Theory of Formal Languages and Automata Lecture 18

Mahdi Dolati

Sharif University of Technology Fall 2023

December 1, 2023

Definition of Algorithm

- Algorithm: A collection of simple instructions for carrying out some task.
 - Also called procedures or recipes.
- Ancient examples:
 - Algorithm for finding prime numbers,
 - Algorithm for finding greatest common divisors.
- Despite its long history, the notion of algorithm itself was not defined precisely until the twentieth century.
 - Why do we need a formal description?

Background

- A polynomial is a sum of terms, where each term is product of certain variables and a constant, called a coefficient:
 - Example of a term with coefficient 6:

$$6 \cdot x \cdot x \cdot x \cdot y \cdot z \cdot z = 6x^3yz^2$$

- Example of a polynomial over the variables x, y, and z: $6x^3yz^2 + 3xy^2 x^3 10$
- **Root** of a polynomial: An assignment of variables so that the value of the polynomial is zero.
 - For example, x=5, y=3, and z=0 is a root of the previous polynomial.
- A root is integral if all the variables are integers,
 - Some polynomials have an integral root and some do not.

- David Hilbert at International Congress of Mathematicians in Paris, 1900:
 - Presented 23 problems as a challenge for the 20th century.
- The 10th Hilbert problem:
 - Devise a process according to which it can be determined by a finite number of operations (=algorithm) that tests whether a polynomial has an integral root.
- Hilbert apparently assumed that such an algorithm must exist—someone need only find it.
 - We now know, no algorithm exists for this task.
 - It is impossible to get this result with an intuitive concept of algorithm.

- Definitions of algorithm (they are equivalent):
 - Year 1936,
 - Alonzo Church: With λ -calculus,
 - Alan Turing: With Turing machines.

 Relation between the informal and formal definitions is called the Church Turing thesis:

Intuitive notion equals

of algorithms

Turing machine algorithms

Church Turing Thesis

- There has never been a proof, but the evidence for its validity comes from the fact that every realistic model of computation, yet discovered, has been shown to be equivalent.
- If there were a device which could answer questions beyond those that a Turing machine can answer, then it would be called an **oracle**.

Hilbert's 10th problem in our terminology: Is the set D decidable?

 $D = \{p \mid p \text{ is a polynomial with an integral root }\}$

No. D is not decidable but Turing-recognizable.

 Example: Show single variable case is Turingrecognizable:

 $D_1 = \{p \mid p \text{ is a polynomial over } x \text{ with an integral root}\}.$

• Construct a TM M_1 that recognizes D_1 :

 M_1 = "On input $\langle p \rangle$: where p is a polynomial over the variable x.

1. Evaluate p with x set successively to the values $0, 1, -1, 2, -2, 3, -3, \ldots$ If at any point the polynomial evaluates to 0, accept."

Hilbert's 10th problem in our terminology: Is the set D decidable?

 $D = \{p \mid p \text{ is a polynomial with an integral root }\}$

No. D is not decidable but Turing-recognizable.

- **Example**: Show multivariable case is Turing-recognizable:
 - Similar to single variable case,
 - Build a TM M that goes through all possible settings of the variables.

Hilbert's 10th problem in our terminology: Is the set D decidable?

 $D = \{p \mid p \text{ is a polynomial with an integral root }\}$

- No. D is not decidable but Turing-recognizable.
- **Example**: Can we convert M_1 to be a decider?
 - Yes. We can restrict the search, as root of single variable polynomials lie between the values:

$$\pm k \frac{c_{\text{max}}}{c_1}$$

- k is the number of terms,
- $c_{\rm max}$ is the coefficient with the largest absolute value,
- c_1 is the coefficient of the highest order term.

Hilbert's 10th problem in our terminology: Is the set D decidable?

 $D = \{p \mid p \text{ is a polynomial with an integral root }\}$

No. D is not decidable but Turing-recognizable.

- **Example**: Can we convert M to be a decider?
 - No. Matijasevic's theorem shows that it is not possible to find a bound similar to the single variable case here.

Formal description,

- Implementation description,
 - The way that the head moves,
 - The way that content is stored on the tape.

- High-level description,
 - Describe an algorithm.

- Input is always a string:
 - We can represent any object as a string.
 - Examples:
 - Polynomials,
 - Graphs,
 - Grammars,
 - Automata,
 - Any combination of above,
 - ...
 - The TM decodes the representation.
 - Tests validity of encoding and rejects if it is not valid.
- Use $\langle O \rangle$ to show the encoding of an object O.
- Use $\langle O_1, O_2, ..., O_k \rangle$ for several objects.

Encoding

• Example: Undirected graphs that are connected:

 $A = \{\langle G \rangle | G \text{ is a connected undirected graph} \}.$

A graph and its encoding:

$$\langle G \rangle =$$
 (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Encoding

• Example: Undirected graphs that are connected:

 $A = \{\langle G \rangle | G \text{ is a connected undirected graph} \}.$

High-level description of a TM M that decides A:

M = "On input $\langle G \rangle$, the encoding of a graph G:

- 1. Select the first node of G and mark it.
- 2. Repeat the following stage until no new nodes are marked:
- **3.** For each node in *G*, mark it if it is attached by an edge to a node that is already marked.
- **4.** Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

Decidability

- Limits of algorithmic solvability: We demonstrate certain problems that can be solved algorithmically and others that cannot.
 - You know some problems must be simplified or altered before you can find an algorithmic solution.

- Certain problems of this kind are related to applications.
 - Problem of testing whether a CFG generates a string is related to the problem of recognizing and compiling programs in a programming language.
- Examples of decidability helps you to appreciate the undecidable examples.

Regular Languages

- Algorithms for:
 - Whether a finite automaton accepts a string,
 - whether the language of a finite automaton is empty, and
 - whether two finite automata are equivalent.
- Represent computational problems by languages.
 - We have set up terminology dealing with languages.

Regular Languages

 The acceptance problem for DFAs: Testing whether a particular deterministic finite automaton accepts a given string expressed as a language:

$$A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}.$$

- Test whether $\langle B, w \rangle \in L(A_{DFA})$.

Regular Languages

Theorem

 A_{DFA} is a decidable language.

- Proof idea: present a TM M that decides A_{DFA} .
 - M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:
 - 1. Simulate B on input w.
 - 2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."
- Proof: A few implementation details to carry out the simulation:
 - Representation of a DFA with its five components.
 - Start from q0, read one symbol from the input, change the current state based on the transition function.
 - When finished the input, check whether the state is final.

Regular Languages

The acceptance problem for NFAs:

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}.$

Theorem

 A_{NFA} is a decidable language.

- Proof: We present a TM N that decides A_{NFA} .
 - A new idea: Convert the NFA to a DFA:
- N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:
 - Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
 - **2.** Run TM M from Theorem 4.1 on input $\langle C, w \rangle$. We know how to
 - 3. If M accepts, accept; otherwise, reject." convert NFAs to DFAs.

Regular Languages

The acceptance problem for regular expressions:

 $A_{\mathsf{REX}} = \{ \langle R, w \rangle | \ R \text{ is a regular expression that generates string } w \}.$

Theorem

 A_{REX} is a decidable language.

• Proof: We present a TM P that decides A_{REX} .

P = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:

- Convert regular expression R to an equivalent NFA A by using the procedure for this conversion given in Theorem 1.54.
- **2.** Run TM N on input $\langle A, w \rangle$.
- **3.** If N accepts, accept; if N rejects, reject."

Regular Languages

The emptiness testing for regular languages:

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}.$$

Theorem

 E_{DFA} is a decidable language.

• Proof: Reaching an accept state from the start state:

T = "On input $\langle A \rangle$, where A is a DFA:

- **1.** Mark the start state of A.
- 2. Repeat until no new states get marked:
- Mark any state that has a transition coming into it from any state that is already marked.
- **4.** If no accept state is marked, *accept*; otherwise, *reject*."

Regular Languages

The equivalency problem for DFAs:

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

Theorem

 EQ_{DFA} is a decidable language.

• Proof: Construct a new DFA C that accepts the symmetric difference of L(A) and L(B):

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- **1.** Construct DFA C as described.
- **2.** Run TM T from Theorem 4.4 on input $\langle C \rangle$.
- 3. If T accepts, accept. If T rejects, reject."

Test emptiness.

Context-Free Languages

The acceptance problem for CFGs:

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}.$

Theorem

 A_{CFG} is a decidable language.

- Proof Idea 1 (does not work):
 - Go through all derivations to determine whether any is a derivation of w,
 - gives a Turing machine that is a recognizer, but not a decider.

Context-Free Languages

The acceptance problem for CFGs:

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}.$

Theorem

 A_{CFG} is a decidable language.

- Proof Idea 2:
 - If G is in CNF, any derivation of w has 2n 1 steps, where n is the length of w,
 - Checking only derivations with 2n 1 steps to determine whether G generates w would be sufficient.

Context-Free Languages

The acceptance problem for CFGs:

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}.$

Theorem

 A_{CFG} is a decidable language.

• Proof:

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

Context-Free Languages

The emptiness problem for CFLs:

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}.$$

Theorem

 E_{CFG} is a decidable language.

- Proof Idea 1 (does not work):
 - Going through all possible w's, one by one.
 - There are infinitely many w's.

Context-Free Languages

The emptiness problem for CFLs:

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}.$$

Theorem

 E_{CFG} is a decidable language.

 Proof: Keep track whether each variable is capable of generating a string of terminals:

R = "On input $\langle G \rangle$, where G is a CFG:

- **1.** Mark all terminal symbols in *G*.
- 2. Repeat until no new variables get marked:
- 3. Mark any variable A where G has a rule $A \to U_1 U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.
- 4. If the start variable is not marked, accept; otherwise, reject."

Context-Free Languages

The equivalency problem for CFGs:

$$EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}.$$

Theorem

 EQ_{CFG} is NOT a decidable language.

• Proof: We prove this in later (Chapter 5).

Context-Free Languages

Theorem

Every context-free language is decidable.

- Let A be a CFL. Our objective is to show that A is decidable.
- Proof idea 1 (does not work): Simulate the PDA of the language with a TM:
 - TM is powerful enough to simulate a stack with its tape,
 - However, some branches of the PDA's computation may go on forever, reading and writing the stack without ever halting.
 - The TM would not be a decider.

Context-Free Languages

Theorem

Every context-free language is decidable.

• Proof: Let G be a CFG for A and design a TM M_G that decides A. We build a copy of G into M_G . It works as follows.

```
M_G = "On input w:
```

- **1.** Run TM S on input $\langle G, w \rangle$.
- 2. If this machine accepts, accept; if it rejects, reject."

Context-Free Languages

The relationship among classes of languages:

