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Reducibility

• Reducibility: The primary method for proving that 
problems are computationally unsolvable. 

• Reduction: 
• Convert one problem to another,

• The solution to the 2nd is usable to the 1st. 

• If problem A reduces to problem B, then

• We can use solution to B to solve A. 
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Reducibility

• Example: 
• A: Find your way in the city. 

• B: But a map. 

• Example: 
• A: Find the area of a rectangle, 

• B: Find the length and width of the rectangle. 

• Example: 
• A: Solve a system of linear equations, 

• B: Invert a matrix. 
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Reducibility

• We can classify problems with reduction:
• A is reducible to B: Solving A is not harder than solving B. 

• Decidability:
• A is reducible to B: 

If B is decidable, then A is decidable. 

• A is reducible to B:

If A is undecidable, then B is undecidable. 

• Complexity. 
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Reducibility

• The halting problem: 

• Proof Idea: By contradiction. 
• Assume that 𝐻𝐴𝐿𝑇𝑇𝑀 is decidable. I.e., there is TM R that 

decides 𝐻𝐴𝐿𝑇𝑇𝑀. 
• Construct S, a TM that decides 𝐴𝑇𝑀.

• Given an input of the form 𝑀, 𝑤 , 
• Give 𝑀, 𝑤 to R. Since R is a decider it always halts. 

• If R rejects the input, M rejects w by looping. So, S rejects 𝑀, 𝑤 . 
• If R accepts the input, M halts on w. So, simulate M on w and report 

its result. 

• A contradiction, as 𝐴𝑇𝑀 can not have a decider. 
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Theorem

𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable. 
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Reducibility

• The halting problem: 

• Proof: By contradiction. 
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Reducibility

• The emptiness problem: 

• Proof Idea: By contradiction. 
• Let R be a TM that decides 𝐸𝑇𝑀. 

• We want to build a TM S that decides 𝐴𝑇𝑀. 

• On input 𝑀, 𝑤 , modify 𝑀 to only accept w. 

• Call R on the modified machine. If its language is empty, 
then M rejects w. Otherwise, M accepts w. 
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Reducibility

• The emptiness problem: 

• Proof: By contradiction. 
• Let R be a TM that decides 𝐸𝑇𝑀. 

• We want to build a TM S that decides 𝐴𝑇𝑀. 

• On input 𝑀, 𝑤 , modify 𝑀 to only accept w. Call it M1:
• Need some new states and some checks to test x=w.  
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Reducibility

• The emptiness problem: 

• Proof: By contradiction. 
• Let R be a TM that decides 𝐸𝑇𝑀. 

• We want to build a TM S that decides 𝐴𝑇𝑀. 

• On input 𝑀, 𝑤 , modify 𝑀 to only accept w. Call it M1.

• Put things together: 
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Theorem

𝐸𝑇𝑀 is undecidable. 
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Reducibility

• Is the language of a TM regular? 

• Proof: By contradiction. 
• Let R be a TM that decides 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀. 

• We want to build a TM S that decides 𝐴𝑇𝑀. 

• On input 𝑀, 𝑤 , modify 𝑀 to recognize a regular 
language if M accepts w. Call it M2. Otherwise, M2 
recognize a nonregular language:
• Regular language: Σ∗

• Nonregular language: 0𝑛1𝑛 𝑛 ≥ 0}
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𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is undecidable. 

Accept all strings in 0𝑛1𝑛 𝑛 ≥ 0}. 
If w was accepted, accept all other 

strings. 
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Reducibility

• Is the language of a TM regular? 

• Proof: By contradiction. 
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Reducibility

• Similar to 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀, the problems of testing 
whether the language of a Turing machine is:
• a context-free language, 

• a decidable language, 

• a finite language 

• are undecidable. 

14

Rice’s Theorem

Determining any property of the languages recognized 
by Turing machines is undecidable.
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Reducibility

• The equivalency problem: 

• Proof: By contradiction. 
• Let R be a TM that decides 𝐸𝑄𝑇𝑀. 

• We want to build a TM S that decides 𝑬𝑻𝑴. 

• On input 𝑀 , build M1 that rejects all strings and check 
their equivalency. 
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𝐸𝑄𝑇𝑀 is undecidable. 
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Reducibility
Computation Histories

• An important technique to reduce languages,
• Often useful when the language involves testing for the 

existence of something:
• The existence of integral roots in a polynomial.

• The computation history for a Turing machine on an 
input is simply the sequence of configurations that 
the machine goes through as it processes the input.
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Reducibility
Computation Histories

• Computation histories are finite sequences.
• If M doesn’t halt on w, no accepting or rejecting computation 

history exists for M on w. 

• Deterministic machines have at most one computation 
history on any given input. Nondeterministic machines 
may have many computation histories on a single input, 
corresponding to the various computation branches. 
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Reducibility
Computation Histories

• A Turing machine with a limited amount of memory:

• Tape has sufficient squares to store the input. 

• With the tape alphabet increase the memory up to a 
constant factor. 

• We say: For an input of length n, the amount of 
memory available is linear in n.
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Reducibility
Computation Histories

• A Turing machine with a limited amount of memory:
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Reducibility
Computation Histories

• Linear Bounded Automata (LBA):
• Can decide:

• 𝐴𝐷𝐹𝐴

• 𝐴𝐶𝐹𝐺

• 𝐸𝐷𝐹𝐴

• 𝐸𝐶𝐹𝐺

• CFLs
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Reducibility

• Proof: 
• A configuration = A snapshot in the middle of its 

computation. 
• A configuration consists of the state of the control, position 

of the head, and contents of the tape. 
• M has q states. 
• The length of its tape is n, so the head can be in one of n 

positions, and 
• 𝑔𝑛 possible strings of tape symbols appear on the tape. 

• The product of these three quantities is the total number 
of different configurations of M with a tape of length n.
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Lemma

Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly  
𝑞𝑛𝑔𝑛 distinct configurations of M for a tape of length n.
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Reducibility

• The acceptance problem for LBAs:  

• Proof Idea: To decide whether LBA M accepts input 
w:
• If M ever repeats a configuration, it would go on a loop.

• M can be in only a limited number of configurations.  

• Simulate M for the maximum number of steps 𝑞𝑛𝑔𝑛.
• If M has not halted, reject. 
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Theorem

𝐴𝐿𝐵𝐴 is decidable. 
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Reducibility

• The acceptance problem for LBAs:  

• Proof: To decide whether LBA M accepts input w:
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Theorem
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Reducibility

• The emptiness problem for LBAs:  

• Proof Idea: By reduction from 𝐴𝑇𝑀.
• On input 𝑀, 𝑤 , construct LBA B:

• B recognizes the language comprises all accepting computation 
histories for M on w. 

• If M accepts w ⇾ The language contains one string, 

• If M does not accept w ⇾ The language is empty. 

• Check whether the language of B is empty. 
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Theorem

𝐸𝐿𝐵𝐴 is undecidable. 
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Reducibility

• The emptiness problem for LBAs:  

• Proof Idea: By reduction from 𝐴𝑇𝑀.
• How to construct B from M and w?

• B should accept a string x if x is an accepting computation 
history for M on w. 

• This string can be of the following form:
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Theorem

𝐸𝐿𝐵𝐴 is undecidable. 
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Reducibility

• The emptiness problem for LBAs:  

• Proof Idea: By reduction from 𝐴𝑇𝑀.
• How to construct B from M and w? Check the following:
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Reducibility

• The emptiness problem for LBAs:  

• Proof: By contradiction:
• Assume that 𝐴𝐿𝐿𝐶𝐹𝐺 is decidable, 

• Show that 𝐴𝑇𝑀 is decidable. 

• On input 𝑀, 𝑤 , construct a CFG G:
• If M does not accept w, G generates all strings,

• If M accepts w, G does not generate the accepting computation 
history for M on w.  
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Theorem

𝐴𝐿𝐿𝐶𝐹𝐺  is undecidable. 
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Reducibility

• CFG G:
• If M does not accept w, G generates all strings,

• If M accepts w, G does not generate the accepting 
computation history for M on w.  

• An accepting computation history: 

• Ci : The config. on the ith step of computation on w. 

• Generate all strings: 
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Reducibility
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• If M accepts w, G does not generate the accepting 
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• An accepting computation history: 
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If M does not accept w, all strings satisfy one 
of these conditions and are generated by G.
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Reducibility

• CFG G:
• If M does not accept w, G generates all strings,

• If M accepts w, G does not generate the accepting 
computation history for M on w.  

• Build a PDA D instead and convert it to a CFG G.
• Nondeterministically check the conditions. 

• 1- Check the first configuration and accept if C1 is not 
a correct initial configuration. 

• 2- Check the last configuration and accept if it is not a 
correct accepting configuration. 

• 3- Select Ci Nondeterministically and compare with 
Ci+1. Accept if found a mismatch or improper update. 
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Reducibility

• CFG G:
• If M does not accept w, G generates all strings,

• If M accepts w, G does not generate the accepting 
computation history for M on w.  

• Build a PDA D instead and convert it to a CFG G.
• Nondeterministically check the conditions. 

• 3- Select Ci Nondeterministically and compare with 
Ci+1. Accept if found a mismatch or improper update.
• Comparison needs Ci+1 to be in reverse order: 
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