Theory of Formal Languages and Automata
Lecture 20

Mahdi Dolati

Sharif University of Technology
Fall 2023

December 15, 2023

Reducibility

e Reducibility: The primary method for proving that
problems are computationally unsolvable.

* Reduction:
* Convert one problem to another,
* The solution to the 2" is usable to the 1°.
* If problem A reduces to problem B, then
* We can use solution to B to solve A.

December15,2023 2

Reducibility

* Example:
* A: Find your way in the city.
* B: But a map.

* Example:
* A: Find the area of a rectangle,
* B: Find the length and width of the rectangle.

* Example:
* A: Solve a system of linear equations,
* B: Invert a matrix.

December15,2023 s

Reducibility

* We can classify problems with reduction:
* Ais reducible to B: Solving A is not harder than solving B.

* Decidability:
* Ais reducible to B:
If B is decidable, then A is decidable.

 Ais reducible to B:
If A is undecidable, then B is undecidable.

* Complexity.

December 15, 2023

Reducibility

* We can classify problems with reduction:
* Ais reducible to B: Solving A is not harder than solving B.

* Decidability:
* Ais reducible to B:
If B is decidable, then A is decidable.

* Ais reducible to B:
If A is undecidable, then B is undecidable.

* Complexity.

December 15, 2023

Reducibility

* The halting problem:
HALT 1y = {(M,w)| M is a TM and M halts on input w}.

Theorem

HALT7,, is undecidable.

* Proof Idea: By contradiction.

* Assume that HALTr,, is decidable. l.e., there is TM R that
decides HALT 7.

* Construct S, a TM that decides Ary,.

* Given an input of the form (M, w),

* Give (M, w) to R. Since R is a decider it always halts.
* |If R rejects the input, M rejects w by looping. So, S rejects (M, w).

* If R accepts the input, M halts on w. So, simulate M on w and report
its result.

* A contradiction, as A, can not have a decider.

December 15,2023 &

Reducibility

* The halting problem:
HALT 1y = {{M,w)| M is a TM and M halts on input w}.

Theorem

HALTr,, is undecidable.

* Proof: By contradiction.

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w}.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject.”

December 15, 2023

Reducibility

* The emptiness problem:
Erm = {(M)| M isa TM and L(M) = 0}.

Theorem

Erp; is undecidable.

* Proof Idea: By contradiction.
* Let R be a TM that decides E7y,.
* We want to build a TM S that decides A7y,.
* Oninput (M, w), modify (M) to only accept w.

* Call R on the modified machine. If its language is empty,
then M rejects w. Otherwise, M accepts w.

December 15, 2023

Reducibility

* The emptiness problem:
Erm = {(M)| M isa TM and L(M) = 0}.

Theorem

Erp is undecidable.

* Proof: By contradiction.
* Let R be a TM that decides E7y,.
* We want to build a TM S that decides A7y,.
* Oninput (M, w), modify (M) to only accept w. Call it M1:

* Need some new states and some checks to test x=w.

My = *On input z:
1. Ifx # w, reject.
2. Itz =w, run M on input w and accept if M does.”

December 15, 2023

Reducibility

* The emptiness problem:
Erm = {(M)| M isa TM and L(M) = 0}.

Theorem

Erp is undecidable.

* Proof: By contradiction.
* Let R be a TM that decides E7y,.
* We want to build a TM S that decides A7y,.
* On input (M, w), modify (M) to only accept w. Call it M1.
e Put things together:

S = “On input (M, w), an encoding of a TM M and a string w:
1. Use the description of M and w to construct the TM M, just
described.
2. Run R on input (M;).
3. If R accepts, reject; if R rejects, accept.”

December 15, 2023

10

Reducibility

* |s the language of a TM regular?
REGULARTy = {{M)| M isa TM and L({M) is a regular language}.

Theorem

REGULAR7), is undecidable.

* Proof: By contradiction.

* Let R be a TM that decides REGULAR ;.

* We want to build a TM S that decides A7y,.

* Oninput (M, w), modify (M) to recognize a regular
language if M accepts w. Call it M2. Otherwise, M2
recognize a nonregular language:

* Regular language: X*
* Nonregular language: {0™"1" | n = 0}

December 15, 2023

11

Reducibility

* |s the language of a TM regular?
REGULARTy = {{M)| M isa TM and L({M) is a regular language}.

Theorem

REGULAR7), is undecidable.

* Proof: By contradiction.

* Let R be a TM that decides REGULAR ;.

* We want to build a TM S that decides A7y,.

* Oninput (M, w), modify (M) to recognize a regular
language if M accepts w. Call it M2. Otherwise, M2
recognize a nonregular language:

* Regular language: X*
* Nonregular language: {0™"1" | n = 0}

Accept all strings in {0"1" | n = 0}.
If w was accepted, accept all other
strings.

December15,2023 12

Reducibility

* |s the language of a TM regular?

REGULART\q = {(M)| M isa TM and L(M) is a regular language}.

Theorem

REGULARy,, is undecidable.

* Proof: By contradiction.

S = *“On mput (M, w), where M 1s a TM and w 1s a string:
1. Construct the tollowing TM M.
My = “On mput a:
1. If z has the form 0"1", accept.
2. It = does not have this form, run M on input w and
accept 1if M accepts w.”
2. Run R on mput (M>).
3. If R accepts, accept; if R rejects, reject.”

December 15, 2023

13

Reducibility

* Similar to REGULAR), the problems of testing
whether the language of a Turing machine is:
* a context-free language,
* a decidable language,
* afinite language

e are undecidable.

Rice’s Theorem

Determining any property of the languages recognized
by Turing machines is undecidable.

December 15,2023 1

Reducibility

* The equivalency problem:
EQty = {{My, M2)| M, and M5 are TMs and L(M;) = L(Ma2)}.

Theorem

EQrp is undecidable.

* Proof: By contradiction.
* Let R be a TM that decides EQ7y.
* We want to build a TM S that decides E 7.
* Oninput (M), build M1 that rejects all strings and check
their equivalency.

S = “On input (M), where M is a TM:
1. Run R on input (M, M), where M, is a TM that rejects all

inputs.
2. 1If R accepts, accept; if R rejects, reject.”

December 15, 2023

15

Reducibility

Computation Histories

* An important technique to reduce languages,

e Often useful when the language involves testing for the
existence of something:

* The existence of integral roots in a polynomial.

* The computation history for a Turing machine on an
input is simply the sequence of configurations that
the machine goes through as it processes the input.

December 15, 2023

16

Reducibility

Computation Histories

Let M be a Turing machine and w an input string. An accepting
computation history for M on w is a sequence of configurations,
', Cs, ..., Cy, where () is the start configuration of M on w, Cj is
an accepting configuration of M, and each C; legally follows from
C;—1 according to the rules of M. A rejecting computation bis-
tory for M on w is defined similarly, except that C; is a rejecting
configuration.

 Computation histories are finite sequences.

* If M doesn’t halt on w, no accepting or rejecting computation
history exists for M on w.

* Deterministic machines have at most one computation
history on any given input. Nondeterministic machines
may have many computation histories on a single input,
corresponding to the various computation branches.

December 15, 2023

Reducibility

Computation Histories

* A Turing machine with a limited amount of memory:

A linear bounded automaton is a restricted type of Turing machine
wherein the tape head isn’t permitted to move off the portion of
the tape containing the input. If the machine tries to move its head
off either end of the input, the head stays where it is—in the same
way that the head will not move off the left-hand end of an ordinary

Turing machine’s tape.
* Tape has sufficient squares to store the input.

* With the tape alphabet increase the memory up to a
constant factor.

* We say: For an input of length n, the amount of
memory available is linear in n.

December 15,2023 18

Reducibility

Computation Histories

* A Turing machine with a limited amount of memory:

A linear bounded automaton is a restricted type of Turing machine
wherein the tape head isn’t permitted to move off the portion of
the tape containing the input. If the machine tries to move its head
off either end of the input, the head stays where it is—in the same
way that the head will not move off the left-hand end of an ordinary

Turing machine’s tape.

control l

December15,2023 15

Reducibility

Computation Histories

* Linear Bounded Automata (LBA):
* Can decide:

ADFA

ACFG

EDFA

Ecre
e CFLs

December 15,2023 1o

Reducibility

Lemma

Let M be an LBA with g states and g symbols in the tape alphabet. There are exactly
qng™ distinct configurations of M for a tape of length n.

* Proof:

* A configuration = A snapshot in the middle of its
computation.

* A configuration consists of the state of the control, position
of the head, and contents of the tape.
* M has g states.

* The length of its tape is n, so the head can be in one of n
positions, and

* g" possible strings of tape symbols appear on the tape.

* The product of these three quantities is the total number
of different configurations of M with a tape of length n.

December15,2023 a1

Reducibility

* The acceptance problem for LBAs:
Apga = {(M,w)| M is an LBA that accepts string w}.

Theorem

A;p4 is decidable.

* Proof Idea: To decide whether LBA M accepts input
W
* |f M ever repeats a configuration, it would go on a loop.
* M can be in only a limited number of configurations.

 Simulate M for the maximum number of steps gng".
* If M has not halted, reject.

December 15, 2023

22

Reducibility

* The acceptance problem for LBAs:

Apga = {(M,w)| M is an LBA that accepts string w}.

Theorem

A; g4 is decidable.

* Proof: To decide whether LBA M accepts input w:

L = “On input (M, w), where M is an LBA and w is a string:
1. Simulate M on w for gng™ steps or until it halts.

2. If M has halted, accept if it has accepted and reject if it has
rejected. If it has not halted, reject.”

December 15, 2023

23

Reducibility

* The emptiness problem for LBAs:
Eiga = {{(M)| M is an LBA where L(M) = (}.

Theorem

E; 54 is undecidable.

* Proof Idea: By reduction from Ap,,.

* Oninput (M, w), construct LBA B:

* Brecognizes the language comprises all accepting computation
histories for M on w.

* If M accepts w = The language contains one string,
* If M does not accept w = The language is empty.
* Check whether the language of B is empty.

December 15, 2023

24

Reducibility

* The emptiness problem for LBAs:
Eiga = {{(M)| M is an LBA where L(M) = (}.

Theorem

E; 54 is undecidable.

* Proof Idea: By reduction from Ap,,.
* How to construct B from M and w?

* B should accept a string x if x is an accepting computation
history for M on w.

* This string can be of the following form:

TFLA December 15, 2023

25

Reducibility

* The emptiness problem for LBAs:
Figa = {{M)| M is an LBA where L(M) = 0}.

Theorem

E; g4 is undecidable.

* Proof Idea: By reduction from Ap,,.
* How to construct B from M and w? Check the following:

#'\. J#\. J#'\. J# T #'\. .n‘#

i

Ch C '3 Ch

1. C'; is the start configuration for M on w.
2. Each C; 4, legally follows from C;.
3. (' 1s an accepting configuration for M.

December 15, 2023

26

Reducibility

* The emptiness problem for LBAs:
ALLcrg = {(G)| G is a CFG and L(G) = &*}.

Theorem

ALLg¢ is undecidable.

* Proof: By contradiction:
* Assume that ALLr is decidable,
* Show that A7, is decidable.

* Oninput (M, w), construct a CFG G:
* If M does not accept w, G generates all strings,

* |If M accepts w, G does not generate the accepting computation
history for M on w.

December 15, 2023

27

Reducibility

* CFG G:

* |f M does not accept w, G generates all strings,

* If M accepts w, G does not generate the accepting
computation history for M on w.

* An accepting computation history:

#O #Co# - - - #O)#,
* Ci : The config. on the ith step of computation on w.
* Generate all strings:

1. that do not start with (',
2. that do not end with an accepting configuration, or

3. in which some C; does not properly yield C;.; under the rules of M.

December 15,2023 2

Reducibility

* CFG G:

* |f M does not accept w, G generates all strings,

* If M accepts w, G does not generate the accepting
computation history for M on w.

* An accepting computation history:
#O,#C# - - - #O)#,

* Ci : The config. on the ith step of computation on w.

e Generate all strings: If M does not accept w, all strings satisfy one

. ; of these conditions and are generated by G.
1. that do not start with (', s Y

2. that do not end with an accepting configuration, or

3. in which some C; does not properly yield C;.; under the rules of M.

December15,2023 2»

Reducibility

* CFG G:

* If M does not accept w, G generates all strings,

* If M accepts w, G does not generate the accepting
computation history for M on w.

* Build a PDA D instead and convert it to a CFG G.
* Nondeterministically check the conditions.

* 1- Check the first configuration and accept if C1 is not
a correct initial configuration.

e 2- Check the last configuration and accept if it is not a
correct accepting configuration.

* 3- Select Ci Nondeterministically and compare with
Ci+1. Accept if found a mismatch or improper update.

December 15,2023 30

Reducibility

* CFG G:

* If M does not accept w, G generates all strings,

* If M accepts w, G does not generate the accepting
computation history for M on w.

* Build a PDA D instead and convert it to a CFG G.
* Nondeterministically check the conditions.

 3- Select Ci Nondeterministically and compare with

Ci+1. Accept if found a mismatch or improper update.

 Comparison needs Ci+1 to be in reverse order:

— # — # — # — # - #
. i . S r s l . .

Ch CR Cs CF Ci

December 15, 2023

31

	Slide 1: Theory of Formal Languages and Automata Lecture 20
	Slide 2: Reducibility
	Slide 3: Reducibility
	Slide 4: Reducibility
	Slide 5: Reducibility
	Slide 6: Reducibility
	Slide 7: Reducibility
	Slide 8: Reducibility
	Slide 9: Reducibility
	Slide 10: Reducibility
	Slide 11: Reducibility
	Slide 12: Reducibility
	Slide 13: Reducibility
	Slide 14: Reducibility
	Slide 15: Reducibility
	Slide 16: Reducibility Computation Histories
	Slide 17: Reducibility Computation Histories
	Slide 18: Reducibility Computation Histories
	Slide 19: Reducibility Computation Histories
	Slide 20: Reducibility Computation Histories
	Slide 21: Reducibility
	Slide 22: Reducibility
	Slide 23: Reducibility
	Slide 24: Reducibility
	Slide 25: Reducibility
	Slide 26: Reducibility
	Slide 27: Reducibility
	Slide 28: Reducibility
	Slide 29: Reducibility
	Slide 30: Reducibility
	Slide 31: Reducibility

