𝒥2 Ď ℐ. Since 𝒥1 Ď 𝒥2

and r𝑓p𝒥 q omits Constraints 5-7, the VMAF increase for a
client when adding item 𝑖 to 𝒥1 is at least as large as when
adding it to 𝒥2. Furthermore, because 𝒥2 contains at least as

4

many representations as 𝒥1, at least as many clients benefit
from adding 𝑖 to 𝒥1 as for 𝒥2. Therefore, the marginal gain
in r𝑓 from adding 𝑖 to 𝒥1 is at least as large as the gain from
adding it to 𝒥2, implying that Δp𝑖 | 𝒥1q is at least Δp𝑖 | 𝒥2q.
By Definition 1, r𝑓p𝒥 q is submodular.

The submodularity of r𝑓p𝒥 q is useful because it ensures
a diminishing returns property, simplifying our analysis of
the objective function and enabling us to develop an efficient
approximation algorithm with provable performance bounds.
While prior work effectively leverages submodularity to ad-
dress cache placement [31] and other problems, we adapt the
technique for the new problem of multi-live streaming.

To account for Constraints 5 and 6, we associate each
item 𝑖 with 1 ` |𝑉 | weights 𝑤𝑑

𝑖 , where dimension 𝑑 P 𝒟 “

t0, . . . , |𝑉 |u corresponds to Constraint 5 for 𝑑 “ 0 and to one
of Constraints 6 for 𝑑 P 𝒟 “ t1, . . . , |𝑉 |u:

𝑤𝑑
𝑖 “

$

’

&

’

%

𝜓𝑞𝑖{Ψ, 𝑑 “ 0,

1{ℓ, 𝑑 “ 𝑣𝑖,

0, otherwise
@𝑖 P ℐ, 𝑑 P 𝒟. (14)

Here, 𝑣𝑖 and 𝑞𝑖 denote the stream and representation that con-
stitute item 𝑖. This leads to the following problem formulation:

max.
𝒥Ďℐ

r𝑓p𝒥 q s.t.
ÿ

𝑖P𝒥
𝑤𝑑

𝑖 ď 1 @𝑑 P 𝒟. (15)

The weight definition above ensures that any feasible solution
to Problem 15 satisfies Constraints 5 and 6 of OPT-ALPHAS.

B. Algorithm Outline

This section describes how SM-ALPHAS solves Problem 15
by iteratively selecting items based on their weights and con-
tributions to r𝑓p𝒥 q while satisfying Constraint 7. The algorithm
builds bitrate ladders for streams in set 𝑉 by distributing, at
each iteration 𝜏 , an item from set ℐ into sets ℐ𝜏 (selected
items) or ℐ𝜏 (discarded items), both initialized as empty.

To account for Constraints 5 and 6, SM-ALPHAS draws
inspiration from [32] and, for each dimension 𝑑, evaluates
cost 𝑧𝑑,𝜏´1 of generating a representation for the correspond-
ing stream. The algorithm keeps the total cost across all |𝒟|

dimensions within budget 𝜆, which depends on the number
of dimensions, encoders’ computational capacities, computa-
tional requirements of all representations, and the maximum
number of representations in a bitrate ladder.

For each item 𝑗 not yet placed in either set, SM-ALPHAS
calculates cost-to-benefit ratio 𝜑𝑗𝜏 where the benefit refers
to the increase in the objective function from adding the
item to ℐ𝜏´1. Iteration 𝜏 then selects the item with the
lowest cost-to-benefit ratio, adding it to ℐ𝜏 if this action does
not violate Constraint 7. The algorithm updates the cost for
the corresponding dimension by scaling it exponentially to
reflect reduced resource availability, with scaling governed
by budget 𝜆 and the item’s weights. If adding the item
violates Constraint 7, iteration 𝜏 places it in ℐ𝜏 . The algorithm
terminates when it exhausts budget 𝜆 or processes all items in
set ℐ.

Algorithm 1: SM-ALPHAS, a submodular approximation
algorithm for OPT-ALPHAS.

Input: ℐ, 𝒟, 𝑉 , Ω, Ψ, t𝜓𝑞u, ℓ, 𝒵 , t𝐷𝑧u, t𝜌𝑝u, t𝑟𝑧,𝑣𝑞 u

Output: t𝑥𝑣,𝑞u

1: 𝑊 Ð mintℓ,min𝑞PΩt Ψ
𝜓𝑞

uu; 𝜆 Ð |𝐷| ¨ expp𝑊 q

2: t𝑥𝑣,𝑞u Ð 0; t𝑦𝑣𝑝,𝑞u Ð 0; 𝜏 Ð 0; ℐ𝜏 Ð H; ℐ𝜏 Ð H

3: for 𝑑 P 𝒟 do
4: 𝑧𝑑,𝜏 Ð 1

5: 𝑍𝜏 Ð
ř

𝑑P𝒟 𝑧𝑑,𝜏
6: while 𝑍𝜏 ď 𝜆 and ℐ𝜏 Y ℐ𝜏 ‰ ℐ do
7: 𝜏 Ð 𝜏 ` 1
8: for 𝑗 P ℐ z pℐ𝜏´1 Y ℐ𝜏´1q do

9: 𝜑𝑗𝜏 Ð

ř

𝑑P𝒟 𝑤𝑑
𝑗 ¨𝑧𝑑,𝜏´1

Δp𝑗|ℐ𝜏´1q

10: 𝑗𝜏 Ð argmin
𝑗 P ℐ z ℐ𝜏´1Yℐ𝜏´1

𝜑𝑗𝜏

11: 𝑣𝜏 Ð 𝑣𝑗𝜏 ; 𝑞𝜏 Ð 𝑞𝑗𝜏 ; tp𝑦𝑣𝑝,𝑞u Ð t𝑦𝑣𝑝,𝑞u; 𝑞 Ð 𝑞𝜏
12: while 𝑥𝑣𝜏 ,𝑞 “ 0 do
13: for 𝑝 P Ω do
14: p𝑦𝑣𝑝,𝑞 Ð 0

15: p𝑦𝑣𝑞𝜏 ,𝑞 Ð 1; 𝑞 Ð next-largest(𝑞, Ω)

16: infeasible Ð FALSE
17: for 𝑧 P 𝑍 do
18: if

ř

𝑣P𝑉

ř

𝑞PΩ 𝑟
𝑧,𝑣
𝑞

´

ř

𝑝PΩ,𝑝ď𝑞 𝜌𝑝 ¨ p𝑦𝑣𝑝,𝑞

¯

ą 𝐷𝑧 then
19: infeasible Ð TRUE
20: break

21: if infeasible == FALSE then
22: t𝑦𝑣𝑝,𝑞u Ð tp𝑦𝑣𝑝,𝑞u

23: 𝑥𝑣𝜏 ,𝑞𝜏 Ð 1; ℐ𝜏 Ð ℐ𝜏´1; ℐ𝜏 Ð ℐ𝜏´1 Y t𝑗𝜏 u

24: for 𝑑 P 𝒟 do
25: 𝑧𝑑,𝜏 Ð 𝑧𝑑,𝜏´1 ¨ 𝜆𝑤

𝑑
𝑗𝜏

26: else
27: ℐ𝜏 Ð ℐ𝜏´1 Y t𝑗𝜏 u; ℐ𝜏 Ð ℐ𝜏´1

28: for 𝑑 P 𝒟 do
29: 𝑧𝑑,𝜏 Ð 𝑧𝑑,𝜏´1

30: 𝑍𝜏 Ð
ř

𝑑P𝒟 𝑧𝑑,𝜏

31: for 𝑑 P 𝒟 do
32: if

ř

𝑖Pℐ𝜏
𝑤𝑑𝑖 ą 1 then

33: 𝑥𝑣𝜏 ,𝑞𝜏 Ð 0
34: break

35: return t𝑥𝑣,𝑞u

C. Algorithm Details

Algorithm 1 presents the pseudocode for SM-ALPHAS.
Lines 1–5 handle initialization, including of cost 𝑧𝑑,0 for each
dimension 𝑑 to 1. Parameter 𝑊 , which affects budget 𝜆, re-
flects the computational bottleneck as the minimum capacity-
to-representation weight ratio across all representations.

The main loop in Lines 6–30 executes iteration 𝜏 of
the algorithm and runs until either total cost 𝑍𝜏 exceeds
computational budget 𝜆 or the algorithm processes all items
in set ℐ. Lines 8–9 compute cost-to-benefit ratio 𝜑𝑗𝜏 for
each item 𝑗 that previous iterations have not examined. The
cost incorporates dimension-specific weights 𝑤𝑑

𝑗 and sums
weighted costs 𝑧𝑑,𝜏´1 across all |𝒟| dimensions. Line 10
detects item 𝑗𝜏 with the lowest cost-to-benefit ratio among
such items, with 𝑣𝜏 and 𝑞𝜏 denoting its associated stream and
representation, respectively.

5

Lines 11–20 check whether adding representation 𝑞𝜏 to
the bitrate ladder for stream 𝑣𝜏 satisfies Constraint 7. To
this end, Lines 11–15 construct potential service arrangement
p𝑦𝑣𝑞𝜏 ,𝑞 “ 1, where representation 𝑞𝜏 serves all representations 𝑞
that are at least as high as 𝑞𝜏 and currently absent from
the bitrate ladder. Then, Lines 16–20 examine whether the
CDN bandwidth allocation provides sufficient capacity for this
service arrangement in each zone 𝑧.

If the check succeeds, Lines 21–25 accept the service ar-
rangement by setting t𝑦𝑣𝑝,𝑞u to tp𝑦𝑣𝑝,𝑞u, adding representation 𝑞𝜏
to the bitrate ladder for stream 𝑣𝜏 through placement of item 𝑗𝜏
into set ℐ𝜏 of selected items, and scaling costs 𝑧𝑑,𝜏 by 𝜆𝑤

𝑑
𝑗𝜏 for

each dimension 𝑑. If the check fails, Lines 26–29 place item 𝑗𝜏
into set ℐ𝜏 of discarded items without modifying costs 𝑧𝑑,𝜏 .

Lines 31–34 check whether the most recently selected item
violates the constraint in Problem 15 and remove it from
the respective bitrate ladder if a violation occurs. Line 35
concludes Algorithm 1 by outputting the bitrate ladders for
all streams.

D. Algorithm Analysis

We begin our analysis by proving that the bitrate ladders
constructed by Algorithm 1 meet the constraints on encoding
and CDN bandwidth.

Theorem 2. SM-ALPHAS computes a feasible solution to the
multi-live streaming problem.

Proof. Lines 16–20 and 26–29 of SM-ALPHAS ensure that
the algorithm avoids selecting a representation for a bitrate
ladder if this selection would violate the constraint in Prob-
lem 7. When selecting an item to set ℐ𝜏 violates the constraint
in Problem 15 (i.e., the sum of weights 𝑤𝑑

𝑖 exceeds 1), then
total cost 𝑍𝜏 , determined by 𝜆

ř

𝑖Pℐ𝜏
𝑤𝑑

𝑖 , surpasses budget 𝜆.
This condition causes the algorithm to exit the main loop,
which runs from Line 6 to Line 30. Lines 31–34 then remove
the violating item from the set of selected items and restore
compliance with the constraint in Problem 15. Therefore, SM-
ALPHAS constructs bitrate ladders that satisfy both Con-
straints 7 and the constraint in Problem 15.

The following theorem characterizes the computational
complexity of the algorithm:

Theorem 3. SM-ALPHAS executes in polynomial time.

Proof. The loop in Lines 6-30 terminates after 𝑂p|𝑉 | ¨ |Ω|q

iterations. In each iteration, the computation of cost-to-benefit
ratios takes 𝑂p|𝑉 |q time, and checking Constraint 7 requires
𝑂p|𝑍| ¨ |𝑉 | ¨ |Ω|q time. Thus, the algorithm runs in polynomial
time 𝑂p|𝑉 |2 ¨ |Ω|2 ¨ |𝑍|q.

We now derive an upper bound on the marginal value of
each item remaining unprocessed in set ℐ after iteration 𝜏 of
Algorithm 1, with respect to the items already selected into
set ℐ𝜏 . First, we consider the case where set ℐ𝜏 is empty.
Let 𝑗𝜏 denote the item selected into ℐ𝜏 during iteration 𝜏 . By
construction, item 𝑗𝜏 has the lowest cost-to-benefit ratio among
all unprocessed items in set ℐ. Furthermore, its selection

respects the CDN bandwidth constraints. Consequently, the
following inequality holds for any such item 𝑗:

Δp𝑗 | ℐ𝜏 q ď
ÿ

𝑑P𝒟

𝑤𝑑
𝑗 ¨ 𝑧𝑑,𝜏

𝜑
𝑗𝜏`1

𝜏`1

. (16)

Suppose that 𝒥 ‹ represents an optimal solution to the
problem, and let 𝒦𝜏 denote the set of items selected by this
optimal solution but not by SM-ALPHAS after iteration 𝜏 .
Then, the following inequality holds:

r𝑓p𝒥 ‹q ď r𝑓pℐ𝜏 q `
ÿ

𝑗P𝒦𝜏

Δp𝑗 | ℐ𝜏 q. (17)

Applying Inequality 16 to Inequality 17 yields:

r𝑓p𝒥 ‹q ď r𝑓pℐ𝜏 q `
ÿ

𝑗P𝒦𝜏

ÿ

𝑑P𝒟

𝑤𝑑
𝑗 ¨ 𝑧𝑑,𝜏

𝜑
𝑗𝜏`1

𝜏`1

(18)

“ r𝑓pℐ𝜏 q `
ÿ

𝑑P𝒟

𝑧𝑑,𝜏

𝜑
𝑗𝜏`1

𝜏`1

ÿ

𝑗P𝒦𝜏

𝑤𝑑
𝑗 . (19)

Since 𝒦𝜏 is feasible, meaning that
ř

𝑗P𝒦𝜏
𝑤𝑑

𝑗 ď 1, we have:

r𝑓p𝒥 ‹q ď r𝑓pℐ𝜏 q `
𝑍𝜏

𝜑
𝑗𝜏`1

𝜏`1

. (20)

We express total cost 𝑍𝜏 as:

𝑍𝜏 “
ÿ

𝑑P𝒟
𝑧𝑑,𝜏´1 ¨

𝑊
?
𝜆
𝑊 ¨𝑤𝑑

𝑗𝜏 (21)

and bound it from above by noting that 𝑊 ¨𝑤𝑑
𝑗𝜏

is at most 1,
since 𝑊 is, by definition, at most the smallest of 1{𝑤𝑑

𝑖 :

𝑍𝜏 ď
ÿ

𝑑P𝒟
𝑧𝑑,𝜏´1 ¨ p1 `

𝑊
?
𝜆 ¨𝑊 ¨ 𝑤𝑑

𝑗𝜏 q. (22)

We apply the definitions of 𝑍𝜏 and 𝜑𝑗𝜏 to obtain:

𝑍𝜏 ď 𝑍𝜏´1 `
𝑊
?
𝜆 ¨𝑊 ¨ Δp𝑗𝜏 | ℐ𝜏´1q ¨ 𝜑𝑗𝜏𝜏 . (23)

Using Inequality 20, we substitute 𝜑𝑗𝜏𝜏 with an upper bound
expressed in terms of the optimal value and 𝑍𝜏´1:

𝑍𝜏 ď 𝑍𝜏´1 ¨

˜

1 `

𝑊
?
𝜆 ¨𝑊 ¨ Δp𝑗𝜏 | ℐ𝜏´1q

r𝑓p𝒥 ‹q ´ r𝑓pℐ𝜏´1q

¸

. (24)

Then, we apply 𝑒𝑥 ě p1 ` 𝑥q, a well-known inequality, to
derive:

𝑍𝜏 ď 𝑍𝜏´1 ¨ exp

#

𝑊
?
𝜆 ¨𝑊 ¨ Δp𝑗𝜏 | ℐ𝜏´1q

r𝑓p𝒥 ‹q ´ r𝑓pℐ𝜏´1q

+

. (25)

Because Inequality 25 establishes a recursive relation for the
upper bound on 𝑍𝜏 , and 𝑍0 equals |𝐷|, we expand this relation
to derive the following upper bound:

𝑍𝜏 ď |𝐷| exp

#

𝜏
ÿ

𝑡“1

𝑊
?
𝜆 ¨𝑊 ¨ Δp𝑗𝜏 | ℐ𝜏´1q

r𝑓p𝒥 ‹q ´ r𝑓pℐ𝜏´1q

+

. (26)

Next, we determine a lower bound for 𝑍𝜏 after the loop in
Lines 6–30 terminates. When CDN bandwidth is abundant,
set ℐ𝜏 remains empty, and 𝜆 serves as the lower bound.
However, when CDN bandwidth becomes a bottleneck, SM-
ALPHAS adds items to set ℐ𝜏 , and the loop terminates after
processing all items in set ℐ. Let p𝜈 and p𝑟 denote, respectively,

6

the maximum bandwidth consumption of any bitrate and the
maximum number of clients requesting the same representa-
tion of the same stream. Then, the bandwidth consumption
resulting from the selection of each representation in each
iteration of the loop is at most p𝜈 ¨ p𝑟. With q𝐷 representing
the smallest available CDN bandwidth across all zones, the
main loop executes at least |𝐷| ¨ t

q𝐷
p𝜈¨p𝑟 u iterations, implying:

𝑍𝜏 ě |𝐷| ¨ 𝜆 q𝑤¨t
|𝐷

p𝜈¨ p𝑟 u ě |𝐷| ¨ 𝑒 q𝑤¨t
|𝐷

p𝜈¨ p𝑟 u (27)

where q𝑤 refers to the smallest weight of any item in set ℐ.
By applying Inequalities 26 and 27, we establish the rela-

tionship between the optimal solution and the result produced
by SM-ALPHAS:

q𝑤 ¨ t
q𝐷

p𝜈 ¨ p𝑟
u ď

𝜏
ÿ

𝑡“1

𝑊
?
𝜆 ¨𝑊 ¨ Δp𝑗𝜏 | ℐ𝜏´1q

r𝑓p𝒥 ‹q ´ r𝑓pℐ𝜏´1q
. (28)

Next, we consider the following theorem, which holds for any
submodular function:

Theorem 4 ([32]). Let 𝒥0 Ď ¨ ¨ ¨ Ď 𝒥𝑡 Ď 𝐼 and 𝒥 ‹ Ď ℐ
where r𝑓p𝒥 ‹q ą r𝑓p𝒥𝑡q. Then, the following inequality holds:

𝑡
ÿ

𝜏“1

r𝑓p𝒥𝜏 q ´ r𝑓p𝒥𝜏´1q

r𝑓p𝒥 ‹q ´ r𝑓p𝒥𝜏´1q
ď ln

˜

r𝑓p𝒥 ‹q ´ r𝑓p𝒥0q

r𝑓p𝒥 ‹q ´ r𝑓p𝒥𝑡q

¸

. (29)

We apply Theorem 4 to simplify Inequality 28 further:

q𝑤 ¨ t
q𝐷

p𝜈 ¨ p𝑟
u ď

𝑊
?
𝜆 ¨𝑊 ¨ ln

˜

r𝑓p𝒥 ‹q ´ r𝑓pℐ0q

r𝑓p𝒥 ‹q ´ r𝑓pℐ𝑡q

¸

. (30)

Finally, noting that r𝑓pℐ0q “ 0, we characterize an upper bound
on

r𝑓pℐ𝑡q

r𝑓p𝒥 ‹q
as follows:

r𝑓pℐ𝑡q
r𝑓p𝒥 ‹q

ď 1 ´ 1{ exp

#

q𝑤
𝑊
?
𝜆 ¨𝑊

¨ t
q𝐷

p𝜈 ¨ p𝑟
u

+

. (31)

V. EVALUATION

A. Experimental Setup

Testbed. We implement ALPHAS in Python and deploy
it on EC2 as depicted in Figure 4a. Our cloud-based imple-
mentation involves eight EC2 c5d.9xlarge instances to run
the Bitmovin live encoder, ALPHAS server, three emulated
CDN edge servers E1, E2, and E3, and three corresponding
machines that emulate zones Z1, Z2, and Z3 containing
multiple dash.js clients [33]. In the default configuration, the
ALPHAS server executes the SM-ALPHAS algorithm. We
also experiment in settings where the ALPHAS server relies
on Gurobi [34] to find the optimal OPT-ALPHAS solution.
The ALPHAS server communicates with the live encoder and
CDN edge servers via Transmission Control Protocol (TCP)
sockets. The content of streams is the 240-second Big Buck
Bunny [28] source video encoded live into 1-second segments
with FFmpeg [29]. To reproduce live encoding settings, we
utilize the Advanced Video Coding (AVC) compression from
the libx264 library with ultra-fast preset.

TCP
 socket

ALPHAS
server

zone Z1 zone Z2 zone Z3
Amazon EC2

HTTP
requests &

 replies

Bitmovin
live encoder

 encoded
segments

E1 E2 E3

(a)

emulated
CDN edge
servers

S3
90

S1
40

S2
10

S1
10

S2
90

S3
10

0 30 60 90 120 150 180 210 240

50
100

nu
m

be
r o

f
 c

lie
nt

s

(b)

S1 S2 S3

0 30 60 90 120 150 180 210 240

100
200
300

nu
m

be
r o

f
 c

lie
nt

s

(c)

0 30 60 90 120 150 180 210 240
streaming time (seconds)

100

200

300

ba
nd

wi
dt

h
 (M

bp
s) Z3 Z2

Z1
(d)

Fig. 4. Experimental setup: (a) cloud-based implementation of ALPHAS,
(b) static subscription, (c) dynamic subscription, and (d) bandwidth capacities.

Scenarios. We evaluate ALPHAS against four baselines
that encode each stream independently. The baselines in-
clude three state-of-the-art static bitrate ladders developed by
Twitch [6], YouTube [7], and MUX [9]. The fourth baseline
is ARTEMIS [24], which adapts the bitrate ladder during the
stream. Each experiment involves three streams S1, S2, and
S3 that start at different times and have different duration.
We examine two experimental scenarios. In Scenario I, the
number of clients of each stream does not change, as shown
in Figure 4b. Scenario II leverages our YouTube dataset to vary
the number of clients for each stream as depicted in Figure 4c.
The bandwidth allocated for video delivery to each of zones
Z1, Z2, and Z3 from the respective CDN edge server changes
in accordance with the patterns plotted in Figure 4d.

Metrics. We assess computational effectiveness in terms of
CPU utilization per stream and execution time. Our evaluation
of QoE leverages Comyco’s VMAF-based QoE model [35].
Additionally, we examine end-to-end latency (the time be-
tween stream capture and playback), stall duration (the total
time the playback stalls), VMAF, and VMAF instability as
four QoE influence factors.

B. Experimental Results

Figure 5 presents the improvement achieved by OPT-
ALPHAS over the ARTEMIS, Twitch, YouTube, and MUX
baselines in Scenario I with respect to CPU utilization, QoE,
stall duration, end-to-end latency, VMAF instability, and av-
erage VMAF when all streams in all zones have the same
priority. Figure 5a shows that OPT-ALPHAS consistently
increases average QoE and decreases CPU utilization per
stream. For example, the CPU consumption by stream S1
drops by nearly 60% compared to the Twitch baseline while
QoE for this stream improves by 50% vs. the MUX baseline.
In comparison to ARTEMIS, OPT-ALPHAS reduces the CPU
utilization per stream by around 3% while increasing QoE by
up to 10%. Figure 5b shows consistent improvement in end-
to-end latency and stall duration as well, with reductions of
54% and 80% vs. MUX in average latency and stall duration,
respectively. Figure 5c reveals that OPT-ALPHAS significantly
outperforms Twitch and MUX on VMAF instability, with
average improvement of 150% vs. MUX. Figure 5c also
shows that OPT-ALPHAS might either increase or decrease
VMAF compared to the baselines. However, all such increases

7

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
(a)

0

10

20

30

40

50

60
im

pr
ov

em
en

t (
%

)

ARTEMIS (CPU)
Twitch (CPU)
YouTube (CPU)
MUX (CPU)

ARTEMIS (QoE)
Twitch (QoE)
YouTube (QoE)
MUX (QoE)

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
(b)

0

20

40

60

80

im
pr

ov
em

en
t (

%
)

ARTEMIS (stall)
Twitch (stall)
YouTube (stall)
MUX (stall)

ARTEMIS (latency)
Twitch (latency)
YouTube (latency)
MUX (latency)

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3
(c)

0

50

100

150

200

im
pr

ov
em

en
t (

%
)

ARTEMIS (VI)
Twitch (VI)
YouTube (VI)
MUX (VI)

ARTEMIS (VMAF)
Twitch (VMAF)
YouTube (VMAF)
MUX (VMAF)

Fig. 5. Improvement by OPT-ALPHAS over the ARTEMIS, Twitch, YouTube, and MUX baselines in Scenario I with respect to: (a) CPU utilization and
QoE, (b) stall duration and end-to-end latency, and (c) VMAF instability, denoted as VI, and average VMAF.

10 33.3 66.6 73.3 80
CPU reduction (%)

(a)

0

25

50

75

100

VM
AF

 d
eg

ra
da

tio
n

(%
)

Z1-S1
Z1-S2
Z2-S2

Z2-S3
Z3-S1
Z3-S3

10 33.3 66.6 73.3 80
CPU reduction (%)

(b)

0
25
50
75

100
125
150

VM
AF

 d
eg

ra
da

tio
n

(%
)

Z1-S1
Z1-S2
Z2-S2

Z2-S3
Z3-S1
Z3-S3

10 33.3 66.6 73.3 80
CPU reduction (%)

(c)

0
25
50
75

100
125
150

VM
AF

 d
eg

ra
da

tio
n

(%
)

Z1-S1 (0.25)
Z1-S2 (0.15)
Z2-S2 (0.15)
Z2-S3 (0.1)
Z3-S1 (0.25)
Z3-S3 (0.1)

10 33.3 66.6 73.3 80
CPU reduction (%)

(d)

0
25
50
75

100
125
150
175

VM
AF

 d
eg

ra
da

tio
n

(%
)

Z1-S1 (0.25)
Z1-S2 (0.15)
Z2-S2 (0.15)
Z2-S3 (0.1)
Z3-S1 (0.25)
Z3-S3 (0.1)

Fig. 6. Impact by CPU reductions on average VMAF degradation in Scenario I for: (a) OPT-ALPHAS with identical 0.17 priorities, (b) SM-ALPHAS with
identical 0.17 priorities, (c) OPT-ALPHAS with different 0.1, 0.15, and 0.25 priorities, and (d) SM-ALPHAS with different 0.1, 0.15, and 0.25 priorities.

10 33.3 66.6 73.3 80
CPU reduction (%)

(a)

0

50

100

CP
U

ut
iliz

at
io

n
(%

)

O S O S O S O S O S

S1 (0.33)
S2 (0.33)

S3 (0.33)
Free

10 33.3 66.6 73.3 80
CPU reduction (%)

(b)

0

50

100

CP
U

ut
iliz

at
io

n
(%

)

O S O S O S O S O S

S1 (0.5)
S2 (0.3)

S3 (0.2)
Free

Fig. 7. Impact by CPU reductions on the CPU utilization in Scenario I for
OPT-ALPHAS and SM-ALPHAS, denoted as O and S respectively, with:
(a) identical 0.33 priorities and (b) different 0.2, 0.3, and 0.5 priorities.

and decreases are fairly small, close to one just-noticeable
difference (JND) [36].

Also in Scenario I, Figure 6 examines how CPU reduction,
i.e., reduction in the CPU share given to ALPHAS, affects
average VMAF degradation expressed as 𝑦𝑧,𝑣 in Constraint 8.
Figures 6a and 6b report the effect for OPT-ALPHAS and
SM-ALPHAS, respectively, when all streams in all zones
have the same priority. The two ALPHAS versions exhibit
similar profiles of VMAF degradation across all zones and
streams, with the degradation being up to 30% smaller with
OPT-ALPHAS. We also explore the impact for OPT-ALPHAS
and SM-ALPHAS, respectively, when streams have different
priorities. Figures 6c and 6d confirm that stream priorities
enable ALPHAS to utilize the computational resources more
flexibly. For example, when OPT-ALPHAS assigns priorities
0.25, 0.15, and 0.1 to streams S1, S2, and S3, respectively,
the highest priority allows stream S1 to significantly mitigate
VMAF degradation, from 130% to 59% across all zones for
CPU reduction of 80%. Similarly, stream priorities empower
SM-ALPHAS to alleviate the impact of CPU reduction on
VMAF degradation for high-priority streams.

Figure 7 shows the effect of stream priorities under CPU
reduction on CPU allocation patterns for OPT-ALPHAS and
SM-ALPHAS in Scenario I. The optimal OPT-ALPHAS solu-
tion and SM-ALPHAS partition the CPU between the streams
similarly across all examined levels of CPU reduction. In
Figure 7a where all streams have the same priority, streams

S1S2
ARTEMIS

S3 S1S2
 OPT

S3 S1S2
 SM

S3

(a)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

no
rm

al
ize

d
Qo

E

execution time

S1S2
ARTEMIS

S3 S1S2
 OPT

S3 S1S2
 SM

S3

(b)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

no
rm

al
ize

d
Qo

E

execution time

0

0.5

1

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0

0.5

1

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Fig. 8. Average normalized QoE and execution time in Scenario II for
ARTEMIS, OPT-ALPHAS, and SM-ALPHAS with: (a) identical priorities
and (b) different priorities.

S1, S2, and S3 receive substantially different CPU shares, e.g.,
about 17%, 33%, and 45%, respectively, for CPU reduction
of 73.3%. Hence, CPU partitioning by ALPHAS significantly
depends on not only stream priorities but also other factors,
such as the numbers of representation requests. Figure 7b,
where the streams have different priorities, confirm that stream
priorities do affect CPU allocation. For example, high-priority
stream S1 obtains a larger CPU share compared to low-priority
stream S3 as CPU reduction becomes more severe.

In Scenario II, Figure 8 reports average normalized QoE
for OPT-ALPHAS, SM-ALPHAS, and ARTEMIS. The coor-
dinated encoding of multiple streams enables the ALPHAS
variants to outperform ARTEMIS on QoE because, as we
discuss in Section II, ARTEMIS is unaware of the CDN edge
servers’ bandwidth allocations for video delivery to respective
client zones, and the aggregate bitrate of the representations
requested from a zone might greatly exceed the bottleneck
capacity. In contrast, ALPHAS explicitly accounts for the
CDNs’ bandwidth constraints to avoid the overload. Hence,
even the heuristic SM-ALPHAS variant provides higher QoE
than the optimal single-live ARTEMIS solution. Compared to
Figure 8a where all streams have the same priority, Figure 8b
shows that the use of different priorities tangibly affects QoE:
high-priority streams S1 and S3 attain substantially higher
QoE than low-priority stream S2. With either identical or
different priorities, both OPT-ALPHAS and SM-ALPHAS
variants consistently deliver better QoE than ARTEMIS.

8

Figure 8 also plots execution time for OPT-ALPHAS, SM-
ALPHAS, and ARTEMIS in Scenario II. With its reliance
on Gurobi, OPT-ALPHAS has average execution time of
approximately 0.5 seconds, which is acceptably low for the
evaluated settings. However, our additional (omitted due to
space constraints) experiments reveal that OPT-ALPHAS does
not scale up well with the numbers of streams, clients, and
zones. In those experiments, execution time of OPT-ALPHAS
reaches several minutes, making this ALPHAS variant un-
suitable for real-time operation. In contrast, SM-ALPHAS
significantly outperforms not only OPT-ALPHAS but also
ARTEMIS with respect to execution time in Scenario II (and
Scenario I) and exhibits excellent scalability in agreement with
Theorem 3.

VI. RELATED WORK

The main focus of this paper is the design and adaptation
of bitrate ladders, which are critical for the effectiveness of
HAS [37]. A variety of approaches address this challenge.

Static bitrate ladders. HAS typically operates with a static
bitrate ladder that remains fixed throughout the streaming
session. HTTP Live Streaming (HLS) [38] supersedes one
of the earliest solutions introduced by Apple for configuring
bitrate ladders and now rivals Dynamic Adaptive Streaming
over HTTP (DASH) [39] as a standard for HAS designs.
Additionally, video streaming providers, including Twitch [6],
YouTube [7], THEO [8], MUX [9], and Bitmovin [10], develop
custom settings, guidelines, and recommendations for video
encoding. However, a one-size-fits-all bitrate ladder fails to
ensure high QoE across diverse video content [11,40]. In-
adequate bitrate configurations can degrade video quality for
some content and waste bandwidth for others by disregarding
content-specific characteristics.

Content-aware bitrate ladders. Per-title encoding, pi-
oneered by Netflix [11], evaluates bitrate-resolution pairs
via VMAF to select optimal representations based on rate-
distortion curves. Per-chunk bitrate variation adjusts the bitrate
according to segment complexity [13]. Similarly, perceptual
per-shot bitrate ladders [12] split videos into shots using
scene detection, with [41] exploring the benefits of per-shot
encoding alongside users’ bandwidth and viewport size distri-
butions. Approaches such as [14]–[16] and [42]–[44] propose
JND-aware and other content-aware enhancements for video
representations. However, these methods do not consider the
streaming context.

Context-aware bitrate ladders. [17,19,45,46] design bi-
trate ladders by accounting for both content complexity and
network conditions. Specifically, [19] considers the user’s
quitting ratio and defines coding conditions to reduce the
likelihood of user abandonment. Despite these advancements,
such frameworks are still unsuitable for live streaming as they
do not adapt to the dynamic nature of the streaming context.

Dynamic bitrate ladders. While LALISA [20] dynamically
adjusts the bitrate ladder for a live stream to improve QoE for
the viewer, its approach faces scalability challenges, which
ARTEMIS overcomes by incorporating the mega-manifest

technique. ALPHAS further improves upon ARTEMIS by
employing VMAF instead of the peak signal-to-noise ratio
(PSNR) for video quality assessment, aligning more closely
with human perception. Continuous Bit Rate Slide (COBI-
RAS) [21] combines the capability of requesting a segment
at an arbitrary bitrate and just-in-time encoding of segments.
However, [20,21,24] focus on single-stream scenarios and
overlook encoder resource constraints, which are considera-
tions addressed in our research.

CDN-assisted bitrate ladder adaptation. Streaming plat-
forms routinely rely on CDNs for scalable caching and increas-
ingly collaborate with CDN providers on broader challenges,
in contrast to their historical reluctance to cooperate with
network operators [47]. In particular, CMCD [23] emerges as a
standard for transmitting client information to CDNs. In [48], a
CDN uses a Markov model to predict the next requested bitrate
and performs just-in-time transcoding, enabling immediate
delivery of video chunks at the needed bitrate. Light-weight
Transcoding at the Edge (LwTE) [49] enables edge servers to
optimize video storage and delivery by partially transcoding
popular chunks and dynamically generating lower bitrates
for unpopular chunks using metadata-accelerated transcod-
ing. [41] formulates bitrate-ladder design as an optimization
problem with constraints on the CDN capacity, cost, and
bandwidth, modeling client bandwidth and viewport sizes as
stationary random processes. Our CDN-assisted design targets
a different problem of multi-live streaming.

VII. CONCLUSION

This paper introduces and formulates the problem of multi-
live streaming, where an encoding service coordinates CDN-
assisted adaptation of bitrate ladders for multiple live streams.
In addition to accommodating the CDNs’ bandwidth con-
straints and encoder’s computational capabilities, the formula-
tion supports stream prioritization. To solve the problem, we
design the ALPHAS system that accounts for video content
and streaming context via real-time VMAF estimates and
scalable CDN-assisted feedback from clients, respectively.
Leveraging the submodular structure of the formulated prob-
lem, we equip the system with the practical SM-ALPHAS
approximation algorithm that attains a bounded theoretical
performance.

We implement and deploy ALPHAS in the EC2 cloud. Our
real-world experiments evaluate ALPHAS against the promi-
nent Twitch, YouTube, MUX, and ARTEMIS baselines that
encode each of the multiple streams independently. Our eval-
uation indicates that ALPHAS outperforms the three state-of-
the-art static bitrate ladders with multi-objective improvements
on QoE, end-to-end latency, stall duration, VMAF instability,
CPU utilization per stream, and average VMAF degradation
upon CPU reduction by up to 23%, 21%, 37%, 91%, 49%, and
10%, respectively. ALPHAS also delivers consistent multi-
objective performance improvements over ARTEMIS, with
QoE increases of up to 10% and 20% in the static and dynamic
subscription scenarios, respectively.

9

REFERENCES

[1] Sandvine, “The Global Internet Phenomena Report,” 2024. [Online].
Available: https://bit.ly/sandvine report

[2] Ericsson, “Ericsson Mobility Report,” 2024. [Online]. Available:
https://bit.ly/ericsson mobility report

[3] Z. Zheng, Y. Ma, Y. Liu, F. Yang, Z. Li, Y. Zhang, J. Zhang, W. Shi,
W. Chen, D. Li, Q. An, H. Hong, H. H. Liu, and M. Zhang, “XLINK:
QoE-Driven Multi-Path QUIC Transport in Large-Scale Video Services,”
in SIGCOMM, 2021, p. 418–432.

[4] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,
“A Survey on Bitrate Adaptation Schemes for Streaming Media Over
HTTP,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.
562–585, 2019.

[5] X. Zuo, J. Yang, M. Wang, and Y. Cui, “Adaptive Bitrate with User-
Level QoE Preference for Video Streaming,” in INFOCOM, 2022, pp.
1279–1288.

[6] Twitch, “Broadcasting Guidelines.” [Online]. Available: https://help.
twitch.tv/s/article/broadcasting-guidelines

[7] YouTube, “Choose Live Encoder Settings, Bitrates, and
Resolutions.” [Online]. Available: https://support.google.com/youtube/
answer/2853702

[8] THEOlive, “Stream Configuration.” [Online]. Available: https:
//developers.theo.live/docs/stream-configuration

[9] MUX, “Configure Broadcast Software.” [Online]. Available: https:
//docs.mux.com/guides/video/configure-broadcast-software

[10] Bitmovin, “Dashboard, Live Encoder.” [Online]. Available: https:
//bitmovin.com/dashboard/live

[11] A. Aaron, Z. Li, M. Manohara, J. De Cock, and D. Ronca, “Per-Title En-
code Optimization,” Netflix Technology Blog, 2015. [Online]. Available:
https://netflixtechblog.com/per-title-encode-optimization-7e99442b62a2

[12] I. Katsavounidis, “Dynamic Optimizer — A Perceptual Video Encoding
Optimization Framework,” Netflix Technology Blog, 2018. [Online].
Available: https://bit.ly/dynamic optimizer

[13] J. De Cock, Z. Li, M. Manohara, and A. Aaron, “Complexity-Based
Consistent-Quality Encoding in the Cloud,” in ICIP, 2016, pp. 1484–
1488.

[14] V. V. Menon, H. Amirpour, M. Ghanbari, and C. Timmerer,
“Perceptually-Aware Per-Title Encoding for Adaptive Video Streaming,”
in ICME, 2022, pp. 1–6.

[15] V. V. Menon, P. T. Rajendran, C. Feldmann, K. Schoeffmann, M. Ghan-
bari, and C. Timmerer, “JND-Aware Two-Pass Per-Title Encoding
Scheme for Adaptive Live Streaming,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 34, no. 2, pp. 1281–1294, 2024.

[16] H. Amirpour, R. Schatz, and C. Timmerer, “Between Two and Six?
Towards Correct Estimation of JND Step Sizes for VMAF-Based Bitrate
Laddering,” in QoMEX, 2022, pp. 1–4.

[17] T. Huang, R.-X. Zhang, and L. Sun, “Deep Reinforced Bitrate Ladders
for Adaptive Video Streaming,” in NOSSDAV, 2021, p. 66–73.

[18] P. Lebreton and K. Yamagishi, “Network and Content-Dependent Bitrate
Ladder Estimation for Adaptive Bitrate Video Streaming,” in ICASSP,
2021, pp. 4205–4209.

[19] ——, “Quitting Ratio-Based Bitrate Ladder Selection Mechanism for
Adaptive Bitrate Video Streaming,” IEEE Transactions on Multimedia,
vol. 25, pp. 8418–8431, 2023.

[20] F. Tashtarian, A. Bentaleb, H. Amirpour, B. Taraghi, C. Timmerer,
H. Hellwagner, and R. Zimmermann, “LALISA: Adaptive Bitrate Ladder
Optimization in HTTP-Based Adaptive Live Streaming,” in NOMS,
2023, pp. 1–9.

[21] M. Seufert, M. Spangenberger, F. Poignée, F. Wamser, W. Robitza,
C. Timmerer, and T. Hossfeld, “COBIRAS: Offering A Continuous
Bit Rate Slide to Maximize DASH Streaming Bandwidth Utilization,”
ACM Transactions on Multimedia Computing, Communications, and
Applications, 2024.

[22] J. Dilley, B. M. Maggs, J. Parikh, H. Prokop, R. K. Sitaraman, and
B. Weihl, “Globally Distributed Content Delivery,” IEEE Internet Com-
puting, vol. 6, no. 5, pp. 50–58, 2002.

[23] A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann,
“Common Media Client Data (CMCD): Initial Findings,” in NOSSDAV,
2021, p. 25–33.

[24] F. Tashtarian, A. Bentaleb, H. Amirpour, S. Gorinsky, J. Jiang, H. Hell-
wagner, and C. Timmerer, “ARTEMIS: Adaptive Bitrate Ladder Opti-
mization for Live Video Streaming,” in NSDI, 2024, pp. 591–611.

[25] S. Hasan, S. Gorinsky, C. Dovrolis, and R. K. Sitaraman, “Trade-Offs
in Optimizing the Cache Deployments of CDNs,” in INFOCOM, 2014,
pp. 460–468.

[26] H. Amirpour, J. Zhu, P. Le Callet, and C. Timmerer, “A Real-Time
Video Quality Metric for HTTP Adaptive Streaming,” in ICASSP, 2024,
pp. 3810–3814.

[27] Z. Li, C. Bampis, J. Novak, A. Aaron, K. Swanson, A. Moorthy, and
J. De Cock, “VMAF: The Journey Continues,” Netflix Technology Blog,
2018. [Online]. Available: https://bit.ly/4d6SrRE

[28] Blender, “Big Buck Bunny.” [Online]. Available: https://bit.ly/3YqoaZu
[29] FFmpeg, “FFmpeg.” [Online]. Available: https://www.ffmpeg.org
[30] J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness, Efficiency, and

Stability in HTTP-Based Adaptive Video Streaming with FESTIVE,” in
CoNEXT, 2012, p. 97–108.

[31] T. X. Tran and D. Pompili, “Adaptive Bitrate Video Caching and
Processing in Mobile-Edge Computing Networks,” IEEE Transactions
on Mobile Computing, vol. 18, no. 9, pp. 1965–1978, 2019.

[32] Y. Azar and I. Gamzu, “Efficient Submodular Function Maximization
under Linear Packing Constraints,” in ICALP, 2012, pp. 38–50.

[33] DASH Industry Forum, “Client Implementation for the Playback of
MPEG-DASH via Javascript.” [Online]. Available: https://github.com/
Dash-Industry-Forum/dash.js

[34] Gurobi Optimization, “Gurobi Optimizer.” [Online]. Available: https:
//www.gurobi.com/solutions/gurobi-optimizer

[35] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Comyco:
Quality-Aware Adaptive Video Streaming via Imitation Learning,” in
MM, 2019, p. 429–437.

[36] D. Yuan, T. Zhao, Y. Xu, H. Xue, and L. Lin, “Visual JND: A Perceptual
Measurement in Video Coding,” IEEE Access, vol. 7, pp. 29 014–29 022,
2019.

[37] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[38] Apple, “HTTP Live Streaming (HLS) Authoring Specification for
Apple Devices,” 2015. [Online]. Available: https://bit.ly/apple hls

[39] ISO/IEC. 2022, “Information Technology — Dynamic Adaptive Stream-
ing over HTTP (DASH) — Part 1: Media Presentation Description
and Segment Formats,” International Organization for Standardization,
International Standard 23009-1:2022, 2022.

[40] A. V. Katsenou, F. Zhang, K. Swanson, M. Afonso, J. Sole, and D. R.
Bull, “VMAF-Based Bitrate Ladder Estimation for Adaptive Streaming,”
in PCS, 2021, pp. 1–5.

[41] C. Chen, Y.-C. Lin, S. Benting, and A. Kokaram, “Optimized Transcod-
ing for Large Scale Adaptive Streaming Using Playback Statistics,” in
ICIP, 2018, pp. 3269–3273.

[42] A. Premkumar, P. T. Rajendran, V. V. Menon, A. Wieckowski, B. Bross,
and D. Marpe, “Quality-Aware Dynamic Resolution Adaptation Frame-
work for Adaptive Video Streaming,” in MMSys, 2024, p. 292–298.

[43] H. Amirpour, C. Timmerer, and M. Ghanbari, “PSTR: Per-Title Encod-
ing Using Spatio-Temporal Resolutions,” in ICME, 2021, pp. 1–6.

[44] M. Bhat, J.-M. Thiesse, and P. L. Callet, “Combining Video Quality
Metrics to Select Perceptually Accurate Resolution in A Wide Quality
Range: A Case Study,” in ICIP, 2021, pp. 2164–2168.

[45] Y. A. Reznik, K. O. Lillevold, A. Jagannath, J. Greer, and J. Corley,
“Optimal Design of Encoding Profiles for ABR Streaming,” in PV, 2018,
p. 43–47.

[46] L. Toni, R. Aparicio-Pardo, K. Pires, G. Simon, A. Blanc, and
P. Frossard, “Optimal Selection of Adaptive Streaming Representations,”
ACM Transactions on Multimedia Computing, Communications, and
Applications, vol. 11, no. 2s, 2015.

[47] L. Peroni, S. Gorinsky, and F. Tashtarian, “In-Band Quality Notification
from Users to ISPs,” in CloudNet, 2024, pp. 332–338.

[48] D. K. Krishnappa, M. Zink, and R. K. Sitaraman, “Optimizing the Video
Transcoding Workflow in Content Delivery Networks,” in MMSys, 2015,
pp. 37–48.

[49] A. Erfanian, H. Amirpour, F. Tashtarian, C. Timmerer, and H. Hell-
wagner, “LwTE: Light-Weight Transcoding at the Edge,” IEEE Access,
vol. 9, pp. 112 276–112 289, 2021.

10

