Theory of Formal Languages and Automata
Lecture 18

Mahdi Dolati

Sharif University of Technology
Fall 2023

December 1, 2023

Definition of Algorithm

 Algorithm: A collection of simple instructions for
carrying out some task.

* Also called procedures or recipes.

* Ancient examples:
e Algorithm for finding prime numbers,
* Algorithm for finding greatest common divisors.

* Despite its long history, the notion of algorithm itself

was not defined precisely until the twentieth century.

 Why do we need a formal description?

December 1, 2023

2

Hilbert’s Problems
Background

* A polynomial is a sum of terms, where each term is
product of certain variables and a constant, called a
coefficient:

 Example of a term with coefficient 6:
6:X-X Xy -Z-2Z=6x3yz?
* Example of a polynomial over the variables x, y, and z:
6x3yz*¢ + 3xy? — x> — 10
* Root of a polynomial: An assignment of variables so
that the value of the polynomial is zero.
* For example, x=5, y=3, and z=0 is a root of the previous
polynomial.
* A root is integral if all the variables are integers,
* Some polynomials have an integral root and some do not.

December 1, 2023

Hilbert’s Problems

* David Hilbert at International Congress of
Mathematicians in Paris, 1900:

* Presented 23 problems as a challenge for the 20" century.

* The 10t Hilbert problem:

e Devise a process according to which it can be determined
by a finite number of operations (=algorithm) that tests
whether a polynomial has an integral root.

* Hilbert apparently assumed that such an algorithm
must exist—someone need only find it.

* We now know, no algorithm exists for this task.

* Itis impossible to get this result with an intuitive concept
of algorithm.

December 1, 2023

Hilbert’s Problems

 Definitions of algorithm (they are equivalent):
* Year 1936,
* Alonzo Church: With A-calculus, F',-‘
* Alan Turing: With Turing machines. 2l Y

e Relation between the informal and formal definitions
is called the Church Turing thesis:

Intuitive notion

of algorithms

Turin g machine

equals algorithms

December1,2023 s

Church Turing Thesis

* There has never been a proof, but the evidence for its
validity comes from the fact that every realistic model
of computation, yet discovered, has been shown to
be equivalent.

* If there were a device which could answer questions
beyond those that a Turing machine can answer, then
it would be called an oracle.

December 1, 2023

6

Hilbert’s Problems

* Hilbert’s 10t problem in our terminology: Is the set D

decidable?
D = {p | p is a polynomial with an integral root }

* No. D is not decidable but Turing-recognizable.

* Example: Show single variable case is Turing-
recognizable:

D; = {p| pis a polynomial over x with an integral root}.

* Construct a TM M, that recognizes D;:

M; = “On input (p): where p is a polynomial over the variable x.
1. Evaluate p with x set successively to the values 0, 1, —1, 2, —2, 3,
—3, If at any point the polynomial evaluates to 0, accept.”

December 1, 2023

7

Hilbert’s Problems

* Hilbert’s 10t problem in our terminology: Is the set D

decidable?
D = {p | p is a polynomial with an integral root }

* No. D is not decidable but Turing-recognizable.

* Example: Show multivariable case is Turing-
recognizable:
e Similar to single variable case,

* Build a TM M that goes through all possible settings of the
variables.

December 1, 2023

8

Hilbert’s Problems

* Hilbert’s 10t problem in our terminology: Is the set D
decidable?
D = {p | p is a polynomial with an integral root }

* No. D is not decidable but Turing-recognizable.

* Example: Can we convert M, to be a decider?

* Yes. We can restrict the search, as root of single variable
polynomials lie between the values:

Cmax
+k
C1

e kis the number of terms,
* Cmax 1S the coefficient with the largest absolute value,
* ¢4 is the coefficient of the highest order term.

December 1, 2023

Hilbert’s Problems

* Hilbert’s 10t problem in our terminology: Is the set D

decidable?
D = {p | p is a polynomial with an integral root }

* No. D is not decidable but Turing-recognizable.

* Example: Can we convert M to be a decider?

* No. Matijasevic’s theorem shows that it is not possible to
find a bound similar to the single variable case here.

December1,2023 10

TM Description Levels

* Formal description,

* Implementation description,
* The way that the head moves,
* The way that content is stored on the tape.

* High-level description,
* Describe an algorithm.

December1,2023 11

TM Description Levels

* Input is always a string:
* We can represent any object as a string.

e Examples:
* Polynomials,
* Graphs,
* Grammars,
Automata,
Any combination of above,

* The TM decodes the representation.
» Tests validity of encoding and rejects if it is not valid.

* Use (O) to show the encoding of an object O.
* Use (04, 0, ..., Oy) for several objects.

December 1, 2023

TM Description Levels

Encoding

 Example: Undirected graphs that are connected:
A = {(G)| G is a connected undirected graph}.
* A graph and its encoding:

December1,2023 13

TM Description Levels

Encoding

 Example: Undirected graphs that are connected:

A = {(G)| G is a connected undirected graph}.

* High-level description of a TM M that decides A:

M = “On input (), the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked:

3. For each node in G, mark it if it is attached by an edge to a
node that is already marked.

4. Scan all the nodes of G to determine whether they all are
marked. If they are, accept; otherwise, reject.”

December1,2023 1

Decidability

* Limits of algorithmic solvability: We demonstrate
certain problems that can be solved algorithmically
and others that cannot.

* You know some problems must be simplified or altered
before you can find an algorithmic solution.

December 1, 2023

15

Decidable Languages

* Certain problems of this kind are related to
applications.

* Problem of testing whether a CFG generates a string is
related to the problem of recognizing and compiling
programs in a programming language.

* Examples of decidability helps you to appreciate the
undecidable examples.

December1,2023 15

Decidable Languages

Regular Languages

* Algorithms for:
* Whether a finite automaton accepts a string,
* whether the language of a finite automaton is empty, and
* whether two finite automata are equivalent.

* Represent computational problems by languages.
* We have set up terminology dealing with languages.

December 1, 2023

17

Decidable Languages

Regular Languages

* The acceptance problem for DFAs: Testing whether a
particular deterministic finite automaton accepts a
given string expressed as a language:

Apra = {(B,w)| B is a DFA that accepts input string w}.
* Test whether (B,w) € L(Apra).

* Language is decidable «+» Computational problem is
decidable.

December1,2023 18

Decidable Languages

Regular Languages

Theorem

Apr4 is a decidable language.

* Proof idea: present a TM M that decides Apr4.

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.

2. [If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

* Proof: A few implementation details to carry out the
simulation:
* Representation of a DFA with its five components.

e Start from g0, read one symbol from the input, change the
current state based on the transition function.

* When finished the input, check whether the state is final.

December1,2023 1

Decidable Languages

Regular Languages

* The acceptance problem for NFAs:
Anra = { (B, w)| B is an NFA that accepts input string w }.

Theorem

Anra is @ decidable language.

* Proof: We present a TM N that decides Ayr4.
A new idea: Convert the NFA to a DFA:

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA C, using the procedure for

i - A
2. RunTM M frnmiThenrem 4.1 pn input (C, w). ~ We know how to

- - - e ey el

3. If M accepts, accept; otherwise, reject.” "~ convert NFAs to DFAs.

December1,2023 1

Decidable Languages

Regular Languages

* The acceptance problem for regular expressions:

Arex = {(I,w)| R is a regular expression that generates string w }.

Theorem

ARgyx is a decidable language.

* Proof: We present a TM P that decides Apgy.

P = “On input (R, w), where I is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using
the procedure for this conversion given in Theorem 1.54.

2. Run TM N on input (A, w).

3. If N accepts, accept; it N rejects, reject.”

December1,2023 a1

Decidable Languages

Regular Languages

* The emptiness testing for regular languages:
Epea = {(A)| A1sa DFA and L(A) = 0}.

Theorem

Epr4 is a decidable language.

* Proof: Reaching an accept state from the start state:

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

December1,2023 =2

Decidable Languages

Regular Languages

* The equivalency problem for DFAs:
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}.

Theorem

EQpr4 is a decidable language.

* Proof: Construct a new DFA C that accepts the

symmetric difference of L(A) and L(B): |) L®)
L(C) = (L(A) nI(B)) u (TA) N L(B)) @

F = “On input (A, B), where A and B are DFAs:
1. Construct DFA C' as described.

2. Run TM T from{l'’heorem 4.4!011 input (C').

. b e — _ » Test emptiness.
3. If T accepts, accept. It T rejects, reject.” P

December1,2023

Decidable Languages

Context-Free Languages

* The acceptance problem for CFGs:
Acre = {(G, w)| G is a CFG that generates string w }

Theorem

Acrc is a decidable language.

* Proof Idea 1 (does not work):

* Go through all derivations to determine whether any is a
derivation of w,

e gives a Turing machine that is a recognizer, but not a
decider.

December1,2023 2

Decidable Languages

Context-Free Languages

* The acceptance problem for CFGs:
Acre = {(G, w)| G is a CFG that generates string w }

Theorem

Acrc is a decidable language.

* Proof Idea 2:
* |f Gisin CNF, any derivation of w has 2n - 1 steps, where n
is the length of w,
* Checking only derivations with 2n - 1 steps to determine
whether G generates w would be sufficient.

December 1, 2023

25

Decidable Languages

Context-Free Languages

* The acceptance problem for CFGs:
Acre = {(G,w)| G is a CFG that generates string w }

Theorem

Acrc is a decidable language.

* Proof:

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.
2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = (), then instead list all derivations with one step.
3. Ifany of these derivations generate w, accept; if not, reject.”

December 1, 2023

26

Decidable Languages

Context-Free Languages

* The emptiness problem for CFLs:
Ecre = {{(G)| G1saCFG and L(G) = 0}.

Theorem

Ecrc is a decidable language.

* Proof Idea 1 (does not work):
* Going through all possible w’s, one by one.
* There are infinitely many w’s.

December1,2023 2

Decidable Languages

Context-Free Languages

* The emptiness problem for CFLs:
Ecrg = {{G)| G is a CFG and L(G) = 0}.

Theorem

Ecrc is a decidable language.

* Proof: Keep track whether each variable is capable of
generating a string of terminals:

R = “On input (G), where G 1s a CFG:
1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G hasarule A — U U; - - - U, and
each symbol Uy, ..., Uy has already been marked.
4. If the start variable is not marked, accept; otherwise, reject.”

December1,2023 2

Decidable Languages

Context-Free Languages

* The equivalency problem for CFGs:
EQcpe = {(G,H)| G and H are CFGs and L(G) = L(H)}.

Theorem

EQcrc is NOT a decidable language.

* Proof: We prove this in later (Chapter 5).

December1,2023 2»

Decidable Languages

Context-Free Languages

Theorem

Every context-free language is decidable.

* Let A be a CFL. Our objective is to show that A is
decidable.

* Proof idea 1 (does not work): Simulate the PDA of the
language with a TM:
 TM is powerful enough to simulate a stack with its tape,

 However, some branches of the PDA’s computation may go

on forever, reading and writing the stack without ever
halting.

e The TM would not be a decider.

December1,2023 30

Decidable Languages

Context-Free Languages

Theorem

Every context-free language is decidable.

* Proof: Let G be a CFG for A and design a TM M that
decides A. We build a copy of G into M. It works as
follows.

Mg = “On input w:
1. Run TM S on input (G, w).

2. If this machine accepts, accept; if it rejects, reject.”

December 1, 2023

Decidable Languages

Context-Free Languages

* The relationship among classes of languages:

Turing-recognizable
decidable

context-free

December 1, 2023

32

	Slide 1: Theory of Formal Languages and Automata Lecture 18
	Slide 2: Definition of Algorithm
	Slide 3: Hilbert’s Problems Background
	Slide 4: Hilbert’s Problems
	Slide 5: Hilbert’s Problems
	Slide 6: Church Turing Thesis
	Slide 7: Hilbert’s Problems
	Slide 8: Hilbert’s Problems
	Slide 9: Hilbert’s Problems
	Slide 10: Hilbert’s Problems
	Slide 11: TM Description Levels
	Slide 12: TM Description Levels
	Slide 13: TM Description Levels Encoding
	Slide 14: TM Description Levels Encoding
	Slide 15: Decidability
	Slide 16: Decidable Languages
	Slide 17: Decidable Languages Regular Languages
	Slide 18: Decidable Languages Regular Languages
	Slide 19: Decidable Languages Regular Languages
	Slide 20: Decidable Languages Regular Languages
	Slide 21: Decidable Languages Regular Languages
	Slide 22: Decidable Languages Regular Languages
	Slide 23: Decidable Languages Regular Languages
	Slide 24: Decidable Languages Context-Free Languages
	Slide 25: Decidable Languages Context-Free Languages
	Slide 26: Decidable Languages Context-Free Languages
	Slide 27: Decidable Languages Context-Free Languages
	Slide 28: Decidable Languages Context-Free Languages
	Slide 29: Decidable Languages Context-Free Languages
	Slide 30: Decidable Languages Context-Free Languages
	Slide 31: Decidable Languages Context-Free Languages
	Slide 32: Decidable Languages Context-Free Languages

