Theory of Formal Languages and Automata Lecture 19

Mahdi Dolati

Sharif University of Technology

Fall 2023

December 1, 2023

- Are there tangible unsolvable problems?
 - Program verification:
 - A precise description,
 - A precise program,
 - Yet, we can not in general verify that the program performs as specified.
- We will see several computationally unsolvable problem.
 - Learn techniques to prove unsolvability.

• The acceptance problem for TMs:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem

 A_{TM} is undecidable.

• Observe that A_{TM} is Turing-recognizable:

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- If M loops on w, then U loops on $\langle M, w \rangle$:
 - U is not a decider.

• The acceptance problem for TMs:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem

 A_{TM} is undecidable.

• Observe that A_{TM} is Turing-recognizable:

U ="On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- If M loops on w, then U loops on $\langle M, w \rangle$:
 - U is not a decider.

U can not detect that M is not halting. We will see it is impossible.

• The acceptance problem for TMs:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem

 A_{TM} is undecidable.

• Observe that A_{TM} is Turing-recognizable:

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- U is an example of the **universal TM** (Turing'36).
- It is possible to program U.

- We use diagonalization for the proof.
- A technique developed by Cantor 1873:
 - How to compare infinities? We can not count them.
 - We can compare them by trying to pair their elements.

- A function $f : A \rightarrow B$:
 - One-to-one (injective): Does not map different elements to the same place,

$$a \neq b \rightarrow f(a) \neq f(b)$$

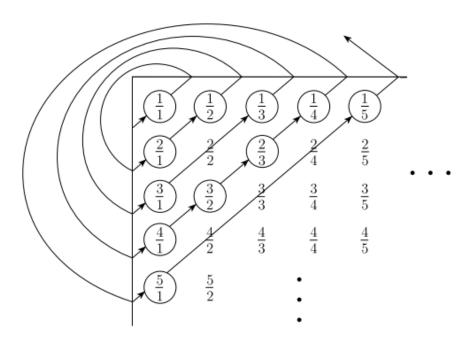
- Onto (surjective): It hits every elements of B, $\forall b \in B \exists a \in A f(a) = b$
- Correspondence (bijective): Both one-to-one and onto.
- A and B are the same size if there is f : A → B that is correspondence.

- Example: Consider the set of natural numbers (N) and even natural numbers (E).
- These sets have the same size, because there is correspondence f mapping N to E:

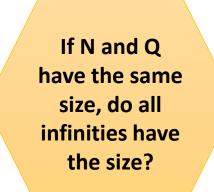
$$f(n)=2n.$$

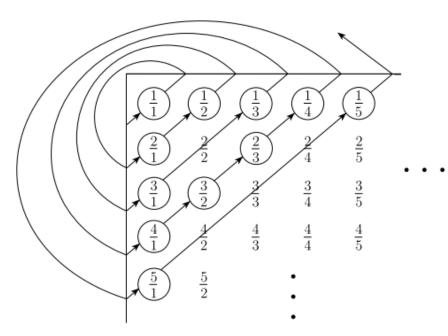
\overline{n}	f(n)
1	2
2	4
3	6
:	:

- **Definition**: A set A is countable if either it is finite or it has the same size as N.
- Example: Set of positive rational numbers, Q, is the same size as N.
 - We can turn the matrix into a list.



- **Definition**: A set A is countable if either it is finite or it has the same size as N.
- Example: Set of positive rational numbers, Q, is the same size as N.
 - We can turn the matrix into a list.





- There are sets that have no correspondence with N.
- These sets are very big.
- These sets are called **uncountable**.
- Cantor proved that the set of real numbers, R, is uncountable with a method called diagonalization.

Theorem

R is uncountable.

- **Proof**: We show that there is no correspondence between N and R. Suppose such correspondence f exists:
 - List all real numbers,
 - Construct a new real number that is not in the list,
 - Choose each digit to be different from one of the listed numbers,
 - Thus, the corresponding is not onto, a contradiction.

• Construct 0≤x≤	om f(1) \underline{n}	f(n)		
			3. <u>1</u> 4159	
in the first deci	mal place and so on:	2	55.5 <u>5</u> 555	
	L	3	0.12 <u>3</u> 45	
• X=0.464		4	0.500 <u>0</u> 0	
		:	:	
lahdi Dolati (Sharif Univ. Tech.)	TFLA	December 1.	2023 1	2

December 1, 2023

- We can use the fact that R is uncountable as follows:
- Show that there are countably many TMs,
- Show that there are uncountably many languages,
- Each TM recognizes one language,
- Thus, there are languages that are not Turingrecognizable.

Corollary

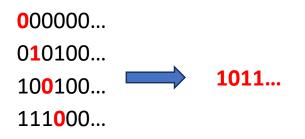
Some languages are not Turing-recognizable.

- Proof:
 - Set of all strings on any alphabet is countable:
 - Write strings of length 0 first,
 - Then, write strings of length 1,
 - ...
 - Set of all TMs is countable:
 - Each TM has an encoding (a string),
 - Omit strings that are not a TM,
 - The remaining strings are countable.

Corollary

Some languages are not Turing-recognizable.

- Proof:
 - Set of all strings on any alphabet is countable.
 - Set of all TMs is countable.
 - Set of all languages is uncountable:
 - Set of all infinite binary sequences, **B**, is uncountable:
 - Use diagonalization:



Corollary

Some languages are not Turing-recognizable.

- Proof:
 - Set of all strings on any alphabet is countable.
 - Set of all TMs is countable.
 - Set of all languages, L, is uncountable:
 - Set of all infinite binary sequences, **B**, is uncountable.
 - There is a correspondence between **L** and **B**:
 - Each language is a selecting from the set of all strings,
 - Selection is a binary decision,
 - Thus, the set of all languages is uncountable.

 $\Sigma^* = \{ \begin{array}{cccc} \varepsilon, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001, & \cdots \\ A = \{ \begin{array}{cccc} 0, & 0, & 00, & 01, & 000, & 001, & \cdots \\ \end{array} \};$ characteristic sequence of A $\longrightarrow \chi_A = \begin{array}{ccccc} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \cdots \\ \end{array}$

TFLA

Corollary

Some languages are not Turing-recognizable.

- Proof:
 - Set of all strings on any alphabet is countable.
 - Set of all TMs is countable.
 - Set of all languages, L, is uncountable:
 - Set of all infinite binary sequences, **B**, is uncountable.
 - There is a correspondence between **L** and **B**:
 - Function $f: L \rightarrow B$, where f(A) is the characteristic sequence of A is one-to-one and onto.
 - **B** is uncountable, thus **L** is uncountable.
 - We conclude that some languages are not recognized by any Turing machine.

Back to Theorem

• The acceptance problem for TMs:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem

 A_{TM} is undecidable.

- Proof: By contradiction. Suppose H is a decider for A_{TM} . $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$
- Construct another TM D:

D ="On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."

Mahdi Dolati (Sharif Univ. Tech.)

Back to Theorem

• The acceptance problem for TMs:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem

 A_{TM} is undecidable.

- Proof: By contradiction. Suppose H is a decider for A_{TM} . $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$
- Construct another TM D:

 $D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases} \longrightarrow D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle. \end{cases}$

• Thus, neither TM D nor TM H can exist.

Back to Theorem

• The acceptance problem for TMs:

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem

 A_{TM} is undecidable.

- Proof (summary):
 - H accepts $\langle M, w \rangle$ exactly when M accepts w.
 - D rejects $\langle M \rangle$ exactly when M accepts $\langle M \rangle$.
 - D rejects $\langle D \rangle$ exactly when D accepts $\langle D \rangle$.

Back to Theorem

• Did we use diagonalization in the proof?

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept		accept		M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	M_2	accept	accept	accept	accept	
M_3							reject			
M_4	accept	accept			 M_4	accept	accept	reject	reject	
:		:	:		:		:			
•					•			•		

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
:		:			·		
D	reject	reject	accept	accept		?	
÷		:					\cdot .

Mahdi Dolati (Sharif Univ. Tech.)

TFLA

December 1, 2023

• Recall that the complement of a language is the language consisting of all strings that are not in the language.

Definition

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

- Proof: Forward direction:
 - If language A is decidable, then it is also Turingrecognizable,
 - If language A is decidable, then \overline{A} is also decidable, which is again Turing-recognizable.

Theorem

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

- Proof: Reverse direction:
 - Assume both languages A and \overline{A} are Turing-recognizable,
 - Let M1 be the recognizer for A,
 - Let M2 be the recognizer for \overline{A} ,
 - Construct a decider M for A:
 - M = "On input w:
 - **1.** Run both M_1 and M_2 on input w in parallel.
 - 2. If M_1 accepts, *accept*; if M_2 accepts, *reject*."
 - Every string w is either in A or \overline{A} .

Corollary

 $\overline{A_{TM}}$ is not Turing-recognizable.

- Proof:
 - Is A_{TM} Turing-recognizable.
 - If $\overline{A_{TM}}$ is Turing-recognizable, then A_{TM} should be decidable.
 - However, we proved that A_{TM} is not decidable.
 - Thus, $\overline{A_{TM}}$ must be Turing-unrecognizable.