Theory of Formal Languages and Automata Lecture 24

Mahdi Dolati

Sharif University of Technology

Fall 2023

December 25, 2023

- Stephen Cook and Leonid Levin, 1970.
- NP-complete: If a polynomial time algorithm exists for any of these problems, all problems in NP would be polynomial time solvable.
- **Theoretical**: A researcher attempting to prove that P equals NP only needs to find a polynomial time algorithm for an NP-complete problem to achieve this goal.
- **Practical**: NP-complete is strong evidence of a problem's nonpolynomiality.

Polynomial Time Reducibility

• Definitions:

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *polynomial time computable function* if some polynomial time Turing machine M exists that halts with just f(w) on its tape, when started on any input w.

Language A is polynomial time mapping reducible, ¹or simply polynomial time reducible, to language B, written $A \leq_{\mathrm{P}} B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B.$$

The function *f* is called the *polynomial time reduction* of *A* to *B*.

 Polynomial time reducibility is the efficient analog to mapping reducibility.

Polynomial Time Reducibility

• A polynomial time reduction of A to B provides a way to convert membership testing in A to membership testing in B.

Polynomial Time Reducibility

Theorem

If $A \leq_p B$ and $B \in P$, then $A \in P$.

- Proof:
 - M: Polynomial time algorithm deciding B,
 - f: Polynomial time reduction from A to B,
 - Describe a polynomial time algorithm N deciding A:
 - N = "On input w:
 - 1. Compute f(w).
 - 2. Run M on input f(w) and output whatever M outputs."
 - $w \in A \rightarrow f(w) \in B \rightarrow M$ accept f(w),
 - $w \notin A \to f(w) \notin B \to M$ rejects f(w),
 - N runs in polynomial time.

Time Complexity NP-Completeness

• Definition:

A language B is **NP-complete** if it satisfies two conditions:

1. B is in NP, and

2. every *A* in NP is polynomial time reducible to *B*.

Theorem

If B is NP-complete and $B \in P$, then P = NP.

NP-Completeness

Theorem

If B is NP-complete and $B \leq_p C$ for $C \in NP$, then C is NP-complete.

- Proof:
 - We must show that every A ∈ NP is polynomial time reducible to C.
 - Since B is NPC, every language in NP is polynomial time reducible to B.
 - B, in turn, is polynomial time reducible to C.
 - Polynomial time reductions compose:
 - $A \leq_p B \leq_p C \to A \leq_p C$

- The first NP-complete problem: Satisfiability problem.
- Boolean variables,
- Boolean operations AND, OR, and NOT,
- A Boolean formula is an expression involving Boolean variables and operations:

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- A Boolean formula is satisfiable if some assignment of Os and 1s to the variables makes the formula evaluate to 1.
- Satisfiability problem:

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}.$

Cook–Levin Theorem

Theorem

SAT is NP-complete.

- Proof:
 - He and Stephen Cook independently discovered the existence of NP-complete problems.

Cook–Levin Theorem

Theorem

SAT is NP-complete.

- Proof Idea:
 - SAT is in NP.
 - Any language in NP is polynomial time reducible to SAT.
 - Take a string w and produce a Boolean formula ϕ .
 - ϕ simulates the NP machine for A on input w.
 - If the machine accepts, ϕ is satisfiable.
 - If the machine rejects, ϕ is not satisfiable.

Cook–Levin Theorem

Theorem

SAT is NP-complete.

- Proof:
 - N: A nondeterministic TM that decides A in n^k (A is in NP).
 - The formula corresponds to a computation history of N on input w.
 - We can represent a computation history in a $n^k \times n^k$ tableau.

Cook–Levin Theorem

- Proof cont.:
 - Q: set of states of N.
 - Γ: tape alphabet of N.
 - $C = Q \cup \Gamma \cup \{\#\}.$
 - A variable for every **cell** in the tableau and symbol in C:

$$x_{i,j,s} \in \{True, False\}, (i, j) \in tableau and s \in C.$$

 $x_{i,j,s} = True \rightarrow cell[i, j] = s.$

• The formula:

$$\phi = \phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}.$$

Cook–Levin Theorem

$$\bigvee_{s \in C} x_{i,j,s} = x_{i,j,s_1} \lor x_{i,j,s_2} \lor \dots \lor x_{i,j,s_l}$$

Time Complexity Cook-Levin Theorem

• Start configuration:

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge$$

$$x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge$$

$$x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}.$$

• Accept configuration:

$$\phi_{\text{accept}} = \bigvee_{1 \le i, j \le n^k} x_{i, j, q_{\text{accept}}}.$$

Cook–Levin Theorem

- Each row of the tableau corresponds to a configuration that legally follows the preceding row's configuration according to N's rules.
- We can check this by looking at windows of size 2×3 .
- Example (legal windows):

 $\delta(q_1, a) = \{(q_1, b, R)\}$

 $\delta(q_1, \mathbf{b}) \, = \, \{(q_2, \mathbf{c}, \mathbf{L}), (q_2, \mathbf{a}, \mathbf{R})\}$

Cook–Levin Theorem

- Each row of the tableau corresponds to a configuration that legally follows the preceding row's configuration according to N's rules.
- We can check this by looking at windows of size 2×3 .
- Example (illegal windows):

 $\delta(q_1, \mathsf{a}) = \{(q_1, \mathsf{b}, \mathsf{R})\}$

 $\delta(q_1, \mathbf{b}) \, = \, \{(q_2, \mathbf{c}, \mathbf{L}), (q_2, \mathbf{a}, \mathbf{R})\}$

Time Complexity Cook-Levin Theorem

• Legal movement:

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} (\text{the } (i, j) \text{-window is legal}).$$

- The (i, j)-window has cell[i, j] as the upper central position.
- Express the legality of each window by:

$$\bigvee_{\substack{a_1,...,a_6 \\ \text{is a legal window}}} \left(x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6} \right)$$

Cook–Levin Theorem

- Complexity of the reduction: Size of ϕ .
- Number of variables:
 - The tableau has $n^k \times n^k$ cells.
 - Each cell may contain one of l = |C| symbols.
 - *l* is a constant that does not depend on the input.
 - Thus, the number of variables is $O(n^{2k})$.
- Size of the formula:
 - ϕ_{cell} : Constant size for each cell: $O(n^{2k})$.
 - ϕ_{start} : Constant size for each cell in the first row: $O(n^k)$.
 - ϕ_{accept} : Constant size for each cell: $O(n^{2k})$.
 - ϕ_{move} : Constant size for each cell: $O(n^{2k})$.
 - $O(\log n)$: Extra coefficient for indices.

Time Complexity _{3SAT}

- 3SAT:
 - A literal is a Boolean variable or a negated Boolean variable,
 - A clause is several literals connected with OR,
 - A Boolean formula is in conjunctive normal form (cnf-formulat) is it comprises several clauses connected with AND:

 $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6}).$

• 3cnf-formula: All clauses has three literals:

 $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \land (x_4 \lor x_5 \lor x_6).$

• 3SAT:

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}.$

3SAT

Theorem

3SAT is NP-complete.

- Proof:
 - We can modify every formula to be in conjunctive normal form.
 - We can replicate a variable to have three literals per clause: $(a_1 \lor a_2) \rightarrow (a_1 \lor a_2 \lor a_2)$
 - We can use auxiliary variables to split large clauses into smaller ones that have at most three literals:

$$(a_1 \lor a_2 \lor \cdots \lor a_l)$$

• Replace with:

 $(a_1 \lor a_2 \lor z_1) \land (\overline{z_1} \lor a_3 \lor z_2) \land (\overline{z_2} \lor a_3 \lor z_3) \land \dots \land (\overline{z_{l-3}} \lor a_{l-1} \lor a_l)$

"Begin at the beginning, and go on till you come to the end: then stop."

- Lewis Carroll, Alice in Wonderland