Theory of Formal Languages and Automata Lecture 22

Mahdi Dolati

Sharif University of Technology

Fall 2023

December 22, 2023

Time Complexity

- Solvability (or decidability) is not sufficient for practical usages of an algorithm,
 - Inordinate amount of time or memory,
- Computation complexity theory,
 - Time,
 - Memory,
 - Disk,
 - Message.
- Our objective: Time complexity theory.
 - Measure the time,
 - Classify problems.

• Example:

$$A = \{ \mathbf{0}^k \mathbf{1}^k | \ k \ge 0 \}$$

- A is decidable.
- How much time does a single-tape TM need to decide A?
 - $M_1 =$ "On input string w:
 - 1. Scan across the tape and *reject* if a 0 is found to the right of a 1.
 - 2. Repeat if both 0s and 1s remain on the tape:
 - 3. Scan across the tape, crossing off a single 0 and a single 1.
 - 4. If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."

- The time depends on several parameters,
- We can abstract all problem-specific parameters:
 - Length of the representation of input,
- Worst-case analysis or average-case analysis?
 - Longest possible running time on inputs of length n,
 - Average running time on all inputs of length n.
- Definition:

Let M be a deterministic Turing machine that halts on all inputs. The *running time* or *time complexity* of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that Muses on any input of length n. If f(n) is the running time of M, we say that M runs in time f(n) and that M is an f(n) time Turing machine. Customarily we use n to represent the length of the input.

Big-O and Small-O Notation

- Hide constant factors and coefficients,
- Avoid complex expressions,
- Use an estimate,
 - A form of estimation: Asymptotic analysis.
 - Consider large inputs,
 - Keep the highest order term,
 - Discard its coefficient,
 - And lower order terms.

• Example:

- $f(n) = 6n^3 + 2n^2 + 20n + 45 \rightarrow n^3$
- f is asymptotically at most n^3
- $f(n) = O(n^3)$

Big-O and Small-O Notation

• Definition:

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$,

 $f(n) \le c g(n).$

When f(n) = O(g(n)), we say that g(n) is an **upper bound** for f(n), or more precisely, that g(n) is an **asymptotic upper bound** for f(n), to emphasize that we are suppressing constant factors.

- f(n) = O(g(n))
 - f is less than or equal to g if we disregard differences up to a constant factor.
 - O: a suppressed constant.

Big-O and Small-O Notation

- Example:
 - $f_1(n) = 5n^3 + 2n^2 + 22n + 6$
 - $f_1(n) = O(n^3)$
 - $f_1(n) \le 6n^3$ for $n \ge 10$
 - $f_1(n) = O(n^4)$
 - $f_1(n)$ is not $O(n^2)$
- Example:
 - Change of the base in logarithm changes the value by a constant factor:
 - $\log_b n = \log_2 n / \log_2 b$
 - Thus, we omit the base in O notation: $f(n) = O(\log n)$

Big-O and Small-O Notation

- Example:
 - We can use the O notation in arithmetic expressions:

•
$$f(n) = O(n^2) + O(n) = O(n^2)$$

- Big-O in the exponent has the same meaning:
 - $f(n) = 2^{O(n)} \rightarrow f(n) \le 2^{cn}$ for some c.
- Example:

•
$$f(n) = 2^{O(\log n)} \rightarrow f(n) \le n^c$$
 for some c.
• $n = 2^{\log_2 n}$

•
$$f(n) = n^{O(1)} \rightarrow f(n) \le n^c$$
 for some c.

- Example:
 - Polynomial bounds: Have the form n^c
 - Exponential bounds: Have the form $2^{n^{\delta}}$ for some $\delta > 0$.

Big-O and Small-O Notation

- To say that one function is asymptotically less than another, we use small-o notation.
 - big-O and small-o are similar to \leq and <
- Definition:

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = o(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

In other words, f(n) = o(g(n)) means that for any real number c > 0, a number n_0 exists, where f(n) < c g(n) for all $n \ge n_0$.

- **Example**: $n^2 = o(n^3)$
- Example: f(n) is never o(f(n))

- **Example**: $A = \{0^k 1^k | k \ge 0\}$
 - $M_1 =$ "On input string w:
 - 1. Scan across the tape and *reject* if a 0 is found to the right of a 1.
 - 2. Repeat if both 0s and 1s remain on the tape:
 - 3. Scan across the tape, crossing off a single 0 and a single 1.
 - **4.** If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have been crossed off, *reject*. Otherwise, if neither 0s nor 1s remain on the tape, *accept*."
- Stage 1:
 - Scan the tape and go back: 2n = O(n)
- State 2 and 3:
 - At most n/2 scans, each takes O(n) steps: $(n/2)O(n)=O(n^2)$
- State 4:
 - One scan is sufficient to decide: O(n)
- The running time of the machine is $O(n^2)$

Measuring Complexity Classification

• Definition:

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the *time complexity class*, **TIME**(t(n)), to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

• Example: Consider the following language:

$$A = \{\mathbf{0}^k \mathbf{1}^k | k \ge 0\}$$

• $A \in TIME(n^2)$

- We can decide A in O(n log n) with a better algorithm,
- We can decide A in O(n) with a two-tape TM.
 - $M_2 =$ "On input string w:
 - 1. Scan across the tape and *reject* if a 0 is found to the right of a 1.
 - 2. Repeat as long as some 0s and some 1s remain on the tape:
 - **3.** Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, *reject*.
 - 4. Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
 - 5. If no 0s and no 1s remain on the tape, *accept*. Otherwise, *reject*."

Measuring Complexity Classification

- We can decide A in O(n log n) with a better algorithm,
- We can decide A in O(n) with a two-tape TM.
 - $M_3 =$ "On input string w:
 - 1. Scan across tape 1 and *reject* if a 0 is found to the right of a 1.
 - 2. Scan across the 0s on tape 1 until the first 1. At the same time, copy the 0s onto tape 2.
 - 3. Scan across the 1s on tape 1 until the end of the input. For each 1 read on tape 1, cross off a 0 on tape 2. If all 0s are crossed off before all the 1s are read, *reject*.
 - 4. If all the 0s have now been crossed off, *accept*. If any 0s remain, *reject*."

Measuring Complexity Classification

- We can decide A in O(n log n) with a better algorithm,
- We can decide A in O(n) with a two-tape TM.

- We learned that according to the Church-Turing thesis all reasonable models of computation are equivalent.
- However, in complexity theory, the choice of the model affects the time complexity of the language.
 - Single-tape TM,
 - Multitape TM,
 - Nondeterministic TM.

Measuring Complexity Complexity Relationships Among Models

• Definition:

Let N be a nondeterministic Turing machine that is a decider. The *running time* of N is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that N uses on any branch of its computation on any input of length n, as shown in the following figure.

Complexity Relationships Among Models

Theorem

Let t(n) be a function, where t(n) \geq n. Then every t(n) time multitape TM has an equivalent O($t^2(n)$) time single-tape TM.

- Proof Idea:
 - Previously we saw it is possible to simulate a multitape TM with a single-tape TM.
 - We analyze the simulation.
 - We show that the single-tape TM can simulate each step of the multitape TM with at most O(t(n)) steps.

Complexity Relationships Among Models

Theorem

Let t(n) be a function, where t(n) \geq n. Then every t(n) time multitape TM has an equivalent O($t^2(n)$) time single-tape TM.

- Proof:
 - Each step of the multitape TM:
 - Initialize the time: O(n)
 - Read symbols under all heads: O(t(n))
 - Move heads: O(t(n))
 - Update the tapes (possibly shift to right): O(t(n))
 - The entire simulation involves simulation of t(n) steps of the multitape TM:

$$t(n) \times O(t(n)) = O(t^2(n))$$

Complexity Relationships Among Models

Theorem

Let t(n) be a function, where t(n) \geq n. Then every t(n) time nondeterministic single-tape TM has an equivalent $O(2^{O(t(n))})$ time deterministic single-tape TM.

- Proof:
 - N: A nondeterministic TM running in t(n).
 - D: a deterministic TM that simulates N.
 - b: maximum choice by N's transition function.
 - Simulation explores the computation branches of N in a breadth-first search manner.
 - The total number of nodes in the computation tree is bounded by $O(b^{t(n)})$. Reaching each node takes at most O(t(n)): $O(t(n)b^{t(n)}) = 2^{O(t(n))}$
 - Simulating the tree tapes at most squares the running time:

$$(2^{O(t(n))})^2 = 2^{O(2t(n))} = 2^{O(t(n))}$$

Measuring Complexity The Class P

- We observe an exponential difference between the time complexity of problems on deterministic and nondeterministic TMs.
- Polynomial difference is small.
- Exponential difference is large.
 - n=1000
 - n^3 is one billion
 - 2ⁿ larger than the number of atoms in the universe
- Exponential time algorithms rarely are useful:
 - brute-force search

Measuring Complexity The Class P

- All reasonable deterministic computational models are polynomially equivalent.
- We focus on fundamental properties of computation:
 - Aspects of time complexity theory that are unaffected by polynomial differences in running time.
 - Develop a theory that doesn't depend on the selection of a particular model of computation.

Measuring Complexity The Class P

• Definition:

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words, $\mathbf{P} = \bigcup \text{TIME}(n^k).$

- P is invariant for all models of computation that are polynomially equivalent to the deterministic single-tape Turing machine,
 - P is a mathematically robust class.
- P roughly corresponds to the class of problems that are realistically solvable on a computer.

The Class P

Theorem		
path e P.		

 Brute force: Examining all potential paths in a graph with m nodes is not efficient. Number of all paths is roughly m^m.

• **Proof**: A polynomial time algorithm:

- M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:
 - 1. Place a mark on node s.
 - 2. Repeat the following until no additional nodes are marked:
 - 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
 - 4. If t is marked, accept. Otherwise, reject."
- Stage 1 and 4 are executed once.
- Stage 3 is executed m times (each time one node is marked).
- Each stage can be implemented in polynomial time.