Theory of Formal Languages and Automata
Lecture 22

Mahdi Dolati

Sharif University of Technology
Fall 2023

December 22, 2023

Time Complexity

* Solvability (or decidability) is not sufficient for
practical usages of an algorithm,

* |Inordinate amount of time or memory,

 Computation complexity theory,
* Time,
* Memory,
* Disk,
* Message.
* Our objective: Time complexity theory.

* Measure the time,
 Classify problems.

December22,2023 2

Measuring Complexity

* Example:

A = {0*1*¥| k > 0}

* Ais decidable.

* How much time does a single-tape TM need to
decide A?

M; = “On input string w:

1.

2.
3.
4

Scan across the tape and reject if a 0 is found to the right of a 1.
Repeat if both 0s and 1s remain on the tape:
Scan across the tape, crossing off a single 0 and a single 1.

If 0s still remain after all the 1s have been crossed off, or if 1s
still remain after all the Os have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

December 22, 2023

Measuring Complexity

* The time depends on several parameters,

* We can abstract all problem-specific parameters:
* Length of the representation of input,

* Worst-case analysis or average-case analysis?

* Longest possible running time on inputs of length n,
* Average running time on all inputs of length n.

e Definition:

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the maximum number of steps that M
uses on any input of length n. If f(n) is the running time of M,
we say that M runs in time f(n) and that M is an f(n) tme Tur-
ing machine. Customarily we use n to represent the length of the
input.

December22,2023 4

Measuring Complexity
Big-O and Small-O Notation

* Hide constant factors and coefficients,
* Avoid complex expressions,

* Use an estimate,

e A form of estimation: Asymptotic analysis.
* Consider large inputs,

* Keep the highest order term,
e Discard its coefficient,
 And lower order terms.

* Example:
e f(n) = 6n3 + 2n? + 20n + 45 - n3
* fis asymptotically at most n3

— 3
« f(n) = 0(n®)
December22,2023 s

Measuring Complexity
Big-O and Small-O Notation

e Definition:

Let f and g be functions f, g: N'— R ™. Say that f(n) = O(g(n))

if positive integers c and n exist such that for every integer n > ny,
f(n) < cg(n).

When f(n) = O(g(n)), we say that g(n) is an upper bound tor
f(n), or more precisely, that g(n) is an asymptotic upper bound for

f(n), to emphasize that we are suppressing constant factors.

* f(n) = 0(g(n))

 fisless than or equal to g if we disregard differences up to
a constant factor.

e O: a suppressed constant.

December 22, 2023

6

Measuring Complexity
Big-O and Small-O Notation

* Example:
« fi(n) =5n3+2n*+22n+6
* fi(n) = 0(n?)

e fi(n) <6n3forn=>10

* fi(n) = 0(n*)
* f1(n)is not 0(n?)

* Example:

* Change of the base in logarithm changes the value by a
constant factor:
* logyn =log,n/log, b
* Thus, we omit the base in O notation: f(n) = O(logn)

December 22, 2023

7

Measuring Complexity
Big-O and Small-O Notation

* Example:
* We can use the O notation in arithmetic expressions:
* f(n) =0(n*)+0Mm) =0(n?)
* Big-O in the exponent has the same meaning:
e f(n) =2°M 5 f(n) < 2" for some c.
* Example:

e f(n) =20008n) 5 £(nn) < n€ for some c.
° N = zloan

e f(n) =n°W 5 f(n) < n¢ for some c.

* Example:
* Polynomial bounds: Have the form n¢

* Exponential bounds: Have the form 27° for some & > 0.

December 22, 2023

Measuring Complexity
Big-O and Small-O Notation

* To say that one function is asymptotically less than
another, we use small-o notation.

* big-O and small-o are similar to < and <

* Definition:
Let f and g be functions f, g: N— R™. Say that f(n) = o(g(n))
if
lim m = ().
n— 0o g(n)
In other words, f(n) = o(g(n)) means that for any real number

¢ > (), a number ng exists, where f(n) < eg(n) for all n = ny.

* Example: n? = o(n?)
 Example: f(n) is never o(f(n))

December 22, 2023

Measuring Complexity

 Example: A = {oF1*| k > 0}

M; = “On input string w:

Stage 1:

1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat if both 0s and 1s remain on the tape:

3.
4

. It Os still remain after all the 1s have been crossed oft, or if 1s

Scan across the tape, crossing off a single 0 and a single 1.

still remain after all the 0s have been crossed off, reject. Other-
wise, if neither Os nor 1s remain on the tape, accept.”

» Scan the tape and go back: 2n = O(n)

State 2 and 3:

At most n/2 scans, each takes O(n) steps: (n/2)O(n)=0(n?)

State 4:

* One scan is sufficient to decide: O(n)

* The running time of the machine is O(n?)

December 22, 2023

10

Measuring Complexity

Classification

e Definition:

Let t: N—R™ be a function. Define the time complexity class,
TIME(Z(n)), to be the collection of all languages that are decid-
able by an O(t(n)) time Turing machine.

* Example: Consider the following language:

A= {0F1F| k > 0}
« A € TIME(n?)

December22,2023 11

Measuring Complexity

Classification

 We can decide A in O(n log n) with a better algorithm,

M5 = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat as long as some Os and some 1s remain on the tape:
3. Scan across the tape, checking whether the total number of
Os and 1s remaining is even or odd. If it is odd, reject.

4. Scan again across the tape, crossing off every other 0 starting
with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no 0s and no 1s remain on the tape, accept. Otherwise,
reject.”

December22,2023 12

Measuring Complexity

Classification

* We can decide A in O(n) with a two-tape TM.

M3 = “On input string w:

1. Scan across tape 1 and reject if a 0 is found to the right of a 1.

2. Scan across the 0s on tape 1 until the first 1. At the same time,
copy the Os onto tape 2.

3. Scan across the 1s on tape 1 until the end of the input. For each
1 read on tape 1, cross off a 0 on tape 2. If all Os are crossed off
before all the 1s are read, reject.

4. If all the Os have now been crossed off, accept. If any Os remain,

reject.”

December 22, 2023

13

Measuring Complexity

Classification

* We learned that according to the Church-Turing thesis all
reasonable models of computation are equivalent.

* However, in complexity theory, the choice of the model affects

the time complexity of the language.
e Single-tape TM,
e Multitape TM,
* Nondeterministic TM.

December22,2023 1

Measuring Complexity
Complexity Relationships Among Models
* Definition:

Let N be a nondeterministic Turing machine that is a decider. The
running time of N is the function f: N— N, where f(n) is the
maximum number of steps that N uses on any branch of its com-
putation on any input of length n, as shown in the following figure.

Deterministic Nondeterministic

fin) reject” fn)

1 _aceept

l i _accept/reject 1 _reject l

December22,2023 15

Measuring Complexity
Complexity Relationships Among Models

Theorem

Let t(n) be a function, where t(n) = n. Then every t(n) time multitape TM has an
equivalent O(t%(n)) time single-tape TM.

* Proof Idea:
* Previously we saw it is possible to simulate a multitape TM with a
single-tape TM.
* We analyze the simulation.

* We show that the single-tape TM can simulate each step of the
multitape TM with at most O(t(n)) steps.

December22,2023 15

Measuring Complexity
Complexity Relationships Among Models

Theorem

Let t(n) be a function, where t(n) = n. Then every t(n) time multitape TM has an
equivalent O(t%(n)) time single-tape TM.

* Proof:

e Each step of the multitape TM:
* Initialize the time: 0 (n)
* Read symbols under all heads: 0 (t(n))
* Move heads: 0(t(n))
* Update the tapes (possibly shift to right): O (t(n))
* The entire simulation involves simulation of t(n) steps of the multitape
TM:

t(n) x 0(t(n)) = 0(t%(n))

December22,2023 17

Measuring Complexity
Complexity Relationships Among Models

Theorem

Let t(n) be a function, where t(n) = n. Then every t(n) time nondeterministic
single-tape TM has an equivalent 0(2°(()) time deterministic single-tape TM.

* Proof:
* N: A nondeterministic TM running in t(n).
D: a deterministic TM that simulates N.
b: maximum choice by N’s transition function.

Simulation explores the computation branches of N in a breadth-first
search manner.

The total number of nodes in the computation tree is bounded by

0(bt(). Reaching each node takes at most O(t(n)):
O(t(n)bt(")) — 20(t(n))

Simulating the tree tapes at most squares the running time:

(20(t))* = 20(2tM) = 20((V)

December 22, 2023

18

Measuring Complexity
The Class P

* We observe an exponential difference between the
time complexity of problems on deterministic and
nondeterministic TMs.

* Polynomial difference is small.

* Exponential difference is large.
* n=1000
* n3 is one billion
« 2™ larger than the number of atoms in the
universe
* Exponential time algorithms rarely are useful:

* brute-force search

December 22, 2023

19

Measuring Complexity
The Class P

* All reasonable deterministic computational models
are polynomially equivalent.

* We focus on fundamental properties of computation:

* Aspects of time complexity theory that are unaffected by
polynomial differences in running time.

* Develop a theory that doesn’t depend on the selection of a
particular model of computation.

December22,2023 1

Measuring Complexity
The Class P

e Definition:

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = | JTIME(n).
k

* Pis invariant for all models of computation that are
polynomially equivalent to the deterministic single-
tape Turing machine,

* Pis a mathematically robust class.

* P roughly corresponds to the class of problems that
are realistically solvable on a computer.

December 22, 2023

21

Measuring Complexity
The Class P

Theorem

PATH € P.

* Brute force: Examining all potential paths in a graph with m
nodes is not efficient. Number of all paths is roughly m™.

Proof: A polynomial time algorithm:

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:
3. Scan all the edges of G. If an edge (a, b) is found going from

a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

Stage 1 and 4 are executed once.

Stage 3 is executed m times (each time one node is marked).

Each stage can be implemented in polynomial time.

December 22, 2023

22

	Slide 1: Theory of Formal Languages and Automata Lecture 22
	Slide 2: Time Complexity
	Slide 3: Measuring Complexity
	Slide 4: Measuring Complexity
	Slide 5: Measuring Complexity Big-O and Small-O Notation
	Slide 6: Measuring Complexity Big-O and Small-O Notation
	Slide 7: Measuring Complexity Big-O and Small-O Notation
	Slide 8: Measuring Complexity Big-O and Small-O Notation
	Slide 9: Measuring Complexity Big-O and Small-O Notation
	Slide 10: Measuring Complexity
	Slide 11: Measuring Complexity Classification
	Slide 12: Measuring Complexity Classification
	Slide 13: Measuring Complexity Classification
	Slide 14: Measuring Complexity Classification
	Slide 15: Measuring Complexity Complexity Relationships Among Models
	Slide 16: Measuring Complexity Complexity Relationships Among Models
	Slide 17: Measuring Complexity Complexity Relationships Among Models
	Slide 18: Measuring Complexity Complexity Relationships Among Models
	Slide 19: Measuring Complexity The Class P
	Slide 20: Measuring Complexity The Class P
	Slide 21: Measuring Complexity The Class P
	Slide 22: Measuring Complexity The Class P

