
Theory of Formal Languages and Automata
Lecture 22

Mahdi Dolati

Sharif University of Technology

Fall 2023

December 22, 2023

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Time Complexity

• Solvability (or decidability) is not sufficient for
practical usages of an algorithm,
• Inordinate amount of time or memory,

• Computation complexity theory,
• Time,

• Memory,

• Disk,

• Message.

• Our objective: Time complexity theory.
• Measure the time,

• Classify problems.

2

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity

• Example:

• A is decidable.

• How much time does a single-tape TM need to
decide A?

3

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity

• The time depends on several parameters,

• We can abstract all problem-specific parameters:
• Length of the representation of input,

• Worst-case analysis or average-case analysis?
• Longest possible running time on inputs of length n,

• Average running time on all inputs of length n.

• Definition:

4

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Big-O and Small-O Notation

• Hide constant factors and coefficients,

• Avoid complex expressions,

• Use an estimate,
• A form of estimation: Asymptotic analysis.

• Consider large inputs,

• Keep the highest order term,
• Discard its coefficient,

• And lower order terms.

• Example:
• 𝑓 𝑛 = 6𝑛3 + 2𝑛2 + 20𝑛 + 45 → 𝑛3

• f is asymptotically at most 𝑛3

• 𝑓 𝑛 = 𝑂(𝑛3)

5

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Big-O and Small-O Notation

• Definition:

• 𝑓 𝑛 = 𝑂(𝑔 𝑛)
• f is less than or equal to g if we disregard differences up to

a constant factor.

• O: a suppressed constant.

6

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Big-O and Small-O Notation

• Example:
• 𝑓1 𝑛 = 5𝑛3 + 2𝑛2 + 22𝑛 + 6

• 𝑓1 𝑛 = O(n3)
• 𝑓1 𝑛 ≤ 6𝑛3 for 𝑛 ≥ 10

• 𝑓1 𝑛 = 𝑂(𝑛4)

• 𝑓1 𝑛 is not 𝑂(𝑛2)

• Example:
• Change of the base in logarithm changes the value by a

constant factor:
• log𝑏 𝑛 = log2 𝑛 / log2 𝑏

• Thus, we omit the base in O notation: 𝑓 𝑛 = 𝑂(log 𝑛)

7

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Big-O and Small-O Notation

• Example:
• We can use the O notation in arithmetic expressions:

• 𝑓 𝑛 = 𝑂 𝑛2 + 𝑂 𝑛 = 𝑂(𝑛2)

• Big-O in the exponent has the same meaning:
• 𝑓 𝑛 = 2𝑂(𝑛) → 𝑓 𝑛 ≤ 2𝑐𝑛 for some c.

• Example:
• 𝑓 𝑛 = 2𝑂(log 𝑛) → 𝑓 𝑛 ≤ 𝑛𝑐 for some c.

• 𝑛 = 2log2 𝑛

• 𝑓 𝑛 = 𝑛𝑂(1) → 𝑓 𝑛 ≤ 𝑛𝑐 for some c.

• Example:
• Polynomial bounds: Have the form 𝑛𝑐

• Exponential bounds: Have the form 2𝑛𝛿
for some 𝛿 > 0.

8

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Big-O and Small-O Notation

• To say that one function is asymptotically less than
another, we use small-o notation.
• big-O and small-o are similar to ≤ and <

• Definition:

• Example: 𝑛2 = 𝑜 𝑛3

• Example: f(n) is never o(f(n))

9

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity

• Example:

• Stage 1:
• Scan the tape and go back: 2n = O(n)

• State 2 and 3:
• At most n/2 scans, each takes O(n) steps: (n/2)O(n)=O(𝑛2)

• State 4:
• One scan is sufficient to decide: O(n)

• The running time of the machine is O(𝑛2)

10

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Classification

• Definition:

• Example: Consider the following language:

• 𝐴 ∈ TIME(𝑛2)

11

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Classification

• We can decide A in O(n log n) with a better algorithm,

• We can decide A in O(n) with a two-tape TM.

12

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Classification

• We can decide A in O(n log n) with a better algorithm,

• We can decide A in O(n) with a two-tape TM.

13

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Classification

• We can decide A in O(n log n) with a better algorithm,

• We can decide A in O(n) with a two-tape TM.

• We learned that according to the Church-Turing thesis all
reasonable models of computation are equivalent.

• However, in complexity theory, the choice of the model affects
the time complexity of the language.

• Single-tape TM,

• Multitape TM,

• Nondeterministic TM.

14

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Complexity Relationships Among Models

• Definition:

15

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Complexity Relationships Among Models

• Proof Idea:
• Previously we saw it is possible to simulate a multitape TM with a

single-tape TM.

• We analyze the simulation.

• We show that the single-tape TM can simulate each step of the
multitape TM with at most O(t(n)) steps.

16

Theorem

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time multitape TM has an
equivalent O(𝑡2(n)) time single-tape TM.

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Complexity Relationships Among Models

• Proof:
• Each step of the multitape TM:

• Initialize the time: 𝑂(𝑛)

• Read symbols under all heads: 𝑂(𝑡(𝑛))

• Move heads: 𝑂(𝑡(𝑛))

• Update the tapes (possibly shift to right): 𝑂(𝑡(𝑛))

• The entire simulation involves simulation of t(n) steps of the multitape
TM:

𝑡 𝑛 × 𝑂 𝑡 𝑛 = 𝑂(𝑡2(𝑛))

17

Theorem

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time multitape TM has an
equivalent O(𝑡2(n)) time single-tape TM.

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
Complexity Relationships Among Models

• Proof:
• N: A nondeterministic TM running in t(n).

• D: a deterministic TM that simulates N.

• b: maximum choice by N’s transition function.

• Simulation explores the computation branches of N in a breadth-first
search manner.

• The total number of nodes in the computation tree is bounded by
O(b𝑡(𝑛)). Reaching each node takes at most O(t(n)):

𝑂 𝑡 𝑛 𝑏𝑡 𝑛 = 2𝑂(𝑡(𝑛))

• Simulating the tree tapes at most squares the running time:

2𝑂(𝑡(𝑛)) 2
= 2𝑂(2𝑡(𝑛)) = 2𝑂(𝑡(𝑛))

18

Theorem

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time nondeterministic
single-tape TM has an equivalent O(2𝑂(𝑡(𝑛))) time deterministic single-tape TM.

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
The Class P

• We observe an exponential difference between the
time complexity of problems on deterministic and
nondeterministic TMs.

• Polynomial difference is small.

• Exponential difference is large.
• n=1000
• 𝑛3 is one billion
• 2𝑛 larger than the number of atoms in the

universe

• Exponential time algorithms rarely are useful:
• brute-force search

19

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
The Class P

• All reasonable deterministic computational models
are polynomially equivalent.

• We focus on fundamental properties of computation:
• Aspects of time complexity theory that are unaffected by

polynomial differences in running time.

• Develop a theory that doesn’t depend on the selection of a
particular model of computation.

20

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
The Class P

• Definition:

• P is invariant for all models of computation that are
polynomially equivalent to the deterministic single-
tape Turing machine,
• P is a mathematically robust class.

• P roughly corresponds to the class of problems that
are realistically solvable on a computer.

21

Mahdi Dolati (Sharif Univ. Tech.) TFLA December 22, 2023

Measuring Complexity
The Class P

• Brute force: Examining all potential paths in a graph with m
nodes is not efficient. Number of all paths is roughly 𝑚𝑚.

• Proof: A polynomial time algorithm:

• Stage 1 and 4 are executed once.

• Stage 3 is executed m times (each time one node is marked).

• Each stage can be implemented in polynomial time.

22

Theorem

PATH ϵ P.

	Slide 1: Theory of Formal Languages and Automata Lecture 22
	Slide 2: Time Complexity
	Slide 3: Measuring Complexity
	Slide 4: Measuring Complexity
	Slide 5: Measuring Complexity Big-O and Small-O Notation
	Slide 6: Measuring Complexity Big-O and Small-O Notation
	Slide 7: Measuring Complexity Big-O and Small-O Notation
	Slide 8: Measuring Complexity Big-O and Small-O Notation
	Slide 9: Measuring Complexity Big-O and Small-O Notation
	Slide 10: Measuring Complexity
	Slide 11: Measuring Complexity Classification
	Slide 12: Measuring Complexity Classification
	Slide 13: Measuring Complexity Classification
	Slide 14: Measuring Complexity Classification
	Slide 15: Measuring Complexity Complexity Relationships Among Models
	Slide 16: Measuring Complexity Complexity Relationships Among Models
	Slide 17: Measuring Complexity Complexity Relationships Among Models
	Slide 18: Measuring Complexity Complexity Relationships Among Models
	Slide 19: Measuring Complexity The Class P
	Slide 20: Measuring Complexity The Class P
	Slide 21: Measuring Complexity The Class P
	Slide 22: Measuring Complexity The Class P

